|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | import gradio | 
					
						
						|  | import os | 
					
						
						|  | import numpy as np | 
					
						
						|  | import functools | 
					
						
						|  | import trimesh | 
					
						
						|  | import copy | 
					
						
						|  | from scipy.spatial.transform import Rotation | 
					
						
						|  | import tempfile | 
					
						
						|  | import shutil | 
					
						
						|  |  | 
					
						
						|  | from mast3r.cloud_opt.sparse_ga import sparse_global_alignment | 
					
						
						|  | from mast3r.cloud_opt.tsdf_optimizer import TSDFPostProcess | 
					
						
						|  |  | 
					
						
						|  | import mast3r.utils.path_to_dust3r | 
					
						
						|  | from dust3r.image_pairs import make_pairs | 
					
						
						|  | from dust3r.utils.image import load_images | 
					
						
						|  | from dust3r.utils.device import to_numpy | 
					
						
						|  | from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes | 
					
						
						|  | from dust3r.demo import get_args_parser as dust3r_get_args_parser | 
					
						
						|  |  | 
					
						
						|  | import matplotlib.pyplot as pl | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SparseGAState(): | 
					
						
						|  | def __init__(self, sparse_ga, should_delete=False, cache_dir=None, outfile_name=None): | 
					
						
						|  | self.sparse_ga = sparse_ga | 
					
						
						|  | self.cache_dir = cache_dir | 
					
						
						|  | self.outfile_name = outfile_name | 
					
						
						|  | self.should_delete = should_delete | 
					
						
						|  |  | 
					
						
						|  | def __del__(self): | 
					
						
						|  | if not self.should_delete: | 
					
						
						|  | return | 
					
						
						|  | if self.cache_dir is not None and os.path.isdir(self.cache_dir): | 
					
						
						|  | shutil.rmtree(self.cache_dir) | 
					
						
						|  | self.cache_dir = None | 
					
						
						|  | if self.outfile_name is not None and os.path.isfile(self.outfile_name): | 
					
						
						|  | os.remove(self.outfile_name) | 
					
						
						|  | self.outfile_name = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_args_parser(): | 
					
						
						|  | parser = dust3r_get_args_parser() | 
					
						
						|  | parser.add_argument('--share', action='store_true') | 
					
						
						|  | parser.add_argument('--gradio_delete_cache', default=None, type=int, | 
					
						
						|  | help='age/frequency at which gradio removes the file. If >0, matching cache is purged') | 
					
						
						|  |  | 
					
						
						|  | actions = parser._actions | 
					
						
						|  | for action in actions: | 
					
						
						|  | if action.dest == 'model_name': | 
					
						
						|  | action.choices = ["MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric"] | 
					
						
						|  |  | 
					
						
						|  | parser.prog = 'mast3r demo' | 
					
						
						|  | return parser | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _convert_scene_output_to_glb(outfile, imgs, pts3d, mask, focals, cams2world, cam_size=0.05, | 
					
						
						|  | cam_color=None, as_pointcloud=False, | 
					
						
						|  | transparent_cams=False, silent=False): | 
					
						
						|  | assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals) | 
					
						
						|  | pts3d = to_numpy(pts3d) | 
					
						
						|  | imgs = to_numpy(imgs) | 
					
						
						|  | focals = to_numpy(focals) | 
					
						
						|  | cams2world = to_numpy(cams2world) | 
					
						
						|  |  | 
					
						
						|  | scene = trimesh.Scene() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if as_pointcloud: | 
					
						
						|  | pts = np.concatenate([p[m.ravel()] for p, m in zip(pts3d, mask)]).reshape(-1, 3) | 
					
