gomoku / LightZero /lzero /worker /muzero_evaluator.py
zjowowen's picture
init space
079c32c
raw
history blame
22.8 kB
import copy
import time
from collections import namedtuple
from typing import Optional, Callable, Tuple
import numpy as np
import torch
from ding.envs import BaseEnvManager
from ding.torch_utils import to_ndarray, to_item, to_tensor
from ding.utils import build_logger, EasyTimer
from ding.utils import get_world_size, get_rank, broadcast_object_list
from ding.worker.collector.base_serial_evaluator import ISerialEvaluator, VectorEvalMonitor
from easydict import EasyDict
from lzero.mcts.buffer.game_segment import GameSegment
from lzero.mcts.utils import prepare_observation
class MuZeroEvaluator(ISerialEvaluator):
"""
Overview:
The Evaluator for MCTS+RL algorithms, including MuZero, EfficientZero, Sampled EfficientZero.
Interfaces:
__init__, reset, reset_policy, reset_env, close, should_eval, eval
Property:
env, policy
"""
@classmethod
def default_config(cls: type) -> EasyDict:
"""
Overview:
Get evaluator's default config. We merge evaluator's default config with other default configs\
and user's config to get the final config.
Return:
cfg (:obj:`EasyDict`): evaluator's default config
"""
cfg = EasyDict(copy.deepcopy(cls.config))
cfg.cfg_type = cls.__name__ + 'Dict'
return cfg
config = dict(
# Evaluate every "eval_freq" training iterations.
eval_freq=50,
)
def __init__(
self,
eval_freq: int = 1000,
n_evaluator_episode: int = 3,
stop_value: int = 1e6,
env: BaseEnvManager = None,
policy: namedtuple = None,
tb_logger: 'SummaryWriter' = None, # noqa
exp_name: Optional[str] = 'default_experiment',
instance_name: Optional[str] = 'evaluator',
policy_config: 'policy_config' = None, # noqa
) -> None:
"""
Overview:
Init method. Load config and use ``self._cfg`` setting to build common serial evaluator components,
e.g. logger helper, timer.
Arguments:
- eval_freq (:obj:`int`): evaluation frequency in terms of training steps.
- n_evaluator_episode (:obj:`int`): the number of episodes to eval in total.
- env (:obj:`BaseEnvManager`): the subclass of vectorized env_manager(BaseEnvManager)
- policy (:obj:`namedtuple`): the api namedtuple of collect_mode policy
- tb_logger (:obj:`SummaryWriter`): tensorboard handle
- exp_name (:obj:`str`): Experiment name, which is used to indicate output directory.
- instance_name (:obj:`Optional[str]`): Name of this instance.
- policy_config: Config of game.
"""
self._eval_freq = eval_freq
self._exp_name = exp_name
self._instance_name = instance_name
# Logger (Monitor will be initialized in policy setter)
# Only rank == 0 learner needs monitor and tb_logger, others only need text_logger to display terminal output.
if get_rank() == 0:
if tb_logger is not None:
self._logger, _ = build_logger(
'./{}/log/{}'.format(self._exp_name, self._instance_name), self._instance_name, need_tb=False
)
self._tb_logger = tb_logger
else:
self._logger, self._tb_logger = build_logger(
'./{}/log/{}'.format(self._exp_name, self._instance_name), self._instance_name
)
else:
self._logger, self._tb_logger = None, None # for close elegantly
self.reset(policy, env)
self._timer = EasyTimer()
self._default_n_episode = n_evaluator_episode
self._stop_value = stop_value
# ==============================================================
# MCTS+RL related core code
# ==============================================================
self.policy_config = policy_config
def reset_env(self, _env: Optional[BaseEnvManager] = None) -> None:
"""
Overview:
Reset evaluator's environment. In some case, we need evaluator use the same policy in different \
environments. We can use reset_env to reset the environment.
If _env is None, reset the old environment.
If _env is not None, replace the old environment in the evaluator with the \
new passed in environment and launch.
Arguments:
- env (:obj:`Optional[BaseEnvManager]`): instance of the subclass of vectorized \
env_manager(BaseEnvManager)
"""
if _env is not None:
self._env = _env
self._env.launch()
self._env_num = self._env.env_num
else:
self._env.reset()
def reset_policy(self, _policy: Optional[namedtuple] = None) -> None:
"""
Overview:
Reset evaluator's policy. In some case, we need evaluator work in this same environment but use\
different policy. We can use reset_policy to reset the policy.
