|
import os |
|
from typing import Union |
|
|
|
import gymnasium as gym |
|
import numpy as np |
|
from ding.envs import BaseEnvTimestep |
|
from ding.envs.common import save_frames_as_gif |
|
from ding.torch_utils import to_ndarray |
|
from ding.utils import ENV_REGISTRY |
|
from dizoo.mujoco.envs.mujoco_env import MujocoEnv |
|
|
|
|
|
@ENV_REGISTRY.register('mujoco_lightzero') |
|
class MujocoEnvLZ(MujocoEnv): |
|
""" |
|
Overview: |
|
The modified MuJoCo environment with continuous action space for LightZero's algorithms. |
|
""" |
|
|
|
config = dict( |
|
stop_value=int(1e6), |
|
action_clip=False, |
|
delay_reward_step=0, |
|
|
|
|
|
replay_path=None, |
|
|
|
save_replay_gif=False, |
|
|
|
replay_path_gif=None, |
|
action_bins_per_branch=None, |
|
norm_obs=dict(use_norm=False, ), |
|
norm_reward=dict(use_norm=False, ), |
|
) |
|
|
|
def __init__(self, cfg: dict) -> None: |
|
""" |
|
Overview: |
|
Initialize the MuJoCo environment. |
|
Arguments: |
|
- cfg (:obj:`dict`): Configuration dict. The dict should include keys like 'env_name', 'replay_path', etc. |
|
""" |
|
super().__init__(cfg) |
|
self._cfg = cfg |
|
|
|
self._cfg.env_id = self._cfg.env_name |
|
self._action_clip = cfg.action_clip |
|
self._delay_reward_step = cfg.delay_reward_step |
|
self._init_flag = False |
|
self._replay_path = None |
|
self._replay_path_gif = cfg.replay_path_gif |
|
self._save_replay_gif = cfg.save_replay_gif |
|
self._action_bins_per_branch = cfg.action_bins_per_branch |
|
|
|
def reset(self) -> np.ndarray: |
|
""" |
|
Overview: |
|
Reset the environment and return the initial observation. |
|
Returns: |
|
- obs (:obj:`np.ndarray`): The initial observation after resetting. |
|
""" |
|
if not self._init_flag: |
|
self._env = self._make_env() |
|
if self._replay_path is not None: |
|
self._env = gym.wrappers.RecordVideo( |
|
self._env, |
|
video_folder=self._replay_path, |
|
episode_trigger=lambda episode_id: True, |
|
name_prefix='rl-video-{}'.format(id(self)) |
|
) |
|
|
|
self._env.observation_space.dtype = np.float32 |
|
self._observation_space = self._env.observation_space |
|
self._action_space = self._env.action_space |
|
self._reward_space = gym.spaces.Box( |
|
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1,), dtype=np.float32 |
|
) |
|
self._init_flag = True |
|
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: |
|
np_seed = 100 * np.random.randint(1, 1000) |
|
self._env.seed(self._seed + np_seed) |
|
elif hasattr(self, '_seed'): |
|
self._env.seed(self._seed) |
|
obs = self._env.reset() |
|
obs = to_ndarray(obs).astype('float32') |
|
self._eval_episode_return = 0. |
|
|
|
action_mask = None |
|
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} |
|
|
|
return obs |
|
|
|
def step(self, action: Union[np.ndarray, list]) -> BaseEnvTimestep: |
|
""" |
|
Overview: |
|
Perform a step in the environment using the provided action, and return the next state of the environment. |
|
The next state is encapsulated in a BaseEnvTimestep object, which includes the new observation, reward, |
|
done flag, and info dictionary. |
|
Arguments: |
|
- action (:obj:`Union[np.ndarray, list]`): The action to be performed in the environment. |
|
Returns: |
|
- timestep (:obj:`BaseEnvTimestep`): An object containing the new observation, reward, done flag, |
|
and info dictionary. |
|
.. note:: |
|
- The cumulative reward (`_eval_episode_return`) is updated with the reward obtained in this step. |
|
- If the episode ends (done is True), the total reward for the episode is stored in the info dictionary |
|
under the key 'eval_episode_return'. |
|
- An action mask is created with ones, which represents the availability of each action in the action space. |
|
- Observations are returned in a dictionary format containing 'observation', 'action_mask', and 'to_play'. |
|
""" |
|
if self._action_bins_per_branch: |
|
action = self.map_action(action) |
|
action = to_ndarray(action) |
|
if self._save_replay_gif: |
|
self._frames.append(self._env.render(mode='rgb_array')) |
|
if self._action_clip: |
|
action = np.clip(action, -1, 1) |
|
obs, rew, done, info = self._env.step(action) |
|
self._eval_episode_return += rew |
|
if done: |
|
if self._save_replay_gif: |
|
path = os.path.join( |
|
self._replay_path_gif, '{}_episode_{}.gif'.format(self._cfg.env_name, self._save_replay_count) |
|
) |
|
save_frames_as_gif(self._frames, path) |
|
self._save_replay_count += 1 |
|
info['eval_episode_return'] = self._eval_episode_return |
|
|
|
obs = to_ndarray(obs).astype(np.float32) |
|
rew = to_ndarray([rew]).astype(np.float32) |
|
|
|
action_mask = None |
|
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} |
|
|
|
return BaseEnvTimestep(obs, rew, done, info) |
|
|
|
def __repr__(self) -> str: |
|
""" |
|
String representation of the environment. |
|
""" |
|
return "LightZero Mujoco Env({})".format(self._cfg.env_name) |
|
|
|
|