Spaces:
Running
on
Zero
Running
on
Zero
set seed
Browse files- app.py +2 -30
- inference/utils.py +0 -7
- utils.py +12 -0
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import re
|
3 |
-
from utils import read_pcd, render_point_cloud, render_pcd_file
|
4 |
from inference.utils import get_legend
|
5 |
from inference.inference import segment_obj, get_heatmap
|
6 |
from huggingface_hub import login
|
@@ -42,6 +42,7 @@ source_dict = {
|
|
42 |
}
|
43 |
|
44 |
def predict(pcd_path, inference_mode, part_queries):
|
|
|
45 |
xyz, rgb, normal = read_pcd(pcd_path)
|
46 |
if inference_mode == "Segmentation":
|
47 |
parts = [part.strip(" ") for part in re.split(r'[,;.|]', part_queries)]
|
@@ -118,21 +119,6 @@ with gr.Blocks(theme=gr.themes.Default(text_size="lg", radius_size="none")) as d
|
|
118 |
gallery_objaverse.select(fn=on_select,
|
119 |
inputs=None,
|
120 |
outputs=[file_upload, part_queries])
|
121 |
-
'''
|
122 |
-
gr.Examples(
|
123 |
-
inputs=[file_upload, part_queries],
|
124 |
-
examples=[
|
125 |
-
["examples/objaverse/fireplug.pcd", "bonnet of a fireplug,side cap of a fireplug,barrel of a fireplug,base of a fireplug"],
|
126 |
-
["examples/objaverse/mickey.pcd", "ear,head,arms,hands,body,legs"],
|
127 |
-
["examples/objaverse/motorvehicle.pcd", "wheel of a motor vehicle,seat of a motor vehicle,handle of a motor vehicle"],
|
128 |
-
["examples/objaverse/teddy.pcd", "head,body,arms,legs"],
|
129 |
-
["examples/objaverse/lamppost.pcd", "lighting of a lamppost,pole of a lamppost"],
|
130 |
-
["examples/objaverse/shirt.pcd", "sleeve of a shirt,collar of a shirt,body of a shirt"]
|
131 |
-
],
|
132 |
-
example_labels=["fireplug", "Mickey", "motor vehicle", "teddy bear", "lamppost", "shirt"],
|
133 |
-
label=""
|
134 |
-
)
|
135 |
-
'''
|
136 |
with gr.Column(scale=6):
|
137 |
title = gr.HTML("""<h1 text-align="center">In the Wild</h1>
|
138 |
<p style='font-size: 16px;'>Challenging in-the-wild reconstructions from iPhone photos & AI-generated images!</p>
|
@@ -147,20 +133,6 @@ with gr.Blocks(theme=gr.themes.Default(text_size="lg", radius_size="none")) as d
|
|
147 |
gallery_wild.select(fn=on_select,
|
148 |
inputs=None,
|
149 |
outputs=[file_upload, part_queries])
|
150 |
-
'''
|
151 |
-
gr.Examples(
|
152 |
-
inputs=[file_upload, part_queries],
|
153 |
-
examples=[
|
154 |
-
["examples/wild/mcc_dalle_capybara.pcd", "hat worn by a capybara,head,body,feet"],
|
155 |
-
["examples/wild/mcc_dalle_corgi.pcd", "head,leg,body,ear"],
|
156 |
-
["examples/wild/mcc_iphone_pushcar.pcd", "wheel,body,handle"],
|
157 |
-
["examples/wild/mcc_iphone_plant.pcd", "pot,plant"],
|
158 |
-
["examples/wild/mcc_iphone_chair.pcd", "back of chair,leg,seat"],
|
159 |
-
],
|
160 |
-
example_labels=["DALLE-capybara", "DALLE-corgi", "iPhone-pushcar", "iPhone-plant", "iPhone-chair"],
|
161 |
-
label=""
|
162 |
-
)
|
163 |
-
'''
|
164 |
|
165 |
file_upload.change(
|
166 |
fn=render_pcd_file,
|
|
|
1 |
import gradio as gr
|
2 |
import re
|
3 |
+
from utils import read_pcd, render_point_cloud, render_pcd_file, set_seed
|
4 |
from inference.utils import get_legend
|
5 |
from inference.inference import segment_obj, get_heatmap
|
6 |
from huggingface_hub import login
|
|
|
42 |
}
|
43 |
|
44 |
def predict(pcd_path, inference_mode, part_queries):
|
45 |
+
set_seed()
|
46 |
xyz, rgb, normal = read_pcd(pcd_path)
|
47 |
if inference_mode == "Segmentation":
|
48 |
parts = [part.strip(" ") for part in re.split(r'[,;.|]', part_queries)]
|
|
|
119 |
gallery_objaverse.select(fn=on_select,
|
120 |
inputs=None,
|
121 |
outputs=[file_upload, part_queries])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
with gr.Column(scale=6):
|
123 |
title = gr.HTML("""<h1 text-align="center">In the Wild</h1>
|
124 |
<p style='font-size: 16px;'>Challenging in-the-wild reconstructions from iPhone photos & AI-generated images!</p>
|
|
|
133 |
gallery_wild.select(fn=on_select,
|
134 |
inputs=None,
|
135 |
outputs=[file_upload, part_queries])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
file_upload.change(
|
138 |
fn=render_pcd_file,
|
inference/utils.py
CHANGED
@@ -39,13 +39,6 @@ def load_model():
|
|
39 |
model = model.to(DEVICE)
|
40 |
return model
|
41 |
|
42 |
-
def set_seed(seed):
|
43 |
-
torch.manual_seed(seed)
|
44 |
-
if DEVICE != "cpu":
|
45 |
-
torch.cuda.manual_seed(seed)
|
46 |
-
torch.cuda.manual_seed_all(seed)
|
47 |
-
np.random.seed(seed)
|
48 |
-
random.seed(seed)
|
49 |
|
50 |
def fnv_hash_vec(arr):
|
51 |
"""
|
|
|
39 |
model = model.to(DEVICE)
|
40 |
return model
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def fnv_hash_vec(arr):
|
44 |
"""
|
utils.py
CHANGED
@@ -2,6 +2,18 @@ import plotly.graph_objects as go
|
|
2 |
import open3d as o3d
|
3 |
import numpy as np
|
4 |
import textwrap
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def read_pcd(pcd_path):
|
7 |
pcd = o3d.io.read_point_cloud(pcd_path)
|
|
|
2 |
import open3d as o3d
|
3 |
import numpy as np
|
4 |
import textwrap
|
5 |
+
import torch
|
6 |
+
import random
|
7 |
+
|
8 |
+
|
9 |
+
def set_seed():
|
10 |
+
seed = 123
|
11 |
+
torch.manual_seed(seed)
|
12 |
+
torch.cuda.manual_seed(seed)
|
13 |
+
torch.cuda.manual_seed_all(seed)
|
14 |
+
np.random.seed(seed)
|
15 |
+
random.seed(seed)
|
16 |
+
|
17 |
|
18 |
def read_pcd(pcd_path):
|
19 |
pcd = o3d.io.read_point_cloud(pcd_path)
|