gomoku / DI-engine /ding /example /ppo_lunarlander.py
zjowowen's picture
init space
079c32c
import gym
from ditk import logging
from ding.model import VAC
from ding.policy import PPOPolicy
from ding.envs import DingEnvWrapper, BaseEnvManagerV2
from ding.data import DequeBuffer
from ding.config import compile_config
from ding.framework import task, ding_init
from ding.framework.context import OnlineRLContext
from ding.framework.middleware import multistep_trainer, StepCollector, interaction_evaluator, CkptSaver, \
gae_estimator, online_logger
from ding.utils import set_pkg_seed
from dizoo.box2d.lunarlander.config.lunarlander_ppo_config import main_config, create_config
def main():
logging.getLogger().setLevel(logging.INFO)
cfg = compile_config(main_config, create_cfg=create_config, auto=True)
ding_init(cfg)
with task.start(async_mode=False, ctx=OnlineRLContext()):
collector_env = BaseEnvManagerV2(
env_fn=[lambda: DingEnvWrapper(gym.make("LunarLander-v2")) for _ in range(cfg.env.collector_env_num)],
cfg=cfg.env.manager
)
evaluator_env = BaseEnvManagerV2(
env_fn=[lambda: DingEnvWrapper(gym.make("LunarLander-v2")) for _ in range(cfg.env.evaluator_env_num)],
cfg=cfg.env.manager
)
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda)
model = VAC(**cfg.policy.model)
policy = PPOPolicy(cfg.policy, model=model)
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env))
task.use(StepCollector(cfg, policy.collect_mode, collector_env))
task.use(gae_estimator(cfg, policy.collect_mode))
task.use(multistep_trainer(policy.learn_mode, log_freq=50))
task.use(CkptSaver(policy, cfg.exp_name, train_freq=100))
task.use(online_logger(train_show_freq=3))
task.run()
if __name__ == "__main__":
main()