OAChat / app.py
duckling's picture
Upload app.py
0dfabe9
raw
history blame
1.83 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "Rallio67/chip_1.4B_instruct_alpha"
tokenizer = AutoTokenizer.from_pretrained(model_name)
chip_map= {
'gpt_neox.embed_in': 0,
'gpt_neox.layers': 0,
'gpt_neox.final_layer_norm': 0,
'embed_out': 0
}
# model = AutoModelForCausalLM.from_pretrained(name, device_map=chip_map, torch_dtype=torch.float16, load_in_8bit=True)
model = AutoModelForCausalLM.from_pretrained(model_name)
def predict(input, history=[], MAX_NEW_TOKENS = 500):
text = "User: " + input + "\n\nChip: "
new_user_input_ids = tokenizer(text, return_tensors="pt").input_ids
# bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1).to("cuda")
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
generated_ids = model.generate(bot_input_ids,
max_length=MAX_NEW_TOKENS, pad_token_id=tokenizer.eos_token_id,
do_sample=True,
top_p=0.95, temperature=0.5, penalty_alpha=0.6, top_k=4, repetition_penalty=1.03,
num_return_sequences=1)
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
history = generated_ids.tolist()
# convert to list of user & bot response
response = response.split("\n\n")
response_pairs = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)]
return response_pairs, history
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
state = gr.State([])
with gr.Row():
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False)
txt.submit(predict, [txt, state], [chatbot, state])
if __name__ == "__main__":
# demo.launch(debug=True, server_name="0.0.0.0", server_port=9991)
demo.launch()