If _policy is None, reset the old policy.
If _policy is not None, replace the old policy in the evaluator with the new passed in policy.
Arguments:
- policy (:obj:`Optional[namedtuple]`): the api namedtuple of eval_mode policy
"""
assert hasattr(self, '_env'), "please set env first"
if _policy is not None:
self._policy = _policy
self._policy.reset()
def reset(self, _policy: Optional[namedtuple] = None, _env: Optional[BaseEnvManager] = None) -> None:
"""
Overview:
Reset evaluator's policy and environment. Use new policy and environment to collect data.
If _env is None, reset the old environment.
If _env is not None, replace the old environment in the evaluator with the new passed in \
environment and launch.
If _policy is None, reset the old policy.
If _policy is not None, replace the old policy in the evaluator with the new passed in policy.
Arguments:
- policy (:obj:`Optional[namedtuple]`): the api namedtuple of eval_mode policy
- env (:obj:`Optional[BaseEnvManager]`): instance of the subclass of vectorized \
env_manager(BaseEnvManager)
"""
if _env is not None:
self.reset_env(_env)
if _policy is not None:
self.reset_policy(_policy)
self._max_episode_return = float("-inf")
self._last_eval_iter = 0
self._end_flag = False
def close(self) -> None:
"""
Overview:
Close the evaluator. If end_flag is False, close the environment, flush the tb_logger\
and close the tb_logger.
"""
if self._end_flag:
return
self._end_flag = True
self._env.close()
if self._tb_logger:
self._tb_logger.flush()
self._tb_logger.close()
def __del__(self):
"""
Overview:
Execute the close command and close the evaluator. __del__ is automatically called \
to destroy the evaluator instance when the evaluator finishes its work
"""
self.close()
def should_eval(self, train_iter: int) -> bool:
"""
Overview:
Determine whether you need to start the evaluation mode, if the number of training has reached\
the maximum number of times to start the evaluator, return True
Arguments:
- train_iter (:obj:`int`): Current training iteration.
"""
if train_iter == self._last_eval_iter:
return False
if (train_iter - self._last_eval_iter) < self._eval_freq and train_iter != 0:
return False
self._last_eval_iter = train_iter
return True
def eval(
self,
save_ckpt_fn: Callable = None,
train_iter: int = -1,
envstep: int = -1,
n_episode: Optional[int] = None,
) -> Tuple[bool, float]:
"""
Overview:
Evaluate policy and store the best policy based on whether it reaches the highest historical reward.
Arguments:
- save_ckpt_fn (:obj:`Callable`): Saving ckpt function, which will be triggered by getting the best reward.
- train_iter (:obj:`int`): Current training iteration.
- envstep (:obj:`int`): Current env interaction step.
- n_episode (:obj:`int`): Number of evaluation episodes.
Returns:
- stop_flag (:obj:`bool`): Whether this training program can be ended.
- episode_info (:obj:`Dict[str, List]`): Current evaluation episode information.
"""
# evaluator only work on rank0
episode_info = None
stop_flag = False
if get_rank() == 0:
if n_episode is None:
n_episode = self._default_n_episode
assert n_episode is not None, "please indicate eval n_episode"
envstep_count = 0
eval_monitor = VectorEvalMonitor(self._env.env_num, n_episode)
env_nums = self._env.env_num
self._env.reset()
self._policy.reset()
# initializations
init_obs = self._env.ready_obs
retry_waiting_time = 0.001
while len(init_obs.keys()) != self._env_num:
