Demo / mast3r /utils /coarse_to_fine.py
jerome-revaud's picture
Initial commit
83ae704
raw
history blame
8.04 kB
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# coarse to fine utilities
# --------------------------------------------------------
import numpy as np
def crop_tag(cell):
return f'[{cell[1]}:{cell[3]},{cell[0]}:{cell[2]}]'
def crop_slice(cell):
return slice(cell[1], cell[3]), slice(cell[0], cell[2])
def _start_pos(total_size, win_size, overlap):
# we must have AT LEAST overlap between segments
# first segment starts at 0, last segment starts at total_size-win_size
assert 0 <= overlap < 1
assert total_size >= win_size
spacing = win_size * (1 - overlap)
last_pt = total_size - win_size
n_windows = 2 + int((last_pt - 1) // spacing)
return np.linspace(0, last_pt, n_windows).round().astype(int)
def multiple_of_16(x):
return (x // 16) * 16
def _make_overlapping_grid(H, W, size, overlap):
H_win = multiple_of_16(H * size // max(H, W))
W_win = multiple_of_16(W * size // max(H, W))
x = _start_pos(W, W_win, overlap)
y = _start_pos(H, H_win, overlap)
grid = np.stack(np.meshgrid(x, y, indexing='xy'), axis=-1)
grid = np.concatenate((grid, grid + (W_win, H_win)), axis=-1)
return grid.reshape(-1, 4)
def _cell_size(cell2):
width, height = cell2[:, 2] - cell2[:, 0], cell2[:, 3] - cell2[:, 1]
assert width.min() >= 0
assert height.min() >= 0
return width, height
def _norm_windows(cell2, H2, W2, forced_resolution=None):
# make sure the window aspect ratio is 3/4, or the output resolution is forced_resolution if defined
outcell = cell2.copy()
width, height = _cell_size(cell2)
width2, height2 = width.clip(max=W2), height.clip(max=H2)
if forced_resolution is None:
width2[width < height] = (height2[width < height] * 3.01 / 4).clip(max=W2)
height2[width >= height] = (width2[width >= height] * 3.01 / 4).clip(max=H2)
else:
forced_H, forced_W = forced_resolution
width2[:] = forced_W
height2[:] = forced_H
half = (width2 - width) / 2
outcell[:, 0] -= half
outcell[:, 2] += half
half = (height2 - height) / 2
outcell[:, 1] -= half
outcell[:, 3] += half
# proj to integers
outcell = np.floor(outcell).astype(int)
# Take care of flooring errors
tmpw, tmph = _cell_size(outcell)
outcell[:, 0] += tmpw.astype(tmpw.dtype) - width2.astype(tmpw.dtype)
outcell[:, 1] += tmph.astype(tmpw.dtype) - height2.astype(tmpw.dtype)
# make sure 0 <= x < W2 and 0 <= y < H2
outcell[:, 0::2] -= outcell[:, [0]].clip(max=0)
outcell[:, 1::2] -= outcell[:, [1]].clip(max=0)
outcell[:, 0::2] -= outcell[:, [2]].clip(min=W2) - W2
outcell[:, 1::2] -= outcell[:, [3]].clip(min=H2) - H2
width, height = _cell_size(outcell)
assert np.all(width == width2.astype(width.dtype)) and np.all(
height == height2.astype(height.dtype)), "Error, output is not of the expected shape."
assert np.all(width <= W2)
assert np.all(height <= H2)
return outcell
def _weight_pixels(cell, pix, assigned, gauss_var=2):
center = cell.reshape(-1, 2, 2).mean(axis=1)
width, height = _cell_size(cell)
# square distance between each cell center and each point
dist = (center[:, None] - pix[None]) / np.c_[width, height][:, None]
dist2 = np.square(dist).sum(axis=-1)
assert assigned.shape == dist2.shape
res = np.where(assigned, np.exp(-gauss_var * dist2), 0)
return res
def pos2d_in_rect(p1, cell1):
x, y = p1.T
l, t, r, b = cell1
assigned = (l <= x) & (x < r) & (t <= y) & (y < b)
return assigned
def _score_cell(cell1, H2, W2, p1, p2, min_corres=10, forced_resolution=None):
assert p1.shape == p2.shape
# compute keypoint assignment
assigned = pos2d_in_rect(p1, cell1[None].T)
assert assigned.shape == (len(cell1), len(p1))
# remove cells without correspondences
valid_cells = assigned.sum(axis=1) >= min_corres
cell1 = cell1[valid_cells]
assigned = assigned[valid_cells]
if not valid_cells.any():
return cell1, cell1, assigned
# fill-in the assigned points in both image
assigned_p1 = np.empty((len(cell1), len(p1), 2), dtype=np.float32)
assigned_p2 = np.empty((len(cell1), len(p2), 2), dtype=np.float32)
assigned_p1[:] = p1[None]
assigned_p2[:] = p2[None]
assigned_p1[~assigned] = np.nan
assigned_p2[~assigned] = np.nan
# find the median center and scale of assigned points in each cell
# cell_center1 = np.nanmean(assigned_p1, axis=1)
cell_center2 = np.nanmean(assigned_p2, axis=1)
im1_q25, im1_q75 = np.nanquantile(assigned_p1, (0.1, 0.9), axis=1)
im2_q25, im2_q75 = np.nanquantile(assigned_p2, (0.1, 0.9), axis=1)
robust_std1 = (im1_q75 - im1_q25).clip(20.)
