|
from copy import deepcopy |
|
from ditk import logging |
|
from ding.model import DQN |
|
from ding.policy import DQNPolicy |
|
from ding.envs import DingEnvWrapper, SubprocessEnvManagerV2 |
|
from ding.data import DequeBuffer |
|
from ding.config import compile_config |
|
from ding.framework import task, ding_init |
|
from ding.framework.context import OnlineRLContext |
|
from ding.framework.middleware import OffPolicyLearner, StepCollector, interaction_evaluator, data_pusher, \ |
|
eps_greedy_handler, CkptSaver, context_exchanger, model_exchanger, termination_checker, nstep_reward_enhancer, \ |
|
online_logger |
|
from ding.utils import set_pkg_seed |
|
from dizoo.atari.envs.atari_env import AtariEnv |
|
from dizoo.atari.config.serial.pong.pong_dqn_config import main_config, create_config |
|
|
|
logging.getLogger().setLevel(logging.INFO) |
|
main_config.exp_name = 'pong_dqn_seed0_ditask_dist_ddp' |
|
|
|
|
|
def learner(): |
|
cfg = compile_config(main_config, create_cfg=create_config, auto=True) |
|
ding_init(cfg) |
|
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) |
|
|
|
model = DQN(**cfg.policy.model) |
|
policy = DQNPolicy(cfg.policy, model=model, enable_field=['learn']) |
|
buffer_ = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size) |
|
|
|
with task.start(async_mode=False, ctx=OnlineRLContext()): |
|
assert task.router.is_active, "Please execute this script with ditask! See note in the header." |
|
logging.info("Learner running on node {}".format(task.router.node_id)) |
|
|
|
from ding.utils import DistContext, get_rank |
|
with DistContext(): |
|
rank = get_rank() |
|
task.use( |
|
context_exchanger( |
|
send_keys=["train_iter"], |
|
recv_keys=["trajectories", "episodes", "env_step", "env_episode"], |
|
skip_n_iter=0 |
|
) |
|
) |
|
task.use(model_exchanger(model, is_learner=True)) |
|
task.use(nstep_reward_enhancer(cfg)) |
|
task.use(data_pusher(cfg, buffer_)) |
|
task.use(OffPolicyLearner(cfg, policy.learn_mode, buffer_)) |
|
if rank == 0: |
|
task.use(CkptSaver(policy, cfg.exp_name, train_freq=1000)) |
|
task.run() |
|
|
|
|
|
def collector(): |
|
cfg = compile_config(main_config, create_cfg=create_config, auto=True) |
|
ding_init(cfg) |
|
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) |
|
|
|
model = DQN(**cfg.policy.model) |
|
policy = DQNPolicy(cfg.policy, model=model, enable_field=['collect']) |
|
collector_cfg = deepcopy(cfg.env) |
|
collector_cfg.is_train = True |
|
collector_env = SubprocessEnvManagerV2( |
|
env_fn=[lambda: AtariEnv(collector_cfg) for _ in range(cfg.env.collector_env_num)], cfg=cfg.env.manager |
|
) |
|
|
|
with task.start(async_mode=False, ctx=OnlineRLContext()): |
|
assert task.router.is_active, "Please execute this script with ditask! See note in the header." |
|
logging.info("Collector running on node {}".format(task.router.node_id)) |
|
|
|
task.use( |
|
context_exchanger( |
|
send_keys=["trajectories", "episodes", "env_step", "env_episode"], |
|
recv_keys=["train_iter"], |
|
skip_n_iter=1 |
|
) |
|
) |
|
task.use(model_exchanger(model, is_learner=False)) |
|
task.use(eps_greedy_handler(cfg)) |
|
task.use(StepCollector(cfg, policy.collect_mode, collector_env)) |
|
task.use(termination_checker(max_env_step=int(1e7))) |
|
task.run() |
|
|
|
|
|
def evaluator(): |
|
cfg = compile_config(main_config, create_cfg=create_config, auto=True) |
|
ding_init(cfg) |
|
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) |
|
|
|
model = DQN(**cfg.policy.model) |
|
policy = DQNPolicy(cfg.policy, model=model, enable_field=['eval']) |
|
evaluator_cfg = deepcopy(cfg.env) |
|
evaluator_cfg.is_train = False |
|
evaluator_env = SubprocessEnvManagerV2( |
|
env_fn=[lambda: AtariEnv(evaluator_cfg) for _ in range(cfg.env.evaluator_env_num)], cfg=cfg.env.manager |
|
) |
|
|
|
with task.start(async_mode=False, ctx=OnlineRLContext()): |
|
assert task.router.is_active, "Please execute this script with ditask! See note in the header." |
|
logging.info("Evaluator running on node {}".format(task.router.node_id)) |
|
|
|
task.use(context_exchanger(recv_keys=["train_iter", "env_step"], skip_n_iter=1)) |
|
task.use(model_exchanger(model, is_learner=False)) |
|
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) |
|
task.use(CkptSaver(policy, cfg.exp_name, save_finish=False)) |
|
task.use(online_logger(record_train_iter=True)) |
|
task.run() |
|
|