Spaces:
Running
on
Zero
Running
on
Zero
| _base_ = ["../_base_/default_runtime.py"] | |
| # misc custom setting | |
| batch_size = 16 # bs: total bs in all gpus | |
| num_worker = 32 | |
| mix_prob = 0 | |
| empty_cache = False | |
| enable_amp = False | |
| evaluate = True | |
| class_names = [ | |
| "wall", | |
| "floor", | |
| "cabinet", | |
| "bed", | |
| "chair", | |
| "sofa", | |
| "table", | |
| "door", | |
| "window", | |
| "bookshelf", | |
| "picture", | |
| "counter", | |
| "desk", | |
| "curtain", | |
| "refridgerator", | |
| "shower curtain", | |
| "toilet", | |
| "sink", | |
| "bathtub", | |
| "otherfurniture", | |
| ] | |
| num_classes = 20 | |
| segment_ignore_index = (-1, 0, 1) | |
| # model settings | |
| model = dict( | |
| type="PG-v1m1", | |
| backbone=dict( | |
| type="SpUNet-v1m1", | |
| in_channels=6, | |
| num_classes=0, | |
| channels=(32, 64, 128, 256, 256, 128, 96, 96), | |
| layers=(2, 3, 4, 6, 2, 2, 2, 2), | |
| ), | |
| backbone_out_channels=96, | |
| semantic_num_classes=num_classes, | |
| semantic_ignore_index=-1, | |
| segment_ignore_index=segment_ignore_index, | |
| instance_ignore_index=-1, | |
| cluster_thresh=1.5, | |
| cluster_closed_points=300, | |
| cluster_propose_points=100, | |
| cluster_min_points=50, | |
| ) | |
| # scheduler settings | |
| epoch = 800 | |
| optimizer = dict(type="SGD", lr=0.1, momentum=0.9, weight_decay=0.0001, nesterov=True) | |
| scheduler = dict(type="PolyLR") | |
| # dataset settings | |
| dataset_type = "ScanNetDataset" | |
| data_root = "data/scannet" | |
| data = dict( | |
| num_classes=num_classes, | |
| ignore_index=-1, | |
| names=class_names, | |
| train=dict( | |
| type=dataset_type, | |
| split="train", | |
| data_root=data_root, | |
| transform=[ | |
| # dict(type="CenterShift", apply_z=True), | |
| # dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.5), | |
| # # dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis='z', p=0.75), | |
| # dict(type="RandomRotate", angle=[-1, 1], axis='z', center=[0, 0, 0], p=0.5), | |
| # dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis='x', p=0.5), | |
| # dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis='y', p=0.5), | |
| # dict(type="RandomScale", scale=[0.9, 1.1]), | |
| # # dict(type="RandomShift", shift=[0.2, 0.2, 0.2]), | |
| # dict(type="RandomFlip", p=0.5), | |
| # dict(type="RandomJitter", sigma=0.005, clip=0.02), | |
| # dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]), | |
| # dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None), | |
| # dict(type="ChromaticTranslation", p=0.95, ratio=0.1), | |
| # dict(type="ChromaticJitter", p=0.95, std=0.05), | |
| # # dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2), | |
| # # dict(type="RandomColorDrop", p=0.2, color_augment=0.0), | |
| # dict(type="GridSample", | |
| # grid_size=0.02, | |
| # hash_type='fnv', | |
| # mode='train', | |
| # return_grid_coord=True, | |
| # keys=("coord", "color", "normal", "segment", "instance")), | |
| # dict(type="SphereCrop", sample_rate=0.8, mode='random'), | |
| # dict(type="NormalizeColor"), | |
| dict( | |
| type="InstanceParser", | |
| segment_ignore_index=segment_ignore_index, | |
| instance_ignore_index=-1, | |
| ), | |
| dict(type="ToTensor"), | |
| dict( | |
| type="Collect", | |
| keys=( | |
| "coord", | |
| "grid_coord", | |
| "segment", | |
| "instance", | |
| "instance_centroid", | |
| "bbox", | |
| ), | |
| feat_keys=("color", "normal"), | |
| ), | |
| ], | |
| test_mode=False, | |
| ), | |
| val=dict( | |
| type=dataset_type, | |
| split="val", | |
| data_root=data_root, | |
| transform=[ | |
| dict(type="CenterShift", apply_z=True), | |
| dict( | |
| type="Copy", | |
| keys_dict={ | |
| "coord": "origin_coord", | |
| "segment": "origin_segment", | |
| "instance": "origin_instance", | |
| }, | |
| ), | |
| dict( | |
| type="GridSample", | |
| grid_size=0.02, | |
| hash_type="fnv", | |
| mode="train", | |
| return_grid_coord=True, | |
| keys=("coord", "color", "normal", "segment", "instance"), | |
| ), | |
| # dict(type="SphereCrop", point_max=1000000, mode='center'), | |
| dict(type="CenterShift", apply_z=False), | |
| dict(type="NormalizeColor"), | |
| dict( | |
| type="InstanceParser", | |
| segment_ignore_index=segment_ignore_index, | |
| instance_ignore_index=-1, | |
| ), | |
| dict(type="ToTensor"), | |
| dict( | |
| type="Collect", | |
| keys=( | |
| "coord", | |
| "grid_coord", | |
| "segment", | |
| "instance", | |
| "origin_coord", | |
| "origin_segment", | |
| "origin_instance", | |
| "instance_centroid", | |
| "bbox", | |
| ), | |
| feat_keys=("color", "normal"), | |
| offset_keys_dict=dict(offset="coord", origin_offset="origin_coord"), | |
| ), | |
| ], | |
| test_mode=False, | |
| ), | |
| test=dict(), # currently not available | |
| ) | |
| hooks = [ | |
| dict(type="CheckpointLoader", keywords="module.", replacement="module."), | |
| dict(type="IterationTimer", warmup_iter=2), | |
| dict(type="InformationWriter"), | |
| dict( | |
| type="InsSegEvaluator", | |
| segment_ignore_index=segment_ignore_index, | |
| instance_ignore_index=-1, | |
| ), | |
| dict(type="CheckpointSaver", save_freq=None), | |
| ] | |