gomoku / DI-engine /ding /utils /normalizer_helper.py
zjowowen's picture
init space
079c32c
raw
history blame
15.3 kB
import numpy as np
class DatasetNormalizer:
"""
Overview:
The `DatasetNormalizer` class provides functionality to normalize and unnormalize data in a dataset.
It takes a dataset as input and applies a normalizer function to each key in the dataset.
Interfaces:
``__init__``, ``__repr__``, ``normalize``, ``unnormalize``.
"""
def __init__(self, dataset: np.ndarray, normalizer: str, path_lengths: list = None):
"""
Overview:
Initialize the NormalizerHelper object.
Arguments:
- dataset (:obj:`np.ndarray`): The dataset to be normalized.
- normalizer (:obj:`str`): The type of normalizer to be used. Can be a string representing the name of \
the normalizer class.
- path_lengths (:obj:`list`): The length of the paths in the dataset. Defaults to None.
"""
dataset = flatten(dataset, path_lengths)
self.observation_dim = dataset['observations'].shape[1]
self.action_dim = dataset['actions'].shape[1]
if isinstance(normalizer, str):
normalizer = eval(normalizer)
self.normalizers = {}
for key, val in dataset.items():
try:
self.normalizers[key] = normalizer(val)
except:
print(f'[ utils/normalization ] Skipping {key} | {normalizer}')
# key: normalizer(val)
# for key, val in dataset.items()
def __repr__(self) -> str:
"""
Overview:
Returns a string representation of the NormalizerHelper object. \
The string representation includes the key-value pairs of the normalizers \
stored in the NormalizerHelper object.
Returns:
- ret (:obj:`str`):A string representation of the NormalizerHelper object.
"""
string = ''
for key, normalizer in self.normalizers.items():
string += f'{key}: {normalizer}]\n'
return string
def normalize(self, x: np.ndarray, key: str) -> np.ndarray:
"""
Overview:
Normalize the input data using the specified key.
Arguments:
- x (:obj:`np.ndarray`): The input data to be normalized.
- key (:obj`str`): The key to identify the normalizer.
Returns:
- ret (:obj:`np.ndarray`): The normalized value of the input data.
"""
return self.normalizers[key].normalize(x)
def unnormalize(self, x: np.ndarray, key: str) -> np.ndarray:
"""
Overview:
Unnormalizes the given value `x` using the specified `key`.
Arguments:
- x (:obj:`np.ndarray`): The value to be unnormalized.
- key (:obj`str`): The key to identify the normalizer.
Returns:
- ret (:obj:`np.ndarray`): The unnormalized value.
"""
return self.normalizers[key].unnormalize(x)
def flatten(dataset: dict, path_lengths: list) -> dict:
"""
Overview:
Flattens dataset of { key: [ n_episodes x max_path_length x dim ] } \
to { key : [ (n_episodes * sum(path_lengths)) x dim ] }
Arguments:
- dataset (:obj:`dict`): The dataset to be flattened.
- path_lengths (:obj:`list`): A list of path lengths for each episode.
Returns:
- flattened (:obj:`dict`): The flattened dataset.
"""
flattened = {}
for key, xs in dataset.items():
assert len(xs) == len(path_lengths)
if key == 'path_lengths':
continue
flattened[key] = np.concatenate([x[:length] for x, length in zip(xs, path_lengths)], axis=0)
return flattened
class Normalizer:
"""
Overview:
Parent class, subclass by defining the `normalize` and `unnormalize` methods
Interfaces:
``__init__``, ``__repr__``, ``normalize``, ``unnormalize``.
"""
def __init__(self, X):
"""
Overview:
Initialize the Normalizer object.
Arguments:
- X (:obj:`np.ndarray`): The data to be normalized.
"""
self.X = X.astype(np.float32)
self.mins = X.min(axis=0)
self.maxs = X.max(axis=0)
def __repr__(self) -> str:
"""
Overview:
Returns a string representation of the Normalizer object.
Returns:
- ret (:obj:`str`): A string representation of the Normalizer object.
"""
return (
f"""[ Normalizer ] dim: {self.mins.size}\n -: """
f"""{np.round(self.mins, 2)}\n +: {np.round(self.maxs, 2)}\n"""
)
def normalize(self, *args, **kwargs):
"""
Overview:
Normalize the input data.
Arguments:
- args (:obj:`list`): The arguments passed to the ``normalize`` function.
- kwargs (:obj:`dict`): The keyword arguments passed to the ``normalize`` function.
"""
raise NotImplementedError()
def unnormalize(self, *args, **kwargs):
"""
Overview:
Unnormalize the input data.
Arguments:
- args (:obj:`list`): The arguments passed to the ``unnormalize`` function.