						
						|  | col = np.concatenate([p[m] for p, m in zip(imgs, mask)]).reshape(-1, 3) | 
					
						
						|  | valid_msk = np.isfinite(pts.sum(axis=1)) | 
					
						
						|  | pct = trimesh.PointCloud(pts[valid_msk], colors=col[valid_msk]) | 
					
						
						|  | scene.add_geometry(pct) | 
					
						
						|  | else: | 
					
						
						|  | meshes = [] | 
					
						
						|  | for i in range(len(imgs)): | 
					
						
						|  | pts3d_i = pts3d[i].reshape(imgs[i].shape) | 
					
						
						|  | msk_i = mask[i] & np.isfinite(pts3d_i.sum(axis=-1)) | 
					
						
						|  | meshes.append(pts3d_to_trimesh(imgs[i], pts3d_i, msk_i)) | 
					
						
						|  | mesh = trimesh.Trimesh(**cat_meshes(meshes)) | 
					
						
						|  | scene.add_geometry(mesh) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for i, pose_c2w in enumerate(cams2world): | 
					
						
						|  | if isinstance(cam_color, list): | 
					
						
						|  | camera_edge_color = cam_color[i] | 
					
						
						|  | else: | 
					
						
						|  | camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)] | 
					
						
						|  | add_scene_cam(scene, pose_c2w, camera_edge_color, | 
					
						
						|  | None if transparent_cams else imgs[i], focals[i], | 
					
						
						|  | imsize=imgs[i].shape[1::-1], screen_width=cam_size) | 
					
						
						|  |  | 
					
						
						|  | rot = np.eye(4) | 
					
						
						|  | rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix() | 
					
						
						|  | scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot)) | 
					
						
						|  | if not silent: | 
					
						
						|  | print('(exporting 3D scene to', outfile, ')') | 
					
						
						|  | scene.export(file_obj=outfile) | 
					
						
						|  | return outfile | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_3D_model_from_scene(silent, scene_state, min_conf_thr=2, as_pointcloud=False, mask_sky=False, | 
					
						
						|  | clean_depth=False, transparent_cams=False, cam_size=0.05, TSDF_thresh=0): | 
					
						
						|  | """ | 
					
						
						|  | extract 3D_model (glb file) from a reconstructed scene | 
					
						
						|  | """ | 
					
						
						|  | if scene_state is None: | 
					
						
						|  | return None | 
					
						
						|  | outfile = scene_state.outfile_name | 
					
						
						|  | if outfile is None: | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | scene = scene_state.sparse_ga | 
					
						
						|  | rgbimg = scene.imgs | 
					
						
						|  | focals = scene.get_focals().cpu() | 
					
						
						|  | cams2world = scene.get_im_poses().cpu() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if TSDF_thresh > 0: | 
					
						
						|  | tsdf = TSDFPostProcess(scene, TSDF_thresh=TSDF_thresh) | 
					
						
						|  | pts3d, _, confs = to_numpy(tsdf.get_dense_pts3d(clean_depth=clean_depth)) | 
					
						
						|  | else: | 
					
						
						|  | pts3d, _, confs = to_numpy(scene.get_dense_pts3d(clean_depth=clean_depth)) | 
					
						
						|  | msk = to_numpy([c > min_conf_thr for c in confs]) | 
					
						
						|  | return _convert_scene_output_to_glb(outfile, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud, | 
					
						
						|  | transparent_cams=transparent_cams, cam_size=cam_size, silent=silent) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_reconstructed_scene(outdir, gradio_delete_cache, model, device, silent, image_size, current_scene_state, | 
					
						
						|  | filelist, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr, | 
					
						
						|  | as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, scenegraph_type, winsize, | 
					
