Spaces:
Running
on
Zero
Running
on
Zero
weight = None # path to model weight | |
resume = False # whether to resume training process | |
evaluate = True # evaluate after each epoch training process | |
test_only = False # test process | |
seed = None # train process will init a random seed and record | |
save_path = "exp/default" | |
num_worker = 16 # total worker in all gpu | |
batch_size = 16 # total batch size in all gpu | |
batch_size_val = None # auto adapt to bs 1 for each gpu | |
batch_size_test = None # auto adapt to bs 1 for each gpu | |
epoch = 100 # total epoch, data loop = epoch // eval_epoch | |
eval_epoch = 100 # sche total eval & checkpoint epoch | |
clip_grad = None # disable with None, enable with a float | |
sync_bn = False | |
enable_amp = False | |
empty_cache = False | |
empty_cache_per_epoch = False | |
find_unused_parameters = False | |
mix_prob = 0 | |
param_dicts = None # example: param_dicts = [dict(keyword="block", lr_scale=0.1)] | |
# hook | |
hooks = [ | |
dict(type="CheckpointLoader"), | |
dict(type="IterationTimer", warmup_iter=2), | |
dict(type="InformationWriter"), | |
dict(type="SemSegEvaluator"), | |
dict(type="CheckpointSaver", save_freq=None), | |
dict(type="PreciseEvaluator", test_last=False), | |
] | |
# Trainer | |
train = dict(type="DefaultTrainer") | |
# Tester | |
test = dict(type="SemSegTester", verbose=True) | |