- kwargs (:obj:`dict`): The keyword arguments passed to the ``unnormalize`` function.
"""
raise NotImplementedError()
class GaussianNormalizer(Normalizer):
"""
Overview:
A class that normalizes data to zero mean and unit variance.
Interfaces:
``__init__``, ``__repr__``, ``normalize``, ``unnormalize``.
"""
def __init__(self, *args, **kwargs):
"""
Overview:
Initialize the GaussianNormalizer object.
Arguments:
- args (:obj:`list`): The arguments passed to the ``__init__`` function of the parent class, \
i.e., the Normalizer class.
- kwargs (:obj:`dict`): The keyword arguments passed to the ``__init__`` function of the parent class, \
i.e., the Normalizer class.
"""
super().__init__(*args, **kwargs)
self.means = self.X.mean(axis=0)
self.stds = self.X.std(axis=0)
self.z = 1
def __repr__(self) -> str:
"""
Overview:
Returns a string representation of the GaussianNormalizer object.
Returns:
- ret (:obj:`str`): A string representation of the GaussianNormalizer object.
"""
return (
f"""[ Normalizer ] dim: {self.mins.size}\n """
f"""means: {np.round(self.means, 2)}\n """
f"""stds: {np.round(self.z * self.stds, 2)}\n"""
)
def normalize(self, x: np.ndarray) -> np.ndarray:
"""
Overview:
Normalize the input data.
Arguments:
- x (:obj:`np.ndarray`): The input data to be normalized.
Returns:
- ret (:obj:`np.ndarray`): The normalized data.
"""
return (x - self.means) / self.stds
def unnormalize(self, x: np.ndarray) -> np.ndarray:
"""
Overview:
Unnormalize the input data.
Arguments:
- x (:obj:`np.ndarray`): The input data to be unnormalized.
Returns:
- ret (:obj:`np.ndarray`): The unnormalized data.
"""
return x * self.stds + self.means
class CDFNormalizer(Normalizer):
"""
Overview:
A class that makes training data uniform (over each dimension) by transforming it with marginal CDFs.
Interfaces:
``__init__``, ``__repr__``, ``normalize``, ``unnormalize``.
"""
def __init__(self, X):
"""
Overview:
Initialize the CDFNormalizer object.
Arguments:
- X (:obj:`np.ndarray`): The data to be normalized.
"""
super().__init__(atleast_2d(X))
self.dim = self.X.shape[1]
self.cdfs = [CDFNormalizer1d(self.X[:, i]) for i in range(self.dim)]
def __repr__(self) -> str:
"""
Overview:
Returns a string representation of the CDFNormalizer object.
Returns:
- ret (:obj:`str`): A string representation of the CDFNormalizer object.
"""
return f'[ CDFNormalizer ] dim: {self.mins.size}\n' + ' | '.join(
f'{i:3d}: {cdf}' for i, cdf in enumerate(self.cdfs)
)
def wrap(self, fn_name: str, x: np.ndarray) -> np.ndarray:
"""
Overview:
Wraps the given function name and applies it to the input data.
Arguments:
- fn_name (:obj:`str`): The name of the function to be applied.
- x (:obj:`np.ndarray`): The input data.
Returns:
- ret: The output of the function applied to the input data.
"""
shape = x.shape
# reshape to 2d
x = x.reshape(-1, self.dim)
out = np.zeros_like(x)
for i, cdf in enumerate(self.cdfs):
fn = getattr(cdf, fn_name)
out[:, i] = fn(x[:, i])
return out.reshape(shape)
def normalize(self, x: np.ndarray) -> np.ndarray:
"""
Overview:
Normalizes the input data.
Arguments:
- x (:obj:`np.ndarray`): The input data.
Returns:
- ret (:obj:`np.ndarray`): The normalized data.
"""
return self.wrap('normalize', x)
def unnormalize(self, x: np.ndarray) -> np.ndarray:
"""
Overview:
Unnormalizes the input data.
Arguments:
- x (:obj:`np.ndarray`): The input data.
Returns:
- ret (:obj:`np.ndarray`):: The unnormalized data.
"""
return self.wrap('unnormalize', x)
class CDFNormalizer1d:
"""
Overview:
CDF normalizer for a single dimension. This class provides methods to normalize and unnormalize data \
using the Cumulative Distribution Function (CDF) approach.
Interfaces:
``__init__``, ``__repr__``, ``normalize``, ``unnormalize``.
"""
def __init__(self, X: np.ndarray):
"""
Overview:
Initialize the CDFNormalizer1d object.
Arguments:
- X (:obj:`np.ndarray`): The data to be normalized.
