|
""" |
|
# Example of PPO pipeline |
|
|
|
Use the pipeline on a single process: |
|
|
|
> python3 -u ding/example/ppo.py |
|
|
|
Use the pipeline on multiple processes: |
|
|
|
We surpose there are N processes (workers) = 1 learner + 1 evaluator + (N-2) collectors |
|
|
|
## First Example —— Execute on one machine with multi processes. |
|
|
|
Execute 4 processes with 1 learner + 1 evaluator + 2 collectors |
|
Remember to keep them connected by mesh to ensure that they can exchange information with each other. |
|
|
|
> ditask --package . --main ding.example.ppo.main --parallel-workers 4 --topology mesh |
|
""" |
|
import gym |
|
from ditk import logging |
|
from ding.model import VAC |
|
from ding.policy import PPOPolicy |
|
from ding.envs import DingEnvWrapper, BaseEnvManagerV2 |
|
from ding.data import DequeBuffer |
|
from ding.config import compile_config |
|
from ding.framework import task, ding_init |
|
from ding.framework.context import OnlineRLContext |
|
from ding.framework.middleware import multistep_trainer, StepCollector, interaction_evaluator, CkptSaver, \ |
|
gae_estimator, online_logger, ContextExchanger, ModelExchanger |
|
from ding.utils import set_pkg_seed |
|
from dizoo.classic_control.cartpole.config.cartpole_ppo_config import main_config, create_config |
|
|
|
|
|
def main(): |
|
logging.getLogger().setLevel(logging.INFO) |
|
cfg = compile_config(main_config, create_cfg=create_config, auto=True, save_cfg=task.router.node_id == 0) |
|
ding_init(cfg) |
|
with task.start(async_mode=False, ctx=OnlineRLContext()): |
|
collector_env = BaseEnvManagerV2( |
|
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.collector_env_num)], |
|
cfg=cfg.env.manager |
|
) |
|
evaluator_env = BaseEnvManagerV2( |
|
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.evaluator_env_num)], |
|
cfg=cfg.env.manager |
|
) |
|
|
|
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) |
|
|
|
model = VAC(**cfg.policy.model) |
|
policy = PPOPolicy(cfg.policy, model=model) |
|
|
|
|
|
if task.router.is_active: |
|
|
|
|
|
if task.router.node_id == 0: |
|
task.add_role(task.role.LEARNER) |
|
elif task.router.node_id == 1: |
|
task.add_role(task.role.EVALUATOR) |
|
else: |
|
task.add_role(task.role.COLLECTOR) |
|
|
|
|
|
task.use(ContextExchanger(skip_n_iter=1)) |
|
task.use(ModelExchanger(model)) |
|
|
|
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) |
|
task.use(StepCollector(cfg, policy.collect_mode, collector_env)) |
|
task.use(gae_estimator(cfg, policy.collect_mode)) |
|
task.use(multistep_trainer(policy.learn_mode, log_freq=50)) |
|
task.use(CkptSaver(policy, cfg.exp_name, train_freq=100)) |
|
task.use(online_logger(train_show_freq=3)) |
|
task.run() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|