|
import copy |
|
from datetime import datetime |
|
from typing import Union, Dict |
|
|
|
import gymnasium as gym |
|
import numpy as np |
|
from ding.envs import BaseEnvTimestep |
|
from ding.envs.common.common_function import affine_transform |
|
from ding.torch_utils import to_ndarray |
|
from ding.utils import ENV_REGISTRY |
|
from easydict import EasyDict |
|
|
|
from zoo.classic_control.cartpole.envs.cartpole_lightzero_env import CartPoleEnv |
|
|
|
|
|
@ENV_REGISTRY.register('pendulum_lightzero') |
|
class PendulumEnv(CartPoleEnv): |
|
""" |
|
LightZero version of the classic Pendulum environment. This class includes methods for resetting, closing, and |
|
stepping through the environment, as well as seeding for reproducibility, saving replay videos, and generating random |
|
actions. It also includes properties for accessing the observation space, action space, and reward space of the |
|
environment. |
|
""" |
|
|
|
@classmethod |
|
def default_config(cls: type) -> EasyDict: |
|
cfg = EasyDict(copy.deepcopy(cls.config)) |
|
cfg.cfg_type = cls.__name__ + 'Dict' |
|
return cfg |
|
|
|
config = dict( |
|
|
|
continuous=True, |
|
|
|
|
|
replay_path=None, |
|
|
|
act_scale=True, |
|
) |
|
|
|
def __init__(self, cfg: dict) -> None: |
|
""" |
|
Initialize the environment with a configuration dictionary. Sets up spaces for observations, actions, and rewards. |
|
""" |
|
self._cfg = cfg |
|
self._act_scale = cfg.act_scale |
|
try: |
|
self._env = gym.make('Pendulum-v1', render_mode="rgb_array") |
|
except: |
|
self._env = gym.make('Pendulum-v0', render_mode="rgb_array") |
|
self._init_flag = False |
|
self._replay_path = cfg.replay_path |
|
self._continuous = cfg.get("continuous", True) |
|
self._observation_space = gym.spaces.Box( |
|
low=np.array([-1.0, -1.0, -8.0]), high=np.array([1.0, 1.0, 8.0]), shape=(3,), dtype=np.float32 |
|
) |
|
if self._continuous: |
|
self._action_space = gym.spaces.Box(low=-2.0, high=2.0, shape=(1,), dtype=np.float32) |
|
else: |
|
self.discrete_action_num = 11 |
|
self._action_space = gym.spaces.Discrete(self.discrete_action_num) |
|
self._action_space.seed(0) |
|
self._reward_space = gym.spaces.Box( |
|
low=-1 * (3.14 * 3.14 + 0.1 * 8 * 8 + 0.001 * 2 * 2), high=0.0, shape=(1,), dtype=np.float32 |
|
) |
|
|
|
def reset(self) -> Dict[str, np.ndarray]: |
|
""" |
|
Reset the environment. If it hasn't been initialized yet, this method also handles that. It also handles seeding |
|
if necessary. Returns the first observation. |
|
""" |
|
if not self._init_flag: |
|
try: |
|
self._env = gym.make('Pendulum-v1', render_mode="rgb_array") |
|
except: |
|
self._env = gym.make('Pendulum-v0', render_mode="rgb_array") |
|
if self._replay_path is not None: |
|
timestamp = datetime.now().strftime("%Y%m%d%H%M%S") |
|
video_name = f'{self._env.spec.id}-video-{timestamp}' |
|
self._env = gym.wrappers.RecordVideo( |
|
self._env, |
|
video_folder=self._replay_path, |
|
episode_trigger=lambda episode_id: True, |
|
name_prefix=video_name |
|
) |
|
self._init_flag = True |
|
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: |
|
np_seed = 100 * np.random.randint(1, 1000) |
|
self._seed = self._seed + np_seed |
|
self._action_space.seed(self._seed) |
|
obs, _ = self._env.reset(seed=self._seed) |
|
elif hasattr(self, '_seed'): |
|
self._action_space.seed(self._seed) |
|
obs, _ = self._env.reset(seed=self._seed) |
|
else: |
|
obs, _ = self._env.reset() |
|
obs = to_ndarray(obs).astype(np.float32) |
|
self._eval_episode_return = 0. |
|
|
|
if not self._continuous: |
|
action_mask = np.ones(self.discrete_action_num, 'int8') |
|
else: |
|
action_mask = None |
|
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} |
|
|
|
return obs |
|
|
|
def step(self, action: Union[int, np.ndarray]) -> BaseEnvTimestep: |
|
""" |
|
Overview: |
|
Step the environment forward with the provided action. This method returns the next state of the environment |
|
(observation, reward, done flag, and info dictionary) encapsulated in a BaseEnvTimestep object. |
|
Arguments: |
|
- action (:obj:`Union[int, np.ndarray]`): The action to be performed in the environment. |
|
Returns: |
|
- timestep (:obj:`BaseEnvTimestep`): An object containing the new observation, reward, done flag, |
|
and info dictionary. |
|
|
|
.. note:: |
|
- If the environment requires discrete actions, they are converted to float actions in the range [-1, 1]. |
|
- If action scaling is enabled, continuous actions are scaled into the range [-2, 2]. |
|
- For each step, the cumulative reward (`_eval_episode_return`) is updated. |
|
- If the episode ends (done is True), the total reward for the episode is stored in the info dictionary |
|
under the key 'eval_episode_return'. |
|
- If the environment requires discrete actions, an action mask is created, otherwise, it's None. |
|
- Observations are returned in a dictionary format containing 'observation', 'action_mask', and 'to_play'. |
|
""" |
|
if isinstance(action, int): |
|
action = np.array(action) |
|
|
|
if not self._continuous: |
|
action = (action / (self.discrete_action_num - 1)) * 2 - 1 |
|
|
|
if self._act_scale: |
|
action = affine_transform(action, min_val=self._env.action_space.low, max_val=self._env.action_space.high) |
|
obs, rew, terminated, truncated, info = self._env.step(action) |
|
done = terminated or truncated |
|
self._eval_episode_return += rew |
|
obs = to_ndarray(obs).astype(np.float32) |
|
|
|
rew = to_ndarray([rew]).astype(np.float32) |
|
|
|
if done: |
|
info['eval_episode_return'] = self._eval_episode_return |
|
|
|
if not self._continuous: |
|
action_mask = np.ones(self.discrete_action_num, 'int8') |
|
else: |
|
action_mask = None |
|
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} |
|
|
|
return BaseEnvTimestep(obs, rew, done, info) |
|
|
|
def random_action(self) -> np.ndarray: |
|
""" |
|
Generate a random action using the action space's sample method. Returns a numpy array containing the action. |
|
""" |
|
if self._continuous: |
|
random_action = self.action_space.sample().astype(np.float32) |
|
else: |
|
random_action = self.action_space.sample() |
|
random_action = to_ndarray([random_action], dtype=np.int64) |
|
return random_action |
|
|
|
def __repr__(self) -> str: |
|
""" |
|
String representation of the environment. |
|
""" |
|
return "LightZero Pendulum Env({})".format(self._cfg.env_id) |
|
|