# In order to be compatible with subprocess env_manager, in which sometimes self._env_num is not equal to
# len(self._env.ready_obs), especially in tictactoe env.
self._logger.info('The current init_obs.keys() is {}'.format(init_obs.keys()))
self._logger.info('Before sleeping, the _env_states is {}'.format(self._env._env_states))
time.sleep(retry_waiting_time)
self._logger.info('=' * 10 + 'Wait for all environments (subprocess) to finish resetting.' + '=' * 10)
self._logger.info(
'After sleeping {}s, the current _env_states is {}'.format(retry_waiting_time,
self._env._env_states)
)
init_obs = self._env.ready_obs
action_mask_dict = {i: to_ndarray(init_obs[i]['action_mask']) for i in range(env_nums)}
to_play_dict = {i: to_ndarray(init_obs[i]['to_play']) for i in range(env_nums)}
dones = np.array([False for _ in range(env_nums)])
game_segments = [
GameSegment(
self._env.action_space,
game_segment_length=self.policy_config.game_segment_length,
config=self.policy_config
) for _ in range(env_nums)
]
for i in range(env_nums):
game_segments[i].reset(
[to_ndarray(init_obs[i]['observation']) for _ in range(self.policy_config.model.frame_stack_num)]
)
ready_env_id = set()
remain_episode = n_episode
with self._timer:
while not eval_monitor.is_finished():
# Get current ready env obs.
obs = self._env.ready_obs
new_available_env_id = set(obs.keys()).difference(ready_env_id)
ready_env_id = ready_env_id.union(set(list(new_available_env_id)[:remain_episode]))
remain_episode -= min(len(new_available_env_id), remain_episode)
stack_obs = {env_id: game_segments[env_id].get_obs() for env_id in ready_env_id}
stack_obs = list(stack_obs.values())
action_mask_dict = {env_id: action_mask_dict[env_id] for env_id in ready_env_id}
to_play_dict = {env_id: to_play_dict[env_id] for env_id in ready_env_id}
action_mask = [action_mask_dict[env_id] for env_id in ready_env_id]
to_play = [to_play_dict[env_id] for env_id in ready_env_id]
stack_obs = to_ndarray(stack_obs)
stack_obs = prepare_observation(stack_obs, self.policy_config.model.model_type)
stack_obs = torch.from_numpy(stack_obs).to(self.policy_config.device).float()
# ==============================================================
# policy forward
# ==============================================================
policy_output = self._policy.forward(stack_obs, action_mask, to_play)
actions_no_env_id = {k: v['action'] for k, v in policy_output.items()}
distributions_dict_no_env_id = {k: v['visit_count_distributions'] for k, v in policy_output.items()}
if self.policy_config.sampled_algo:
root_sampled_actions_dict_no_env_id = {
k: v['root_sampled_actions']
for k, v in policy_output.items()
}
value_dict_no_env_id = {k: v['searched_value'] for k, v in policy_output.items()}
pred_value_dict_no_env_id = {k: v['predicted_value'] for k, v in policy_output.items()}
visit_entropy_dict_no_env_id = {
k: v['visit_count_distribution_entropy']
for k, v in policy_output.items()
}
actions = {}
distributions_dict = {}
if self.policy_config.sampled_algo:
root_sampled_actions_dict = {}
value_dict = {}
pred_value_dict = {}
visit_entropy_dict = {}
for index, env_id in enumerate(ready_env_id):
actions[env_id] = actions_no_env_id.pop(index)
distributions_dict[env_id] = distributions_dict_no_env_id.pop(index)
if self.policy_config.sampled_algo:
root_sampled_actions_dict[env_id] = root_sampled_actions_dict_no_env_id.pop(index)
value_dict[env_id] = value_dict_no_env_id.pop(index)
pred_value_dict[env_id] = pred_value_dict_no_env_id.pop(index)
visit_entropy_dict[env_id] = visit_entropy_dict_no_env_id.pop(index)
# ==============================================================
# Interact with env.
# ==============================================================
timesteps = self._env.step(actions)
timesteps = to_tensor(timesteps, dtype=torch.float32)
for env_id, t in timesteps.items():
obs, reward, done, info = t.obs, t.reward, t.done, t.info
game_segments[env_id].append(
actions[env_id], to_ndarray(obs['observation']), reward, action_mask_dict[env_id],
to_play_dict[env_id]
)
