zjowowen's picture
init space
079c32c
import gym
from ditk import logging
from ding.model.template.qac import ContinuousQAC
from ding.policy import DDPGPolicy
from ding.envs import DingEnvWrapper, BaseEnvManagerV2
from ding.data import DequeBuffer
from ding.config import compile_config
from ding.framework import task
from ding.framework.context import OnlineRLContext
from ding.framework.middleware import OffPolicyLearner, StepCollector, interaction_evaluator, data_pusher, \
CkptSaver, termination_checker
from ding.utils import set_pkg_seed
from dizoo.classic_control.pendulum.envs.pendulum_env import PendulumEnv
from dizoo.classic_control.pendulum.config.pendulum_ddpg_config import main_config, create_config
def main():
logging.getLogger().setLevel(logging.INFO)
cfg = compile_config(main_config, create_cfg=create_config, auto=True)
with task.start(async_mode=False, ctx=OnlineRLContext()):
collector_env = BaseEnvManagerV2(
env_fn=[lambda: PendulumEnv(cfg.env) for _ in range(cfg.env.collector_env_num)], cfg=cfg.env.manager
)
evaluator_env = BaseEnvManagerV2(
env_fn=[lambda: PendulumEnv(cfg.env) for _ in range(cfg.env.evaluator_env_num)], cfg=cfg.env.manager
)
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda)
model = ContinuousQAC(**cfg.policy.model)
buffer_ = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size)
policy = DDPGPolicy(cfg.policy, model=model)
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env))
task.use(
StepCollector(cfg, policy.collect_mode, collector_env, random_collect_size=cfg.policy.random_collect_size)
)
task.use(data_pusher(cfg, buffer_))
task.use(OffPolicyLearner(cfg, policy.learn_mode, buffer_))
task.use(CkptSaver(policy, cfg.exp_name, train_freq=100))
task.use(termination_checker(max_train_iter=10000))
task.run()
if __name__ == "__main__":
main()