"""
import scipy.interpolate as interpolate
assert X.ndim == 1
self.X = X.astype(np.float32)
if self.X.max() == self.X.min():
self.constant = True
else:
self.constant = False
quantiles, cumprob = empirical_cdf(self.X)
self.fn = interpolate.interp1d(quantiles, cumprob)
self.inv = interpolate.interp1d(cumprob, quantiles)
self.xmin, self.xmax = quantiles.min(), quantiles.max()
self.ymin, self.ymax = cumprob.min(), cumprob.max()
def __repr__(self) -> str:
"""
Overview:
Returns a string representation of the CDFNormalizer1d object.
"""
return (f'[{np.round(self.xmin, 2):.4f}, {np.round(self.xmax, 2):.4f}')
def normalize(self, x: np.ndarray) -> np.ndarray:
"""
Overview:
Normalize the input data.
Arguments:
- x (:obj:`np.ndarray`): The data to be normalized.
Returns:
- ret (:obj:`np.ndarray`): The normalized data.
"""
if self.constant:
return x
x = np.clip(x, self.xmin, self.xmax)
# [ 0, 1 ]
y = self.fn(x)
# [ -1, 1 ]
y = 2 * y - 1
return y
def unnormalize(self, x: np.ndarray, eps: float = 1e-4) -> np.ndarray:
"""
Overview:
Unnormalize the input data.
Arguments:
- x (:obj:`np.ndarray`): The data to be unnormalized.
- eps (:obj:`float`): A small value used for numerical stability. Defaults to 1e-4.
Returns:
- ret (:obj:`np.ndarray`): The unnormalized data.
"""
# [ -1, 1 ] --> [ 0, 1 ]
if self.constant:
return x
x = (x + 1) / 2.
if (x < self.ymin - eps).any() or (x > self.ymax + eps).any():
print(
f"""[ dataset/normalization ] Warning: out of range in unnormalize: """
f"""[{x.min()}, {x.max()}] | """
f"""x : [{self.xmin}, {self.xmax}] | """
f"""y: [{self.ymin}, {self.ymax}]"""
)
x = np.clip(x, self.ymin, self.ymax)
y = self.inv(x)
return y
def empirical_cdf(sample: np.ndarray) -> (np.ndarray, np.ndarray):
"""
Overview:
Compute the empirical cumulative distribution function (CDF) of a given sample.
Arguments:
- sample (:obj:`np.ndarray`): The input sample for which to compute the empirical CDF.
Returns:
- quantiles (:obj:`np.ndarray`): The unique values in the sample.
- cumprob (:obj:`np.ndarray`): The cumulative probabilities corresponding to the quantiles.
References:
- Stack Overflow: https://stackoverflow.com/a/33346366
"""
# find the unique values and their corresponding counts
quantiles, counts = np.unique(sample, return_counts=True)
# take the cumulative sum of the counts and divide by the sample size to
# get the cumulative probabilities between 0 and 1
cumprob = np.cumsum(counts).astype(np.double) / sample.size
return quantiles, cumprob
def atleast_2d(x: np.ndarray) -> np.ndarray:
"""
Overview:
Ensure that the input array has at least two dimensions.
Arguments:
- x (:obj:`np.ndarray`): The input array.
Returns:
- ret (:obj:`np.ndarray`): The input array with at least two dimensions.
"""
if x.ndim < 2:
x = x[:, None]
return x
class LimitsNormalizer(Normalizer):
"""
Overview:
A class that normalizes and unnormalizes values within specified limits. \
This class maps values within the range [xmin, xmax] to the range [-1, 1].
Interfaces:
``__init__``, ``__repr__``, ``normalize``, ``unnormalize``.
"""
def normalize(self, x: np.ndarray) -> np.ndarray:
"""
Overview:
Normalizes the input values.
Argments:
- x (:obj:`np.ndarray`): The input values to be normalized.
Returns:
- ret (:obj:`np.ndarray`): The normalized values.
"""
# [ 0, 1 ]
x = (x - self.mins) / (self.maxs - self.mins)
# [ -1, 1 ]
x = 2 * x - 1
return x
def unnormalize(self, x: np.ndarray, eps: float = 1e-4) -> np.ndarray:
"""
Overview:
Unnormalizes the input values.
Arguments:
- x (:obj:`np.ndarray`): The input values to be unnormalized.
- eps (:obj:`float`): A small value used for clipping. Defaults to 1e-4.
Returns:
- ret (:obj:`np.ndarray`): The unnormalized values.
"""
if x.max() > 1 + eps or x.min() < -1 - eps:
# print(f'[ datasets/mujoco ] Warning: sample out of range | ({x.min():.4f}, {x.max():.4f})')
x = np.clip(x, -1, 1)
# [ -1, 1 ] --> [ 0, 1 ]
x = (x + 1) / 2.
return x * (self.maxs - self.mins) + self.mins