gomoku / DI-engine /ding /example /ppo_with_complex_obs.py
zjowowen's picture
init space
079c32c
from typing import Dict
import os
import torch
import torch.nn as nn
import numpy as np
import gym
from gym import spaces
from ditk import logging
from ding.envs import DingEnvWrapper, EvalEpisodeReturnWrapper, \
BaseEnvManagerV2
from ding.config import compile_config
from ding.policy import PPOPolicy
from ding.utils import set_pkg_seed
from ding.model import VAC
from ding.framework import task, ding_init
from ding.framework.context import OnlineRLContext
from ding.framework.middleware import multistep_trainer, StepCollector, interaction_evaluator, CkptSaver, \
gae_estimator, online_logger
from easydict import EasyDict
my_env_ppo_config = dict(
exp_name='my_env_ppo_seed0',
env=dict(
collector_env_num=4,
evaluator_env_num=4,
n_evaluator_episode=4,
stop_value=195,
),
policy=dict(
cuda=True,
action_space='discrete',
model=dict(
obs_shape=None,
action_shape=2,
action_space='discrete',
critic_head_hidden_size=138,
actor_head_hidden_size=138,
),
learn=dict(
epoch_per_collect=2,
batch_size=64,
learning_rate=0.001,
value_weight=0.5,
entropy_weight=0.01,
clip_ratio=0.2,
learner=dict(hook=dict(save_ckpt_after_iter=100)),
),
collect=dict(
n_sample=256, unroll_len=1, discount_factor=0.9, gae_lambda=0.95, collector=dict(transform_obs=True, )
),
eval=dict(evaluator=dict(eval_freq=100, ), ),
),
)
my_env_ppo_config = EasyDict(my_env_ppo_config)
main_config = my_env_ppo_config
my_env_ppo_create_config = dict(
env_manager=dict(type='base'),
policy=dict(type='ppo'),
)
my_env_ppo_create_config = EasyDict(my_env_ppo_create_config)
create_config = my_env_ppo_create_config
class MyEnv(gym.Env):
def __init__(self, seq_len=5, feature_dim=10, image_size=(10, 10, 3)):
super().__init__()
# Define the action space
self.action_space = spaces.Discrete(2)
# Define the observation space
self.observation_space = spaces.Dict(
(
{
'key_0': spaces.Dict(
{
'k1': spaces.Box(low=0, high=np.inf, shape=(1, ), dtype=np.float32),
'k2': spaces.Box(low=-1, high=1, shape=(1, ), dtype=np.float32),
}
),
'key_1': spaces.Box(low=-np.inf, high=np.inf, shape=(seq_len, feature_dim), dtype=np.float32),
'key_2': spaces.Box(low=0, high=255, shape=image_size, dtype=np.uint8),
'key_3': spaces.Box(low=0, high=np.array([np.inf, 3]), shape=(2, ), dtype=np.float32)
}
)
)
def reset(self):
# Generate a random initial state
return self.observation_space.sample()
def step(self, action):
# Compute the reward and done flag (which are not used in this example)
reward = np.random.uniform(low=0.0, high=1.0)
done = False
if np.random.uniform(low=0.0, high=1.0) > 0.7:
done = True
info = {}
# Return the next state, reward, and done flag
return self.observation_space.sample(), reward, done, info
def ding_env_maker():
return DingEnvWrapper(
MyEnv(), cfg={'env_wrapper': [
lambda env: EvalEpisodeReturnWrapper(env),
]}
)
class Encoder(nn.Module):
def __init__(self, feature_dim: int):
super(Encoder, self).__init__()
# Define the networks for each input type
self.fc_net_1_k1 = nn.Sequential(nn.Linear(1, 8), nn.ReLU())
self.fc_net_1_k2 = nn.Sequential(nn.Linear(1, 8), nn.ReLU())
self.fc_net_1 = nn.Sequential(nn.Linear(16, 32), nn.ReLU())
"""
Implementation of transformer_encoder refers to Vision Transformer (ViT) code:
https://arxiv.org/abs/2010.11929
https://pytorch.org/vision/main/_modules/torchvision/models/vision_transformer.html
"""
self.class_token = nn.Parameter(torch.zeros(1, 1, feature_dim))
self.encoder_layer = nn.TransformerEncoderLayer(d_model=feature_dim, nhead=2, batch_first=True)
self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=1)
self.conv_net = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(16, 32, kernel_size=3, padding=1),
nn.ReLU()
)
self.conv_fc_net = nn.Sequential(nn.Flatten(), nn.Linear(3200, 64), nn.ReLU())
self.fc_net_2 = nn.Sequential(nn.Linear(2, 16), nn.ReLU(), nn.Linear(16, 32), nn.ReLU(), nn.Flatten())
def forward(self, inputs: Dict[str, torch.Tensor]) -> torch.Tensor:
# Unpack the input tuple
dict_input = inputs['key_0'] # dict{key:(B)}
transformer_input = inputs['key_1'] # (B, seq_len, feature_dim)
conv_input = inputs['key_2'] # (B, H, W, 3)
fc_input = inputs['key_3'] # (B, X)
B = fc_input.shape[0]
# Pass each input through its corresponding network
dict_output = self.fc_net_1(
torch.cat(
[self.fc_net_1_k1(dict_input['k1'].unsqueeze(-1)),
self.fc_net_1_k2(dict_input['k2'].unsqueeze(-1))],
dim=1
)
)
batch_class_token = self.class_token.expand(B, -1, -1)
transformer_output = self.transformer_encoder(torch.cat([batch_class_token, transformer_input], dim=1))
transformer_output = transformer_output[:, 0]
conv_output = self.conv_fc_net(self.conv_net(conv_input.permute(0, 3, 1, 2)))
fc_output = self.fc_net_2(fc_input)
# Concatenate the outputs along the feature dimension
encoded_output = torch.cat([dict_output, transformer_output, conv_output, fc_output], dim=1)
return encoded_output
def main():
logging.getLogger().setLevel(logging.INFO)
cfg = compile_config(main_config, create_cfg=create_config, auto=True)
ding_init(cfg)
with task.start(async_mode=False, ctx=OnlineRLContext()):
collector_env = BaseEnvManagerV2(
env_fn=[ding_env_maker for _ in range(cfg.env.collector_env_num)], cfg=cfg.env.manager
)
evaluator_env = BaseEnvManagerV2(
env_fn=[ding_env_maker for _ in range(cfg.env.evaluator_env_num)], cfg=cfg.env.manager
)
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda)
encoder = Encoder(feature_dim=10)
model = VAC(encoder=encoder, **cfg.policy.model)
policy = PPOPolicy(cfg.policy, model=model)
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env))
task.use(StepCollector(cfg, policy.collect_mode, collector_env))
task.use(gae_estimator(cfg, policy.collect_mode))
task.use(multistep_trainer(policy.learn_mode, log_freq=50))
task.use(CkptSaver(policy, cfg.exp_name, train_freq=100))
task.use(online_logger(train_show_freq=3))
task.run()
if __name__ == "__main__":
main()