|
import copy |
|
import os |
|
from datetime import datetime |
|
from typing import List, Optional |
|
|
|
import gymnasium as gym |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from ding.envs import BaseEnv, BaseEnvTimestep |
|
from ding.envs import ObsPlusPrevActRewWrapper |
|
from ding.torch_utils import to_ndarray |
|
from ding.utils import ENV_REGISTRY |
|
from dizoo.minigrid.envs.minigrid_wrapper import ViewSizeWrapper |
|
from dizoo.minigrid.envs.minigrid_env import MiniGridEnv |
|
from easydict import EasyDict |
|
from matplotlib import animation |
|
from minigrid.wrappers import FlatObsWrapper |
|
|
|
|
|
@ENV_REGISTRY.register('minigrid_lightzero') |
|
class MiniGridEnvLightZero(MiniGridEnv): |
|
""" |
|
Overview: |
|
A MiniGrid environment for LightZero, based on OpenAI Gym. |
|
Attributes: |
|
config (dict): Configuration dict. Default configurations can be updated using this. |
|
_cfg (dict): Internal configuration dict that stores runtime configurations. |
|
_init_flag (bool): Flag to check if the environment is initialized. |
|
_env_name (str): The name of the MiniGrid environment. |
|
_flat_obs (bool): Flag to check if flat observations are returned. |
|
_save_replay (bool): Flag to check if replays are saved. |
|
_max_step (int): Maximum number of steps for the environment. |
|
""" |
|
config = dict( |
|
|
|
env_name='MiniGrid-Empty-8x8-v0', |
|
|
|
save_replay_gif=False, |
|
|
|
replay_path_gif=None, |
|
flat_obs=True, |
|
|
|
max_step=300, |
|
) |
|
|
|
@classmethod |
|
def default_config(cls: type) -> EasyDict: |
|
""" |
|
Overview: |
|
Returns the default configuration with the current environment class name. |
|
Returns: |
|
- cfg (:obj:`dict`): Configuration dict. |
|
""" |
|
cfg = EasyDict(copy.deepcopy(cls.config)) |
|
cfg.cfg_type = cls.__name__ + 'Dict' |
|
return cfg |
|
|
|
def __init__(self, cfg: dict) -> None: |
|
""" |
|
Overview: |
|
Initialize the environment. |
|
Arguments: |
|
- cfg (:obj:`dict`): Configuration dict. The configuration should include the environment name, |
|
whether to use flat observations, and the maximum number of steps. |
|
""" |
|
self._cfg = cfg |
|
self._init_flag = False |
|
self._env_name = cfg.env_name |
|
self._flat_obs = cfg.flat_obs |
|
self._save_replay_gif = cfg.save_replay_gif |
|
self._replay_path_gif = cfg.replay_path_gif |
|
self._max_step = cfg.max_step |
|
self._save_replay_count = 0 |
|
|
|
def reset(self) -> np.ndarray: |
|
""" |
|
Overview: |
|
Reset the environment and return the initial observation. |
|
Returns: |
|
- obs (:obj:`np.ndarray`): Initial observation from the environment. |
|
""" |
|
if not self._init_flag: |
|
if self._save_replay_gif: |
|
self._env = gym.make(self._env_name, render_mode="rgb_array") |
|
else: |
|
self._env = gym.make(self._env_name) |
|
|
|
self._env.max_steps = self._max_step |
|
|
|
if self._env_name in ['MiniGrid-AKTDT-13x13-v0' or 'MiniGrid-AKTDT-13x13-1-v0']: |
|
|
|
|
|
self._env = ViewSizeWrapper(self._env, agent_view_size=5) |
|
if self._env_name == 'MiniGrid-AKTDT-7x7-1-v0': |
|
self._env = ViewSizeWrapper(self._env, agent_view_size=3) |
|
if self._flat_obs: |
|
self._env = FlatObsWrapper(self._env) |
|
|
|
|
|
if hasattr(self._cfg, 'obs_plus_prev_action_reward') and self._cfg.obs_plus_prev_action_reward: |
|
self._env = ObsPlusPrevActRewWrapper(self._env) |
|
self._init_flag = True |
|
if self._flat_obs: |
|
self._observation_space = gym.spaces.Box(0, 1, shape=(2835, )) |
|
else: |
|
self._observation_space = self._env.observation_space |
|
|
|
if isinstance(self._observation_space, gym.spaces.Dict): |
|
self._observation_space['obs'].dtype = np.dtype('float32') |
|
else: |
|
self._observation_space.dtype = np.dtype('float32') |
|
self._action_space = self._env.action_space |
|
self._reward_space = gym.spaces.Box( |
|
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32 |
|
) |
|
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: |
|
np_seed = 100 * np.random.randint(1, 1000) |
|
self._seed = self._seed + np_seed |
|
obs, _ = self._env.reset(seed=self._seed) |
|
elif hasattr(self, '_seed'): |
|
obs, _ = self._env.reset(seed=self._seed) |
|
else: |
|
obs, _ = self._env.reset() |
|
obs = to_ndarray(obs) |
|
self._eval_episode_return = 0 |
|
self._current_step = 0 |
|
if self._save_replay_gif: |
|
self._frames = [] |
|
|
|
action_mask = np.ones(self.action_space.n, 'int8') |
|
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} |
|
|
|
return obs |
|
|
|
def close(self) -> None: |
|
""" |
|
Close the environment, and set the initialization flag to False. |
|
""" |
|
if self._init_flag: |
|
self._env.close() |
|
self._init_flag = False |
|
|
|
def seed(self, seed: int, dynamic_seed: bool = True) -> None: |
|
""" |
|
