Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from .z_order import xyz2key as z_order_encode_ | |
from .z_order import key2xyz as z_order_decode_ | |
from .hilbert import encode as hilbert_encode_ | |
from .hilbert import decode as hilbert_decode_ | |
def encode(grid_coord, batch=None, depth=16, order="z"): | |
assert order in {"z", "z-trans", "hilbert", "hilbert-trans"} | |
if order == "z": | |
code = z_order_encode(grid_coord, depth=depth) | |
elif order == "z-trans": | |
code = z_order_encode(grid_coord[:, [1, 0, 2]], depth=depth) | |
elif order == "hilbert": | |
code = hilbert_encode(grid_coord, depth=depth) | |
elif order == "hilbert-trans": | |
code = hilbert_encode(grid_coord[:, [1, 0, 2]], depth=depth) | |
else: | |
raise NotImplementedError | |
if batch is not None: | |
batch = batch.long() | |
code = batch << depth * 3 | code | |
return code | |
def decode(code, depth=16, order="z"): | |
assert order in {"z", "hilbert"} | |
batch = code >> depth * 3 | |
code = code & ((1 << depth * 3) - 1) | |
if order == "z": | |
grid_coord = z_order_decode(code, depth=depth) | |
elif order == "hilbert": | |
grid_coord = hilbert_decode(code, depth=depth) | |
else: | |
raise NotImplementedError | |
return grid_coord, batch | |
def z_order_encode(grid_coord: torch.Tensor, depth: int = 16): | |
x, y, z = grid_coord[:, 0].long(), grid_coord[:, 1].long(), grid_coord[:, 2].long() | |
# we block the support to batch, maintain batched code in Point class | |
code = z_order_encode_(x, y, z, b=None, depth=depth) | |
return code | |
def z_order_decode(code: torch.Tensor, depth): | |
x, y, z = z_order_decode_(code, depth=depth) | |
grid_coord = torch.stack([x, y, z], dim=-1) # (N, 3) | |
return grid_coord | |
def hilbert_encode(grid_coord: torch.Tensor, depth: int = 16): | |
return hilbert_encode_(grid_coord, num_dims=3, num_bits=depth) | |
def hilbert_decode(code: torch.Tensor, depth: int = 16): | |
return hilbert_decode_(code, num_dims=3, num_bits=depth) | |