|
from easydict import EasyDict |
|
|
|
selfplay_demo_ppo_config = dict( |
|
exp_name="selfplay_demo_ppo", |
|
env=dict( |
|
collector_env_num=8, |
|
evaluator_env_num=10, |
|
n_evaluator_episode=100, |
|
env_type='prisoner_dilemma', |
|
stop_value=[-10.1, -5.05], |
|
manager=dict(shared_memory=False, ), |
|
), |
|
policy=dict( |
|
cuda=False, |
|
action_space='discrete', |
|
model=dict( |
|
obs_shape=2, |
|
action_shape=2, |
|
action_space='discrete', |
|
encoder_hidden_size_list=[32, 32], |
|
critic_head_hidden_size=32, |
|
actor_head_hidden_size=32, |
|
share_encoder=False, |
|
), |
|
learn=dict( |
|
update_per_collect=3, |
|
batch_size=32, |
|
learning_rate=0.00001, |
|
entropy_weight=0.0, |
|
), |
|
collect=dict( |
|
n_episode=128, unroll_len=1, discount_factor=1.0, gae_lambda=1.0, collector=dict(get_train_sample=True, ) |
|
), |
|
), |
|
) |
|
selfplay_demo_ppo_config = EasyDict(selfplay_demo_ppo_config) |
|
|
|
|