gomoku / DI-engine /dizoo /atari /example /atari_dqn_dist_ddp.py
zjowowen's picture
init space
079c32c
raw
history blame
4.55 kB
from copy import deepcopy
from ditk import logging
from ding.model import DQN
from ding.policy import DQNPolicy
from ding.envs import DingEnvWrapper, SubprocessEnvManagerV2
from ding.data import DequeBuffer
from ding.config import compile_config
from ding.framework import task, ding_init
from ding.framework.context import OnlineRLContext
from ding.framework.middleware import OffPolicyLearner, StepCollector, interaction_evaluator, data_pusher, \
eps_greedy_handler, CkptSaver, context_exchanger, model_exchanger, termination_checker, nstep_reward_enhancer, \
online_logger
from ding.utils import set_pkg_seed
from dizoo.atari.envs.atari_env import AtariEnv
from dizoo.atari.config.serial.pong.pong_dqn_config import main_config, create_config
logging.getLogger().setLevel(logging.INFO)
main_config.exp_name = 'pong_dqn_seed0_ditask_dist_ddp'
def learner():
cfg = compile_config(main_config, create_cfg=create_config, auto=True)
ding_init(cfg)
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda)
model = DQN(**cfg.policy.model)
policy = DQNPolicy(cfg.policy, model=model, enable_field=['learn'])
buffer_ = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size)
with task.start(async_mode=False, ctx=OnlineRLContext()):
assert task.router.is_active, "Please execute this script with ditask! See note in the header."
logging.info("Learner running on node {}".format(task.router.node_id))
from ding.utils import DistContext, get_rank
with DistContext():
rank = get_rank()
task.use(
context_exchanger(
send_keys=["train_iter"],
recv_keys=["trajectories", "episodes", "env_step", "env_episode"],
skip_n_iter=0
)
)
task.use(model_exchanger(model, is_learner=True))
task.use(nstep_reward_enhancer(cfg))
task.use(data_pusher(cfg, buffer_))
task.use(OffPolicyLearner(cfg, policy.learn_mode, buffer_))
if rank == 0:
task.use(CkptSaver(policy, cfg.exp_name, train_freq=1000))
task.run()
def collector():
cfg = compile_config(main_config, create_cfg=create_config, auto=True)
ding_init(cfg)
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda)
model = DQN(**cfg.policy.model)
policy = DQNPolicy(cfg.policy, model=model, enable_field=['collect'])
collector_cfg = deepcopy(cfg.env)
collector_cfg.is_train = True
collector_env = SubprocessEnvManagerV2(
env_fn=[lambda: AtariEnv(collector_cfg) for _ in range(cfg.env.collector_env_num)], cfg=cfg.env.manager
)
with task.start(async_mode=False, ctx=OnlineRLContext()):
assert task.router.is_active, "Please execute this script with ditask! See note in the header."
logging.info("Collector running on node {}".format(task.router.node_id))
task.use(
context_exchanger(
send_keys=["trajectories", "episodes", "env_step", "env_episode"],
recv_keys=["train_iter"],
skip_n_iter=1
)
)
task.use(model_exchanger(model, is_learner=False))
task.use(eps_greedy_handler(cfg))
task.use(StepCollector(cfg, policy.collect_mode, collector_env))
task.use(termination_checker(max_env_step=int(1e7)))
task.run()
def evaluator():
cfg = compile_config(main_config, create_cfg=create_config, auto=True)
ding_init(cfg)
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda)
model = DQN(**cfg.policy.model)
policy = DQNPolicy(cfg.policy, model=model, enable_field=['eval'])
evaluator_cfg = deepcopy(cfg.env)
evaluator_cfg.is_train = False
evaluator_env = SubprocessEnvManagerV2(
env_fn=[lambda: AtariEnv(evaluator_cfg) for _ in range(cfg.env.evaluator_env_num)], cfg=cfg.env.manager
)
with task.start(async_mode=False, ctx=OnlineRLContext()):
assert task.router.is_active, "Please execute this script with ditask! See note in the header."
logging.info("Evaluator running on node {}".format(task.router.node_id))
task.use(context_exchanger(recv_keys=["train_iter", "env_step"], skip_n_iter=1))
task.use(model_exchanger(model, is_learner=False))
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env))
task.use(CkptSaver(policy, cfg.exp_name, save_finish=False))
task.use(online_logger(record_train_iter=True))
task.run()