Spaces:
Runtime error
Runtime error
| # This module is from [WeNet](https://github.com/wenet-e2e/wenet). | |
| # ## Citations | |
| # ```bibtex | |
| # @inproceedings{yao2021wenet, | |
| # title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, | |
| # author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, | |
| # booktitle={Proc. Interspeech}, | |
| # year={2021}, | |
| # address={Brno, Czech Republic }, | |
| # organization={IEEE} | |
| # } | |
| # @article{zhang2022wenet, | |
| # title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, | |
| # author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, | |
| # journal={arXiv preprint arXiv:2203.15455}, | |
| # year={2022} | |
| # } | |
| # | |
| """ConvolutionModule definition.""" | |
| from typing import Tuple | |
| import torch | |
| from torch import nn | |
| class ConvolutionModule(nn.Module): | |
| """ConvolutionModule in Conformer model.""" | |
| def __init__( | |
| self, | |
| channels: int, | |
| kernel_size: int = 15, | |
| activation: nn.Module = nn.ReLU(), | |
| norm: str = "batch_norm", | |
| causal: bool = False, | |
| bias: bool = True, | |
| ): | |
| """Construct an ConvolutionModule object. | |
| Args: | |
| channels (int): The number of channels of conv layers. | |
| kernel_size (int): Kernel size of conv layers. | |
| causal (int): Whether use causal convolution or not | |
| """ | |
| super().__init__() | |
| self.pointwise_conv1 = nn.Conv1d( | |
| channels, | |
| 2 * channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| bias=bias, | |
| ) | |
| # self.lorder is used to distinguish if it's a causal convolution, | |
| # if self.lorder > 0: it's a causal convolution, the input will be | |
| # padded with self.lorder frames on the left in forward. | |
| # else: it's a symmetrical convolution | |
| if causal: | |
| padding = 0 | |
| self.lorder = kernel_size - 1 | |
| else: | |
| # kernel_size should be an odd number for none causal convolution | |
| assert (kernel_size - 1) % 2 == 0 | |
| padding = (kernel_size - 1) // 2 | |
| self.lorder = 0 | |
| self.depthwise_conv = nn.Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| stride=1, | |
| padding=padding, | |
| groups=channels, | |
| bias=bias, | |
| ) | |
| assert norm in ["batch_norm", "layer_norm"] | |
| if norm == "batch_norm": | |
| self.use_layer_norm = False | |
| self.norm = nn.BatchNorm1d(channels) | |
| else: | |
| self.use_layer_norm = True | |
| self.norm = nn.LayerNorm(channels) | |
| self.pointwise_conv2 = nn.Conv1d( | |
| channels, | |
| channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| bias=bias, | |
| ) | |
| self.activation = activation | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
| cache: torch.Tensor = torch.zeros((0, 0, 0)), | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Compute convolution module. | |
| Args: | |
| x (torch.Tensor): Input tensor (#batch, time, channels). | |
| mask_pad (torch.Tensor): used for batch padding (#batch, 1, time), | |
| (0, 0, 0) means fake mask. | |
| cache (torch.Tensor): left context cache, it is only | |
| used in causal convolution (#batch, channels, cache_t), | |
| (0, 0, 0) meas fake cache. | |
| Returns: | |
| torch.Tensor: Output tensor (#batch, time, channels). | |
| """ | |
| # exchange the temporal dimension and the feature dimension | |
| x = x.transpose(1, 2) # (#batch, channels, time) | |
| # mask batch padding | |
| if mask_pad.size(2) > 0: # time > 0 | |
| x.masked_fill_(~mask_pad, 0.0) | |
| if self.lorder > 0: | |
| if cache.size(2) == 0: # cache_t == 0 | |
| x = nn.functional.pad(x, (self.lorder, 0), "constant", 0.0) | |
| else: | |
| assert cache.size(0) == x.size(0) # equal batch | |
| assert cache.size(1) == x.size(1) # equal channel | |
| x = torch.cat((cache, x), dim=2) | |
| assert x.size(2) > self.lorder | |
| new_cache = x[:, :, -self.lorder :] | |
| else: | |
| # It's better we just return None if no cache is required, | |
| # However, for JIT export, here we just fake one tensor instead of | |
| # None. | |
| new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) | |
| # GLU mechanism | |
| x = self.pointwise_conv1(x) # (batch, 2*channel, dim) | |
| x = nn.functional.glu(x, dim=1) # (batch, channel, dim) | |
| # 1D Depthwise Conv | |
| x = self.depthwise_conv(x) | |
| if self.use_layer_norm: | |
| x = x.transpose(1, 2) | |
| x = self.activation(self.norm(x)) | |
| if self.use_layer_norm: | |
| x = x.transpose(1, 2) | |
| x = self.pointwise_conv2(x) | |
| # mask batch padding | |
| if mask_pad.size(2) > 0: # time > 0 | |
| x.masked_fill_(~mask_pad, 0.0) | |
| return x.transpose(1, 2), new_cache | |