|
from easydict import EasyDict |
|
|
|
walker2d_d4pg_config = dict( |
|
exp_name='walker2d_d4pg_seed0', |
|
env=dict( |
|
env_id='Walker2d-v3', |
|
norm_obs=dict(use_norm=False, ), |
|
norm_reward=dict(use_norm=False, ), |
|
collector_env_num=4, |
|
evaluator_env_num=4, |
|
n_evaluator_episode=8, |
|
stop_value=7000, |
|
), |
|
policy=dict( |
|
cuda=True, |
|
priority=True, |
|
nstep=5, |
|
random_collect_size=10000, |
|
model=dict( |
|
obs_shape=17, |
|
action_shape=6, |
|
actor_head_hidden_size=512, |
|
critic_head_hidden_size=512, |
|
action_space='regression', |
|
critic_head_type='categorical', |
|
v_min=0, |
|
v_max=2000, |
|
n_atom=51, |
|
), |
|
learn=dict( |
|
update_per_collect=3, |
|
batch_size=256, |
|
learning_rate_actor=3e-4, |
|
learning_rate_critic=3e-4, |
|
ignore_done=False, |
|
target_theta=0.005, |
|
discount_factor=0.99, |
|
actor_update_freq=1, |
|
noise=False, |
|
), |
|
collect=dict( |
|
n_sample=8, |
|
unroll_len=1, |
|
noise_sigma=0.2, |
|
), |
|
other=dict(replay_buffer=dict(replay_buffer_size=1000000, ), ), |
|
) |
|
) |
|
walker2d_d4pg_config = EasyDict(walker2d_d4pg_config) |
|
main_config = walker2d_d4pg_config |
|
|
|
walker2d_d4pg_create_config = dict( |
|
env=dict( |
|
type='mujoco', |
|
import_names=['dizoo.mujoco.envs.mujoco_env'], |
|
), |
|
env_manager=dict(type='subprocess'), |
|
policy=dict( |
|
type='d4pg', |
|
import_names=['ding.policy.d4pg'], |
|
), |
|
) |
|
walker2d_d4pg_create_config = EasyDict(walker2d_d4pg_create_config) |
|
create_config = walker2d_d4pg_create_config |
|
|
|
if __name__ == "__main__": |
|
|
|
from ding.entry import serial_pipeline |
|
serial_pipeline([main_config, create_config], seed=0) |
|
|