zjowowen's picture
init space
079c32c
raw
history blame
3.75 kB
from typing import Any, List, Union, Optional
import time
import copy
import gym
import numpy as np
from ding.envs import BaseEnv, BaseEnvTimestep
from ding.torch_utils import to_ndarray, to_list
from ding.utils import ENV_REGISTRY
import bsuite
from bsuite.utils import gym_wrapper
from bsuite import sweep
@ENV_REGISTRY.register('bsuite')
class BSuiteEnv(BaseEnv):
def __init__(self, cfg: dict) -> None:
self._cfg = cfg
self._init_flag = False
self.env_id = cfg.env_id
self.env_name = self.env_id.split('/')[0]
def reset(self) -> np.ndarray:
if not self._init_flag:
raw_env = bsuite.load_from_id(bsuite_id=self.env_id)
self._env = gym_wrapper.GymFromDMEnv(raw_env)
self._observation_space = self._env.observation_space
self._action_space = self._env.action_space
self._reward_space = gym.spaces.Box(
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float64
)
self._init_flag = True
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
np_seed = 100 * np.random.randint(1, 1000)
self._env.seed(self._seed + np_seed)
elif hasattr(self, '_seed'):
self._env.seed(self._seed)
self._eval_episode_return = 0
obs = self._env.reset()
if obs.shape[0] == 1:
obs = obs[0]
obs = to_ndarray(obs).astype(np.float32)
return obs
def close(self) -> None:
if self._init_flag:
self._env.close()
self._init_flag = False
def seed(self, seed: int, dynamic_seed: bool = True) -> None:
self._seed = seed
self._dynamic_seed = dynamic_seed
np.random.seed(self._seed)
def step(self, action: np.ndarray) -> BaseEnvTimestep:
assert isinstance(action, np.ndarray), type(action)
if action.shape[0] == 1:
action = action[0]
obs, rew, done, info = self._env.step(action)
self._eval_episode_return += rew
if done:
info['eval_episode_return'] = self._eval_episode_return
if obs.shape[0] == 1:
obs = obs[0]
obs = to_ndarray(obs)
rew = to_ndarray([rew]) # wrapped to be transfered to a array with shape (1,)
return BaseEnvTimestep(obs, rew, done, info)
def config_info(self) -> dict:
config_info = sweep.SETTINGS[self.env_id] # additional info that are specific to each env configuration
config_info['num_episodes'] = self._env.bsuite_num_episodes
return config_info
def random_action(self) -> np.ndarray:
random_action = self.action_space.sample()
random_action = to_ndarray([random_action], dtype=np.int64)
return random_action
@property
def observation_space(self) -> gym.spaces.Space:
return self._observation_space
@property
def action_space(self) -> gym.spaces.Space:
return self._action_space
@property
def reward_space(self) -> gym.spaces.Space:
return self._reward_space
def __repr__(self) -> str:
return "DI-engine BSuite Env({})".format(self.env_id)
@staticmethod
def create_collector_env_cfg(cfg: dict) -> List[dict]:
collector_env_num = cfg.pop('collector_env_num')
cfg = copy.deepcopy(cfg)
cfg.is_train = True
return [cfg for _ in range(collector_env_num)]
@staticmethod
def create_evaluator_env_cfg(cfg: dict) -> List[dict]:
evaluator_env_num = cfg.pop('evaluator_env_num')
cfg = copy.deepcopy(cfg)
cfg.is_train = False
return [cfg for _ in range(evaluator_env_num)]