|
import copy |
|
from typing import TYPE_CHECKING, List, Any, Union |
|
|
|
import numpy as np |
|
import torch |
|
from easydict import EasyDict |
|
|
|
from lzero.policy import InverseScalarTransform |
|
from lzero.mcts.ctree.ctree_stochastic_muzero import stochastic_mz_tree |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class StochasticMuZeroMCTSCtree(object): |
|
""" |
|
Overview: |
|
MCTSCtree for Stochastic MuZero. The core ``batch_traverse`` and ``batch_backpropagate`` function is implemented in C++. |
|
|
|
Interfaces: |
|
__init__, roots, search |
|
""" |
|
|
|
config = dict( |
|
|
|
root_dirichlet_alpha=0.3, |
|
|
|
root_noise_weight=0.25, |
|
|
|
pb_c_base=19652, |
|
|
|
pb_c_init=1.25, |
|
|
|
value_delta_max=0.01, |
|
) |
|
|
|
@classmethod |
|
def default_config(cls: type) -> EasyDict: |
|
cfg = EasyDict(copy.deepcopy(cls.config)) |
|
cfg.cfg_type = cls.__name__ + 'Dict' |
|
return cfg |
|
|
|
def __init__(self, cfg: EasyDict = None) -> None: |
|
""" |
|
Overview: |
|
Use the default configuration mechanism. If a user passes in a cfg with a key that matches an existing key |
|
in the default configuration, the user-provided value will override the default configuration. Otherwise, |
|
the default configuration will be used. |
|
""" |
|
default_config = self.default_config() |
|
default_config.update(cfg) |
|
self._cfg = default_config |
|
self.inverse_scalar_transform_handle = InverseScalarTransform( |
|
self._cfg.model.support_scale, self._cfg.device, self._cfg.model.categorical_distribution |
|
) |
|
|
|
@classmethod |
|
def roots(cls: int, active_collect_env_num: int, legal_actions: List[Any], |
|
chance_space_size: int = 2) -> "stochastic_mz_tree.Roots": |
|
""" |
|
Overview: |
|
The initialization of CRoots with root num and legal action lists. |
|
Arguments: |
|
- root_num (:obj:`int`): the number of the current root. |
|
- legal_action_list (:obj:`list`): the vector of the legal action of this root. |
|
""" |
|
from lzero.mcts.ctree.ctree_stochastic_muzero import stochastic_mz_tree as ctree |
|
return ctree.Roots(active_collect_env_num, legal_actions, chance_space_size) |
|
|
|
def search( |
|
self, roots: Any, model: torch.nn.Module, latent_state_roots: List[Any], to_play_batch: Union[int, |
|
List[Any]] |
|
) -> None: |
|
""" |
|
Overview: |
|
Do MCTS for the roots (a batch of root nodes in parallel). Parallel in model inference. |
|
Use the cpp ctree. |
|
Arguments: |
|
- roots (:obj:`Any`): a batch of expanded root nodes |
|
- latent_state_roots (:obj:`list`): the hidden states of the roots |
|
- to_play_batch (:obj:`list`): the to_play_batch list used in in self-play-mode board games |
|
""" |
|
with torch.no_grad(): |
|
model.eval() |
|
|
|
|
|
batch_size = roots.num |
|
pb_c_base, pb_c_init, discount_factor = self._cfg.pb_c_base, self._cfg.pb_c_init, self._cfg.discount_factor |
|
|
|
latent_state_batch_in_search_path = [latent_state_roots] |
|
|
|
|
|
min_max_stats_lst = stochastic_mz_tree.MinMaxStatsList(batch_size) |
|
min_max_stats_lst.set_delta(self._cfg.value_delta_max) |
|
|
|
for simulation_index in range(self._cfg.num_simulations): |
|
|
|
|
|
latent_states = [] |
|
|
|
|
|
results = stochastic_mz_tree.ResultsWrapper(num=batch_size) |
|
|
|
|
|
|
|
|
|
|
|
""" |
|
MCTS stage 1: Selection |
|
Each simulation starts from the internal root state s0, and finishes when the simulation reaches a leaf node s_l. |
|
""" |
|
leaf_node_is_chance, latent_state_index_in_search_path, latent_state_index_in_batch, last_actions, virtual_to_play_batch = stochastic_mz_tree.batch_traverse( |
|
roots, pb_c_base, pb_c_init, discount_factor, min_max_stats_lst, results, |
|
copy.deepcopy(to_play_batch) |
|
) |
|
|
|
|
|
for ix, iy in zip(latent_state_index_in_search_path, latent_state_index_in_batch): |
|
latent_states.append(latent_state_batch_in_search_path[ix][iy]) |
|
|
|
latent_states = torch.from_numpy(np.asarray(latent_states)).to(self._cfg.device).float() |
|
|
|
last_actions = torch.from_numpy(np.asarray(last_actions)).to(self._cfg.device).long() |
|
""" |
|
MCTS stage 2: Expansion |
|
At the final time-step l of the simulation, the next_latent_state and reward/value_prefix are computed by the dynamics function. |
|
