Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
model_name = "zirui3/gpt_1.4B_oa_instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
chip_map= { | |
'gpt_neox.embed_in': 0, | |
'gpt_neox.layers': 0, | |
'gpt_neox.final_layer_norm': 0, | |
'embed_out': 0 | |
} | |
model = AutoModelForCausalLM.from_pretrained(name, device_map=chip_map, torch_dtype=torch.float16, load_in_8bit=True) | |
#model = AutoModelForCausalLM.from_pretrained(model_name) | |
def predict(input, history=[], MAX_NEW_TOKENS = 500): | |
text = "User: " + input + "\n\nChip: " | |
new_user_input_ids = tokenizer(text, return_tensors="pt").input_ids | |
# bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1).to("cuda") | |
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) | |
generated_ids = model.generate(bot_input_ids, | |
max_length=MAX_NEW_TOKENS, pad_token_id=tokenizer.eos_token_id, | |
do_sample=True, | |
top_p=0.95, temperature=0.5, penalty_alpha=0.6, top_k=4, repetition_penalty=1.03, | |
num_return_sequences=1) | |
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True) | |
history = generated_ids.tolist() | |
# convert to list of user & bot response | |
response = response.split("\n\n") | |
response_pairs = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] | |
return response_pairs, history | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot() | |
state = gr.State([]) | |
with gr.Row(): | |
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False) | |
txt.submit(predict, [txt, state], [chatbot, state]) | |
if __name__ == "__main__": | |
# demo.launch(debug=True, server_name="0.0.0.0", server_port=9991) | |
demo.launch() | |