|
from typing import Any, Union, List |
|
import copy |
|
import numpy as np |
|
import gym |
|
import competitive_rl |
|
|
|
from ding.envs import BaseEnv, BaseEnvTimestep, BaseEnvInfo, update_shape |
|
from ding.envs.common.env_element import EnvElement, EnvElementInfo |
|
from ding.envs.common.common_function import affine_transform |
|
from ding.torch_utils import to_ndarray, to_list |
|
from .competitive_rl_env_wrapper import BuiltinOpponentWrapper, wrap_env |
|
from ding.utils import ENV_REGISTRY |
|
|
|
competitive_rl.register_competitive_envs() |
|
""" |
|
The observation spaces: |
|
cPong-v0: Box(210, 160, 3) |
|
cPongDouble-v0: Tuple(Box(210, 160, 3), Box(210, 160, 3)) |
|
cCarRacing-v0: Box(96, 96, 1) |
|
cCarRacingDouble-v0: Box(96, 96, 1) |
|
|
|
The action spaces: |
|
cPong-v0: Discrete(3) |
|
cPongDouble-v0: Tuple(Discrete(3), Discrete(3)) |
|
cCarRacing-v0: Box(2,) |
|
cCarRacingDouble-v0: Dict(0:Box(2,), 1:Box(2,)) |
|
|
|
cPongTournament-v0 |
|
""" |
|
|
|
COMPETITIVERL_INFO_DICT = { |
|
'cPongDouble-v0': BaseEnvInfo( |
|
agent_num=1, |
|
obs_space=EnvElementInfo( |
|
shape=(210, 160, 3), |
|
|
|
value={ |
|
'min': 0, |
|
'max': 255, |
|
'dtype': np.float32 |
|
}, |
|
), |
|
act_space=EnvElementInfo( |
|
shape=(1, ), |
|
value={ |
|
'min': 0, |
|
'max': 3, |
|
'dtype': np.float32 |
|
}, |
|
), |
|
rew_space=EnvElementInfo( |
|
shape=(1, ), |
|
value={ |
|
'min': np.float32("-inf"), |
|
'max': np.float32("inf"), |
|
'dtype': np.float32 |
|
}, |
|
), |
|
use_wrappers=None, |
|
), |
|
} |
|
|
|
|
|
@ENV_REGISTRY.register('competitive_rl') |
|
class CompetitiveRlEnv(BaseEnv): |
|
|
|
def __init__(self, cfg: dict) -> None: |
|
self._cfg = cfg |
|
self._env_id = self._cfg.env_id |
|
|
|
|
|
is_evaluator = self._cfg.get("is_evaluator", False) |
|
opponent_type = None |
|
if is_evaluator: |
|
opponent_type = self._cfg.get("opponent_type", None) |
|
self._builtin_wrap = self._env_id == "cPongDouble-v0" and is_evaluator and opponent_type == "builtin" |
|
self._opponent = self._cfg.get('eval_opponent', 'RULE_BASED') |
|
|
|
self._init_flag = False |
|
|
|
def reset(self) -> np.ndarray: |
|
if not self._init_flag: |
|
self._env = self._make_env(only_info=False) |
|
self._init_flag = True |
|
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: |
|
np_seed = 100 * np.random.randint(1, 1000) |
|
self._env.seed(self._seed + np_seed) |
|
elif hasattr(self, '_seed'): |
|
self._env.seed(self._seed) |
|
obs = self._env.reset() |
|
obs = to_ndarray(obs) |
|
obs = self.process_obs(obs) |
|
|
|
if self._builtin_wrap: |
|
self._eval_episode_return = np.array([0.]) |
|
else: |
|
self._eval_episode_return = np.array([0., 0.]) |
|
return obs |
|
|
|
def close(self) -> None: |
|
if self._init_flag: |
|
self._env.close() |
|
self._init_flag = False |
|
|
|
def seed(self, seed: int, dynamic_seed: bool = True) -> None: |
|
self._seed = seed |
|
self._dynamic_seed = dynamic_seed |
|
np.random.seed(self._seed) |
|
|
|
def step(self, action: Union[np.ndarray, list]) -> BaseEnvTimestep: |
|
action = to_ndarray(action) |
|
action = self.process_action(action) |
|
|
|
obs, rew, done, info = self._env.step(action) |
|
|
|
if not isinstance(rew, tuple): |
|
rew = [rew] |
|
rew = np.array(rew) |
|
self._eval_episode_return += rew |
|
|
|
obs = to_ndarray(obs) |
|
obs = self.process_obs(obs) |
|
|
|
if done: |
|
info['eval_episode_return'] = self._eval_episode_return |
|
|
|
return BaseEnvTimestep(obs, rew, done, info) |
|
|
|
def info(self) -> BaseEnvInfo: |
|
if self._env_id in COMPETITIVERL_INFO_DICT: |
|
info = copy.deepcopy(COMPETITIVERL_INFO_DICT[self._env_id]) |
|
info.use_wrappers = self._make_env(only_info=True) |
|
obs_shape, act_shape, rew_shape = update_shape( |
|
info.obs_space.shape, info.act_space.shape, info.rew_space.shape, info.use_wrappers.split('\n') |
|
) |
|
info.obs_space.shape = obs_shape |
|
info.act_space.shape = act_shape |
|
info.rew_space.shape = rew_shape |
|
if not self._builtin_wrap: |
|
info.obs_space.shape = (2, ) + info.obs_space.shape |
|
info.act_space.shape = (2, ) |
|
info.rew_space.shape = (2, ) |
|
return info |
|
else: |
|
raise NotImplementedError('{} not found in COMPETITIVERL_INFO_DICT [{}]'\ |
|
.format(self._env_id, COMPETITIVERL_INFO_DICT.keys())) |
|
|
|
def _make_env(self, only_info=False): |
|
return wrap_env(self._env_id, self._builtin_wrap, self._opponent, only_info=only_info) |
|
|
|
def __repr__(self) -> str: |
|
return "DI-engine Competitve RL Env({})".format(self._cfg.env_id) |
|
|
|
@staticmethod |
|
def create_collector_env_cfg(cfg: dict) -> List[dict]: |
|
collector_cfg = copy.deepcopy(cfg) |
|
collector_env_num = collector_cfg.pop('collector_env_num', 1) |
|
collector_cfg.is_evaluator = False |
|
return [collector_cfg for _ in range(collector_env_num)] |
|
|
|
@staticmethod |
|
def create_evaluator_env_cfg(cfg: dict) -> List[dict]: |
|
evaluator_cfg = copy.deepcopy(cfg) |
|
evaluator_env_num = evaluator_cfg.pop('evaluator_env_num', 1) |
|
evaluator_cfg.is_evaluator = True |
|
return [evaluator_cfg for _ in range(evaluator_env_num)] |
|
|
|
def process_action(self, action: np.ndarray) -> Union[tuple, dict, np.ndarray]: |
|
|
|
if self._env_id == "cPongDouble-v0" and not self._builtin_wrap: |
|
return (action[0].squeeze(), action[1].squeeze()) |
|
elif self._env_id == "cCarRacingDouble-v0": |
|
return {0: action[0].squeeze(), 1: action[1].squeeze()} |
|
else: |
|
return action.squeeze() |
|
|
|
def process_obs(self, obs: Union[tuple, np.ndarray]) -> Union[tuple, np.ndarray]: |
|
|
|
if self._env_id == "cCarRacingDouble-v0": |
|
obs = np.stack([obs, copy.deepcopy(obs)]) |
|
return obs |
|
|