Then we calculate the policy_logits and value for the leaf node (next_latent_state) by the prediction function. (aka. evaluation) |
|
MCTS stage 3: Backup |
|
At the end of the simulation, the statistics along the trajectory are updated. |
|
""" |
|
|
|
|
|
num = len(leaf_node_is_chance) |
|
leaf_idx_list = list(range(num)) |
|
latent_state_batch = [None] * num |
|
value_batch = [None] * num |
|
reward_batch = [None] * num |
|
policy_logits_batch = [None] * num |
|
child_is_chance_batch = [None] * num |
|
chance_nodes_index = [] |
|
decision_nodes_index = [] |
|
|
|
for i, leaf_node_is_chance_ in enumerate(leaf_node_is_chance): |
|
if leaf_node_is_chance_: |
|
chance_nodes_index.append(i) |
|
else: |
|
decision_nodes_index.append(i) |
|
|
|
def process_nodes(nodes_index, is_chance): |
|
|
|
if not nodes_index: |
|
return |
|
|
|
|
|
latent_states_stack = torch.stack([latent_states[i] for i in nodes_index], dim=0) |
|
last_actions_stack = torch.stack([last_actions[i] for i in nodes_index], dim=0) |
|
|
|
|
|
network_output_batch = model.recurrent_inference(latent_states_stack, |
|
last_actions_stack, |
|
afterstate=not is_chance) |
|
|
|
|
|
latent_state_splits = torch.split(network_output_batch.latent_state, 1, dim=0) |
|
value_splits = torch.split(network_output_batch.value, 1, dim=0) |
|
reward_splits = torch.split(network_output_batch.reward, 1, dim=0) |
|
policy_logits_splits = torch.split(network_output_batch.policy_logits, 1, dim=0) |
|
|
|
for i, (latent_state, value, reward, policy_logits) in zip(nodes_index, |
|
zip(latent_state_splits, value_splits, |
|
reward_splits, |
|
policy_logits_splits)): |
|
if not model.training: |
|
value = self.inverse_scalar_transform_handle(value).detach().cpu().numpy() |
|
reward = self.inverse_scalar_transform_handle(reward).detach().cpu().numpy() |
|
latent_state = latent_state.detach().cpu().numpy() |
|
policy_logits = policy_logits.detach().cpu().numpy() |
|
|
|
latent_state_batch[i] = latent_state |
|
value_batch[i] = value.reshape(-1).tolist() |
|
reward_batch[i] = reward.reshape(-1).tolist() |
|
policy_logits_batch[i] = policy_logits.tolist() |
|
child_is_chance_batch[i] = is_chance |
|
|
|
process_nodes(chance_nodes_index, True) |
|
process_nodes(decision_nodes_index, False) |
|
chance_nodes = chance_nodes_index |
|
decision_nodes = decision_nodes_index |
|
|
|
value_batch_chance = [value_batch[leaf_idx] for leaf_idx in chance_nodes] |
|
value_batch_decision = [value_batch[leaf_idx] for leaf_idx in decision_nodes] |
|
reward_batch_chance = [reward_batch[leaf_idx] for leaf_idx in chance_nodes] |
|
reward_batch_decision = [reward_batch[leaf_idx] for leaf_idx in decision_nodes] |
|
policy_logits_batch_chance = [policy_logits_batch[leaf_idx] for leaf_idx in chance_nodes] |
|
policy_logits_batch_decision = [policy_logits_batch[leaf_idx] for leaf_idx in decision_nodes] |
|
|
|
latent_state_batch = np.concatenate(latent_state_batch, axis=0) |
|
latent_state_batch_in_search_path.append(latent_state_batch) |
|
|
|
|
|
|
|
|
|
|
|
|
|
current_latent_state_index = simulation_index + 1 |
|
|
|
if (len(chance_nodes) > 0): |
|
value_batch_chance = np.concatenate(value_batch_chance, axis=0).reshape(-1).tolist() |
|
reward_batch_chance = np.concatenate(reward_batch_chance, axis=0).reshape(-1).tolist() |
|
policy_logits_batch_chance = np.concatenate(policy_logits_batch_chance, axis=0).tolist() |
|
stochastic_mz_tree.batch_backpropagate( |
|
current_latent_state_index, discount_factor, reward_batch_chance, value_batch_chance, |
|
policy_logits_batch_chance, |
|
min_max_stats_lst, results, virtual_to_play_batch, child_is_chance_batch, chance_nodes |
|
) |
|
if (len(decision_nodes) > 0): |
|
value_batch_decision = np.concatenate(value_batch_decision, axis=0).reshape(-1).tolist() |
|
reward_batch_decision = np.concatenate(reward_batch_decision, axis=0).reshape(-1).tolist() |
|
policy_logits_batch_decision = np.concatenate(policy_logits_batch_decision, axis=0).tolist() |
|
stochastic_mz_tree.batch_backpropagate( |
|
current_latent_state_index, discount_factor, reward_batch_decision, value_batch_decision, |
|
policy_logits_batch_decision, |
|
min_max_stats_lst, results, virtual_to_play_batch, child_is_chance_batch, decision_nodes |
|
) |
|
|