|
import gym |
|
from tensorboardX import SummaryWriter |
|
import copy |
|
import easydict |
|
import os |
|
from ditk import logging |
|
|
|
from ding.model import DQN |
|
from ding.policy import DQNPolicy |
|
from ding.envs import DingEnvWrapper, BaseEnvManagerV2 |
|
from ding.data import DequeBuffer |
|
from ding.config import compile_config |
|
from ding.framework import task |
|
from ding.framework.context import OnlineRLContext |
|
from ding.framework.middleware import OffPolicyLearner, StepCollector, interaction_evaluator, \ |
|
eps_greedy_handler, CkptSaver, eps_greedy_masker, sqil_data_pusher, data_pusher |
|
from ding.utils import set_pkg_seed |
|
from ding.entry import trex_collecting_data |
|
from ding.reward_model import create_reward_model |
|
from dizoo.classic_control.cartpole.config.cartpole_trex_dqn_config import main_config, create_config |
|
|
|
|
|
def main(): |
|
logging.getLogger().setLevel(logging.INFO) |
|
demo_arg = easydict.EasyDict({'cfg': [main_config, create_config], 'seed': 0}) |
|
trex_collecting_data(demo_arg) |
|
cfg = compile_config(main_config, create_cfg=create_config, auto=True, renew_dir=False) |
|
|
|
with task.start(async_mode=False, ctx=OnlineRLContext()): |
|
collector_env = BaseEnvManagerV2( |
|
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.collector_env_num)], |
|
cfg=cfg.env.manager |
|
) |
|
|
|
evaluator_env = BaseEnvManagerV2( |
|
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.evaluator_env_num)], |
|
cfg=cfg.env.manager |
|
) |
|
|
|
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) |
|
model = DQN(**cfg.policy.model) |
|
buffer_ = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size) |
|
policy = DQNPolicy(cfg.policy, model=model) |
|
|
|
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) |
|
reward_model = create_reward_model(copy.deepcopy(cfg), policy.collect_mode.get_attribute('device'), tb_logger) |
|
reward_model.train() |
|
|
|
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) |
|
task.use(eps_greedy_handler(cfg)) |
|
task.use(StepCollector(cfg, policy.collect_mode, collector_env)) |
|
task.use(data_pusher(cfg, buffer_)) |
|
task.use(OffPolicyLearner(cfg, policy.learn_mode, buffer_, reward_model)) |
|
task.use(CkptSaver(policy, cfg.exp_name, train_freq=100)) |
|
task.run() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|