Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Default Datasets | |
Author: Xiaoyang Wu (xiaoyang.wu.cs@gmail.com) | |
Please cite our work if the code is helpful to you. | |
""" | |
import os | |
import glob | |
import numpy as np | |
import torch | |
from copy import deepcopy | |
from torch.utils.data import Dataset | |
from collections.abc import Sequence | |
from pointcept.utils.logger import get_root_logger | |
from pointcept.utils.cache import shared_dict | |
from .builder import DATASETS, build_dataset | |
from .transform import Compose, TRANSFORMS | |
class DefaultDataset(Dataset): | |
VALID_ASSETS = [ | |
"coord", | |
"color", | |
"normal", | |
"strength", | |
"segment", | |
"instance", | |
"pose", | |
] | |
def __init__( | |
self, | |
split="train", | |
data_root="data/dataset", | |
transform=None, | |
test_mode=False, | |
test_cfg=None, | |
cache=False, | |
ignore_index=-1, | |
loop=1, | |
): | |
super(DefaultDataset, self).__init__() | |
self.data_root = data_root | |
self.split = split | |
self.transform = Compose(transform) | |
self.cache = cache | |
self.ignore_index = ignore_index | |
self.loop = ( | |
loop if not test_mode else 1 | |
) # force make loop = 1 while in test mode | |
self.test_mode = test_mode | |
self.test_cfg = test_cfg if test_mode else None | |
if test_mode: | |
self.test_voxelize = TRANSFORMS.build(self.test_cfg.voxelize) | |
self.test_crop = ( | |
TRANSFORMS.build(self.test_cfg.crop) if self.test_cfg.crop else None | |
) | |
self.post_transform = Compose(self.test_cfg.post_transform) | |
self.aug_transform = [Compose(aug) for aug in self.test_cfg.aug_transform] | |
self.data_list = self.get_data_list() | |
logger = get_root_logger() | |
logger.info( | |
"Totally {} x {} samples in {} set.".format( | |
len(self.data_list), self.loop, split | |
) | |
) | |
def get_data_list(self): | |
if isinstance(self.split, str): | |
data_list = glob.glob(os.path.join(self.data_root, self.split, "*")) | |
elif isinstance(self.split, Sequence): | |
data_list = [] | |
for split in self.split: | |
data_list += glob.glob(os.path.join(self.data_root, split, "*")) | |
else: | |
raise NotImplementedError | |
return data_list | |
def get_data(self, idx): | |
data_path = self.data_list[idx % len(self.data_list)] | |
name = self.get_data_name(idx) | |
if self.cache: | |
cache_name = f"pointcept-{name}" | |
return shared_dict(cache_name) | |
data_dict = {} | |
assets = os.listdir(data_path) | |
for asset in assets: | |
if not asset.endswith(".npy"): | |
continue | |
if asset[:-4] not in self.VALID_ASSETS: | |
continue | |
data_dict[asset[:-4]] = np.load(os.path.join(data_path, asset)) | |
data_dict["name"] = name | |
if "coord" in data_dict.keys(): | |
data_dict["coord"] = data_dict["coord"].astype(np.float32) | |
if "color" in data_dict.keys(): | |
data_dict["color"] = data_dict["color"].astype(np.float32) | |
if "normal" in data_dict.keys(): | |
data_dict["normal"] = data_dict["normal"].astype(np.float32) | |
if "segment" in data_dict.keys(): | |
data_dict["segment"] = data_dict["segment"].reshape([-1]).astype(np.int32) | |
else: | |
data_dict["segment"] = ( | |
np.ones(data_dict["coord"].shape[0], dtype=np.int32) * -1 | |
) | |
if "instance" in data_dict.keys(): | |
data_dict["instance"] = data_dict["instance"].reshape([-1]).astype(np.int32) | |
else: | |
data_dict["instance"] = ( | |
np.ones(data_dict["coord"].shape[0], dtype=np.int32) * -1 | |
) | |
return data_dict | |
def get_data_name(self, idx): | |
return os.path.basename(self.data_list[idx % len(self.data_list)]) | |
def prepare_train_data(self, idx): | |
# load data | |
data_dict = self.get_data(idx) | |
data_dict = self.transform(data_dict) | |
return data_dict | |
def prepare_test_data(self, idx): | |
# load data | |
data_dict = self.get_data(idx) | |
data_dict = self.transform(data_dict) | |
result_dict = dict(segment=data_dict.pop("segment"), name=data_dict.pop("name")) | |
if "origin_segment" in data_dict: | |
assert "inverse" in data_dict | |
result_dict["origin_segment"] = data_dict.pop("origin_segment") | |
result_dict["inverse"] = data_dict.pop("inverse") | |
data_dict_list = [] | |
for aug in self.aug_transform: | |
data_dict_list.append(aug(deepcopy(data_dict))) | |
fragment_list = [] | |
for data in data_dict_list: | |
if self.test_voxelize is not None: | |
data_part_list = self.test_voxelize(data) | |
else: | |
data["index"] = np.arange(data["coord"].shape[0]) | |
data_part_list = [data] | |
for data_part in data_part_list: | |
if self.test_crop is not None: | |
data_part = self.test_crop(data_part) | |
else: | |
data_part = [data_part] | |
fragment_list += data_part | |
for i in range(len(fragment_list)): | |
fragment_list[i] = self.post_transform(fragment_list[i]) | |
result_dict["fragment_list"] = fragment_list | |
return result_dict | |
def __getitem__(self, idx): | |
if self.test_mode: | |
return self.prepare_test_data(idx) | |
else: | |
return self.prepare_train_data(idx) | |
def __len__(self): | |
return len(self.data_list) * self.loop | |
class ConcatDataset(Dataset): | |
def __init__(self, datasets, loop=1): | |
super(ConcatDataset, self).__init__() | |
self.datasets = [build_dataset(dataset) for dataset in datasets] | |
self.loop = loop | |
self.data_list = self.get_data_list() | |
logger = get_root_logger() | |
logger.info( | |
"Totally {} x {} samples in the concat set.".format( | |
len(self.data_list), self.loop | |
) | |
) | |
def get_data_list(self): | |
data_list = [] | |
for i in range(len(self.datasets)): | |
data_list.extend( | |
zip( | |
np.ones(len(self.datasets[i])) * i, np.arange(len(self.datasets[i])) | |
) | |
) | |
return data_list | |
def get_data(self, idx): | |
dataset_idx, data_idx = self.data_list[idx % len(self.data_list)] | |
return self.datasets[dataset_idx][data_idx] | |
def get_data_name(self, idx): | |
dataset_idx, data_idx = self.data_list[idx % len(self.data_list)] | |
return self.datasets[dataset_idx].get_data_name(data_idx) | |
def __getitem__(self, idx): | |
return self.get_data(idx) | |
def __len__(self): | |
return len(self.data_list) * self.loop | |