Set the seed for the environment's random number generator. Can handle both static and dynamic seeding. |
|
""" |
|
self._seed = seed |
|
self._dynamic_seed = dynamic_seed |
|
np.random.seed(self._seed) |
|
|
|
def step(self, action: np.ndarray) -> BaseEnvTimestep: |
|
""" |
|
Overview: |
|
Perform a step in the environment using the provided action, and return the next state of the environment. |
|
The next state is encapsulated in a BaseEnvTimestep object, which includes the new observation, reward, |
|
done flag, and info dictionary. |
|
Arguments: |
|
- action (:obj:`np.ndarray`): The action to be performed in the environment. |
|
Returns: |
|
- timestep (:obj:`BaseEnvTimestep`): An object containing the new observation, reward, done flag, |
|
and info dictionary. |
|
.. note:: |
|
- The cumulative reward (`_eval_episode_return`) is updated with the reward obtained in this step. |
|
- If the episode ends (done is True), the total reward for the episode is stored in the info dictionary |
|
under the key 'eval_episode_return'. |
|
- An action mask is created with ones, which represents the availability of each action in the action space. |
|
- Observations are returned in a dictionary format containing 'observation', 'action_mask', and 'to_play'. |
|
""" |
|
if isinstance(action, np.ndarray) and action.shape == (1, ): |
|
action = action.squeeze() |
|
if self._save_replay_gif: |
|
self._frames.append(self._env.render()) |
|
|
|
obs, rew, terminated, truncated, info = self._env.step(action) |
|
done = terminated or truncated |
|
rew = float(rew) |
|
self._eval_episode_return += rew |
|
self._current_step += 1 |
|
if self._current_step >= self._max_step: |
|
done = True |
|
if done: |
|
info['eval_episode_return'] = self._eval_episode_return |
|
info['current_step'] = self._current_step |
|
info['max_step'] = self._max_step |
|
if self._save_replay_gif: |
|
if not os.path.exists(self._replay_path_gif): |
|
os.makedirs(self._replay_path_gif) |
|
timestamp = datetime.now().strftime("%Y%m%d%H%M%S") |
|
path = os.path.join( |
|
self._replay_path_gif, |
|
'{}_episode_{}_seed{}_{}.gif'.format(self._env_name, self._save_replay_count, self._seed, timestamp) |
|
) |
|
self.display_frames_as_gif(self._frames, path) |
|
print(f'save episode {self._save_replay_count} in {self._replay_path_gif}!') |
|
self._save_replay_count += 1 |
|
obs = to_ndarray(obs) |
|
rew = to_ndarray([rew]) |
|
|
|
action_mask = np.ones(self.action_space.n, 'int8') |
|
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} |
|
|
|
return BaseEnvTimestep(obs, rew, done, info) |
|
|
|
def random_action(self) -> np.ndarray: |
|
""" |
|
Generate a random action using the action space's sample method. Returns a numpy array containing the action. |
|
""" |
|
random_action = self.action_space.sample() |
|
random_action = to_ndarray([random_action], dtype=np.int64) |
|
return random_action |
|
|
|
def enable_save_replay(self, replay_path: Optional[str] = None) -> None: |
|
""" |
|
Enable the saving of replay videos. If no replay path is given, a default is used. |
|
""" |
|
if replay_path is None: |
|
replay_path = './video' |
|
self._save_replay = True |
|
self._replay_path = replay_path |
|
self._save_replay_count = 0 |
|
|
|
@staticmethod |
|
def display_frames_as_gif(frames: list, path: str) -> None: |
|
patch = plt.imshow(frames[0]) |
|
plt.axis('off') |
|
|
|
def animate(i): |
|
patch.set_data(frames[i]) |
|
|
|
anim = animation.FuncAnimation(plt.gcf(), animate, frames=len(frames), interval=5) |
|
anim.save(path, writer='imagemagick', fps=20) |
|
|
|
@property |
|
def observation_space(self) -> gym.spaces.Space: |
|
""" |
|
Property to access the observation space of the environment. |
|
""" |
|
return self._observation_space |
|
|
|
@property |
|
def action_space(self) -> gym.spaces.Space: |
|
""" |
|
Property to access the action space of the environment. |
|
""" |
|
return self._action_space |
|
|
|
@property |
|
def reward_space(self) -> gym.spaces.Space: |
|
""" |
|
Property to access the reward space of the environment. |
|
""" |
|
return self._reward_space |
|
|
|
@staticmethod |
|
def create_collector_env_cfg(cfg: dict) -> List[dict]: |
|
collector_env_num = cfg.pop('collector_env_num') |
|
cfg = copy.deepcopy(cfg) |
|
cfg.is_train = True |
|
return [cfg for _ in range(collector_env_num)] |
|
|
|
@staticmethod |
|
def create_evaluator_env_cfg(cfg: dict) -> List[dict]: |
|
evaluator_env_num = cfg.pop('evaluator_env_num') |
|
cfg = copy.deepcopy(cfg) |
|
cfg.is_train = False |
|
return [cfg for _ in range(evaluator_env_num)] |
|
|
|
def __repr__(self) -> str: |
|
""" |
|
String representation of the environment. |
|
""" |
|
return "LightZero MiniGrid Env({})".format(self._cfg.env_name) |