|
""" |
|
# Example of DQN pipeline |
|
|
|
Use the pipeline on a single process: |
|
|
|
> python3 -u ding/example/dqn.py |
|
|
|
Use the pipeline on multiple processes: |
|
|
|
We surpose there are N processes (workers) = 1 learner + 1 evaluator + (N-2) collectors |
|
|
|
## First Example —— Execute on one machine with multi processes. |
|
|
|
Execute 4 processes with 1 learner + 1 evaluator + 2 collectors |
|
Remember to keep them connected by mesh to ensure that they can exchange information with each other. |
|
|
|
> ditask --package . --main ding.example.dqn.main --parallel-workers 4 --topology mesh |
|
|
|
## Second Example —— Execute on multiple machines. |
|
|
|
1. Execute 1 learner + 1 evaluator on one machine. |
|
|
|
> ditask --package . --main ding.example.dqn.main --parallel-workers 2 --topology mesh --node-ids 0 --ports 50515 |
|
|
|
2. Execute 2 collectors on another machine. (Suppose the ip of the first machine is 127.0.0.1). |
|
Here we use `alone` topology instead of `mesh` because the collectors do not need communicate with each other. |
|
Remember the `node_ids` cannot be duplicated with the learner, evaluator processes. |
|
And remember to set the `ports` (should not conflict with others) and `attach_to` parameters. |
|
The value of the `attach_to` parameter should be obtained from the log of the |
|
process started earlier (e.g. 'NNG listen on tcp://10.0.0.4:50515'). |
|
|
|
> ditask --package . --main ding.example.dqn.main --parallel-workers 2 --topology alone --node-ids 2 \ |
|
--ports 50517 --attach-to tcp://10.0.0.4:50515,tcp://127.0.0.1:50516 |
|
|
|
3. You can repeat step 2 to start more collectors on other machines. |
|
""" |
|
import gym |
|
from ditk import logging |
|
from ding.data.model_loader import FileModelLoader |
|
from ding.data.storage_loader import FileStorageLoader |
|
from ding.model import DQN |
|
from ding.policy import DQNPolicy |
|
from ding.envs import DingEnvWrapper, BaseEnvManagerV2 |
|
from ding.data import DequeBuffer |
|
from ding.config import compile_config |
|
from ding.framework import task, ding_init |
|
from ding.framework.context import OnlineRLContext |
|
from ding.framework.middleware import OffPolicyLearner, StepCollector, interaction_evaluator, data_pusher, \ |
|
eps_greedy_handler, CkptSaver, ContextExchanger, ModelExchanger, online_logger |
|
from ding.utils import set_pkg_seed |
|
from dizoo.classic_control.cartpole.config.cartpole_dqn_config import main_config, create_config |
|
|
|
|
|
def main(): |
|
logging.getLogger().setLevel(logging.INFO) |
|
cfg = compile_config(main_config, create_cfg=create_config, auto=True, save_cfg=task.router.node_id == 0) |
|
ding_init(cfg) |
|
with task.start(async_mode=False, ctx=OnlineRLContext()): |
|
collector_env = BaseEnvManagerV2( |
|
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.collector_env_num)], |
|
cfg=cfg.env.manager |
|
) |
|
evaluator_env = BaseEnvManagerV2( |
|
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.evaluator_env_num)], |
|
cfg=cfg.env.manager |
|
) |
|
|
|
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) |
|
|
|
model = DQN(**cfg.policy.model) |
|
buffer_ = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size) |
|
policy = DQNPolicy(cfg.policy, model=model) |
|
|
|
|
|
if task.router.is_active: |
|
|
|
|
|
if task.router.node_id == 0: |
|
task.add_role(task.role.LEARNER) |
|
elif task.router.node_id == 1: |
|
task.add_role(task.role.EVALUATOR) |
|
else: |
|
task.add_role(task.role.COLLECTOR) |
|
|
|
|
|
task.use(ContextExchanger(skip_n_iter=1)) |
|
task.use(ModelExchanger(model)) |
|
|
|
|
|
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) |
|
task.use(eps_greedy_handler(cfg)) |
|
task.use(StepCollector(cfg, policy.collect_mode, collector_env)) |
|
task.use(data_pusher(cfg, buffer_)) |
|
task.use(OffPolicyLearner(cfg, policy.learn_mode, buffer_)) |
|
task.use(online_logger(train_show_freq=10)) |
|
task.use(CkptSaver(policy, cfg.exp_name, train_freq=100)) |
|
|
|
task.run() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|