robust_std2 = (im2_q75 - im2_q25).clip(20.)
cell_size1 = (cell1[:, 2:4] - cell1[:, 0:2])
cell_size2 = cell_size1 * robust_std2 / robust_std1
cell2 = np.c_[cell_center2 - cell_size2 / 2, cell_center2 + cell_size2 / 2]
# make sure cell bounds are valid
cell2 = _norm_windows(cell2, H2, W2, forced_resolution=forced_resolution)
# compute correspondence weights
corres_weights = _weight_pixels(cell1, p1, assigned) * _weight_pixels(cell2, p2, assigned)
# return a list of window pairs and assigned correspondences
return cell1, cell2, corres_weights
def greedy_selection(corres_weights, target=0.9):
# corres_weight = (n_cell_pair, n_corres) matrix.
# If corres_weight[c,p]>0, means that correspondence p is visible in cell pair p
assert 0 < target <= 1
corres_weights = corres_weights.copy()
total = corres_weights.max(axis=0).sum()
target *= total
# init = empty
res = []
cur = np.zeros(corres_weights.shape[1]) # current selection
while cur.sum() < target:
# pick the nex best cell pair
best = corres_weights.sum(axis=1).argmax()
res.append(best)
# update current
cur += corres_weights[best]
# print('appending', best, 'with score', corres_weights[best].sum(), '-->', cur.sum())
# remove from all other views
corres_weights = (corres_weights - corres_weights[best]).clip(min=0)
return res
def select_pairs_of_crops(img_q, img_b, pos2d_in_query, pos2d_in_ref, maxdim=512, overlap=.5, forced_resolution=None):
# prepare the overlapping cells
grid_q = _make_overlapping_grid(*img_q.shape[:2], maxdim, overlap)
grid_b = _make_overlapping_grid(*img_b.shape[:2], maxdim, overlap)
assert forced_resolution is None or len(forced_resolution) == 2
if isinstance(forced_resolution[0], int) or not len(forced_resolution[0]) == 2:
forced_resolution1 = forced_resolution2 = forced_resolution
else:
assert len(forced_resolution[1]) == 2
forced_resolution1 = forced_resolution[0]
forced_resolution2 = forced_resolution[1]
# Make sure crops respect constraints
grid_q = _norm_windows(grid_q.astype(float), *img_q.shape[:2], forced_resolution=forced_resolution1)
grid_b = _norm_windows(grid_b.astype(float), *img_b.shape[:2], forced_resolution=forced_resolution2)
# score cells
pairs_q = _score_cell(grid_q, *img_b.shape[:2], pos2d_in_query, pos2d_in_ref, forced_resolution=forced_resolution2)
pairs_b = _score_cell(grid_b, *img_q.shape[:2], pos2d_in_ref, pos2d_in_query, forced_resolution=forced_resolution1)
pairs_b = pairs_b[1], pairs_b[0], pairs_b[2] # cellq, cellb, corres_weights
# greedy selection until all correspondences are generated
cell1, cell2, corres_weights = map(np.concatenate, zip(pairs_q, pairs_b))
if len(corres_weights) == 0:
return # tolerated for empty generators
order = greedy_selection(corres_weights, target=0.9)
for i in order:
def pair_tag(qi, bi): return (str(qi) + crop_tag(cell1[i]), str(bi) + crop_tag(cell2[i]))
yield cell1[i], cell2[i], pair_tag