# NOTE: in evaluator, we only need save the ``o_{t+1} = obs['observation']``
# game_segments[env_id].obs_segment.append(to_ndarray(obs['observation']))
# NOTE: the position of code snippet is very important.
# the obs['action_mask'] and obs['to_play'] are corresponding to next action
action_mask_dict[env_id] = to_ndarray(obs['action_mask'])
to_play_dict[env_id] = to_ndarray(obs['to_play'])
dones[env_id] = done
if t.done:
# Env reset is done by env_manager automatically.
self._policy.reset([env_id])
reward = t.info['eval_episode_return']
saved_info = {'eval_episode_return': t.info['eval_episode_return']}
if 'episode_info' in t.info:
saved_info.update(t.info['episode_info'])
eval_monitor.update_info(env_id, saved_info)
eval_monitor.update_reward(env_id, reward)
self._logger.info(
"[EVALUATOR]env {} finish episode, final reward: {}, current episode: {}".format(
env_id, eval_monitor.get_latest_reward(env_id), eval_monitor.get_current_episode()
)
)
# reset the finished env and init game_segments
if n_episode > self._env_num:
# Get current ready env obs.
init_obs = self._env.ready_obs
retry_waiting_time = 0.001
while len(init_obs.keys()) != self._env_num:
# In order to be compatible with subprocess env_manager, in which sometimes self._env_num is not equal to
# len(self._env.ready_obs), especially in tictactoe env.
self._logger.info('The current init_obs.keys() is {}'.format(init_obs.keys()))
self._logger.info(
'Before sleeping, the _env_states is {}'.format(self._env._env_states)
)
time.sleep(retry_waiting_time)
self._logger.info(
'=' * 10 + 'Wait for all environments (subprocess) to finish resetting.' + '=' * 10
)
self._logger.info(
'After sleeping {}s, the current _env_states is {}'.format(
retry_waiting_time, self._env._env_states
)
)
init_obs = self._env.ready_obs
new_available_env_id = set(init_obs.keys()).difference(ready_env_id)
ready_env_id = ready_env_id.union(set(list(new_available_env_id)[:remain_episode]))
remain_episode -= min(len(new_available_env_id), remain_episode)
action_mask_dict[env_id] = to_ndarray(init_obs[env_id]['action_mask'])
to_play_dict[env_id] = to_ndarray(init_obs[env_id]['to_play'])
game_segments[env_id] = GameSegment(
self._env.action_space,
game_segment_length=self.policy_config.game_segment_length,
config=self.policy_config
)
game_segments[env_id].reset(
[
init_obs[env_id]['observation']
for _ in range(self.policy_config.model.frame_stack_num)
]
)
# Env reset is done by env_manager automatically.
self._policy.reset([env_id])
# TODO(pu): subprocess mode, when n_episode > self._env_num, occasionally the ready_env_id=()
# and the stack_obs is np.array(None, dtype=object)
ready_env_id.remove(env_id)
envstep_count += 1
duration = self._timer.value
episode_return = eval_monitor.get_episode_return()
info = {
'train_iter': train_iter,
'ckpt_name': 'iteration_{}.pth.tar'.format(train_iter),
'episode_count': n_episode,
'envstep_count': envstep_count,
'avg_envstep_per_episode': envstep_count / n_episode,
'evaluate_time': duration,
'avg_envstep_per_sec': envstep_count / duration,
'avg_time_per_episode': n_episode / duration,
'reward_mean': np.mean(episode_return),
'reward_std': np.std(episode_return),
'reward_max': np.max(episode_return),
'reward_min': np.min(episode_return),
# 'each_reward': episode_return,
}
episode_info = eval_monitor.get_episode_info()
if episode_info is not None:
info.update(episode_info)
self._logger.info(self._logger.get_tabulate_vars_hor(info))
# self._logger.info(self._logger.get_tabulate_vars(info))
for k, v in info.items():
if k in ['train_iter', 'ckpt_name', 'each_reward']:
continue
if not np.isscalar(v):
continue
self._tb_logger.add_scalar('{}_iter/'.format(self._instance_name) + k, v, train_iter)
self._tb_logger.add_scalar('{}_step/'.format(self._instance_name) + k, v, envstep)
episode_return = np.mean(episode_return)
if episode_return > self._max_episode_return:
if save_ckpt_fn:
save_ckpt_fn('ckpt_best.pth.tar')
self._max_episode_return = episode_return
stop_flag = episode_return >= self._stop_value and train_iter > 0
if stop_flag:
self._logger.info(
"[LightZero serial pipeline] " +
"Current episode_return: {} is greater than stop_value: {}".format(episode_return,
self._stop_value) +
", so your MCTS/RL agent is converged, you can refer to 'log/evaluator/evaluator_logger.txt' for details."
)
if get_world_size() > 1:
objects = [stop_flag, episode_info]
broadcast_object_list(objects, src=0)
stop_flag, episode_info = objects
episode_info = to_item(episode_info)
return stop_flag, episode_info