						
						|  | win_cyclic, refid, TSDF_thresh, shared_intrinsics, **kw): | 
					
						
						|  | """ | 
					
						
						|  | from a list of images, run mast3r inference, sparse global aligner. | 
					
						
						|  | then run get_3D_model_from_scene | 
					
						
						|  | """ | 
					
						
						|  | imgs = load_images(filelist, size=image_size, verbose=not silent) | 
					
						
						|  | if len(imgs) == 1: | 
					
						
						|  | imgs = [imgs[0], copy.deepcopy(imgs[0])] | 
					
						
						|  | imgs[1]['idx'] = 1 | 
					
						
						|  | filelist = [filelist[0], filelist[0] + '_2'] | 
					
						
						|  |  | 
					
						
						|  | scene_graph_params = [scenegraph_type] | 
					
						
						|  | if scenegraph_type in ["swin", "logwin"]: | 
					
						
						|  | scene_graph_params.append(str(winsize)) | 
					
						
						|  | elif scenegraph_type == "oneref": | 
					
						
						|  | scene_graph_params.append(str(refid)) | 
					
						
						|  | if scenegraph_type in ["swin", "logwin"] and not win_cyclic: | 
					
						
						|  | scene_graph_params.append('noncyclic') | 
					
						
						|  | scene_graph = '-'.join(scene_graph_params) | 
					
						
						|  | pairs = make_pairs(imgs, scene_graph=scene_graph, prefilter=None, symmetrize=True) | 
					
						
						|  | if optim_level == 'coarse': | 
					
						
						|  | niter2 = 0 | 
					
						
						|  |  | 
					
						
						|  | if current_scene_state is not None and \ | 
					
						
						|  | not current_scene_state.should_delete and \ | 
					
						
						|  | current_scene_state.cache_dir is not None: | 
					
						
						|  | cache_dir = current_scene_state.cache_dir | 
					
						
						|  | elif gradio_delete_cache: | 
					
						
						|  | cache_dir = tempfile.mkdtemp(suffix='_cache', dir=outdir) | 
					
						
						|  | else: | 
					
						
						|  | cache_dir = os.path.join(outdir, 'cache') | 
					
						
						|  | scene = sparse_global_alignment(filelist, pairs, cache_dir, | 
					
						
						|  | model, lr1=lr1, niter1=niter1, lr2=lr2, niter2=niter2, device=device, | 
					
						
						|  | opt_depth='depth' in optim_level, shared_intrinsics=shared_intrinsics, | 
					
						
						|  | matching_conf_thr=matching_conf_thr, **kw) | 
					
						
						|  | if current_scene_state is not None and \ | 
					
						
						|  | not current_scene_state.should_delete and \ | 
					
						
						|  | current_scene_state.outfile_name is not None: | 
					
						
						|  | outfile_name = current_scene_state.outfile_name | 
					
						
						|  | else: | 
					
						
						|  | outfile_name = tempfile.mktemp(suffix='_scene.glb', dir=outdir) | 
					
						
						|  |  | 
					
						
						|  | scene_state = SparseGAState(scene, gradio_delete_cache, cache_dir, outfile_name) | 
					
						
						|  | outfile = get_3D_model_from_scene(silent, scene_state, min_conf_thr, as_pointcloud, mask_sky, | 
					
						
						|  | clean_depth, transparent_cams, cam_size, TSDF_thresh) | 
					
						
						|  | return scene_state, outfile | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def set_scenegraph_options(inputfiles, win_cyclic, refid, scenegraph_type): | 
					
						
						|  | num_files = len(inputfiles) if inputfiles is not None else 1 | 
					
						
						|  | show_win_controls = scenegraph_type in ["swin", "logwin"] | 
					
						
						|  | show_winsize = scenegraph_type in ["swin", "logwin"] | 
					
						
						|  | show_cyclic = scenegraph_type in ["swin", "logwin"] | 
					
						
						|  | max_winsize, min_winsize = 1, 1 | 
					
						
						|  | if scenegraph_type == "swin": | 
					
						
						|  | if win_cyclic: | 
					
						
						|  | max_winsize = max(1, math.ceil((num_files - 1) / 2)) | 
					
						
						|  | else: | 
					
						
						|  | max_winsize = num_files - 1 | 
					
						
						|  | elif scenegraph_type == "logwin": | 
					
						
						|  | if win_cyclic: | 
					
						
						|  | half_size = math.ceil((num_files - 1) / 2) | 
					
						
						|  | max_winsize = max(1, math.ceil(math.log(half_size, 2))) | 
					
						
						|  | else: | 
					
						
						|  | max_winsize = max(1, math.ceil(math.log(num_files, 2))) | 
					
						
						|  | winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize, | 
					
						
						|  | minimum=min_winsize, maximum=max_winsize, step=1, visible=show_winsize) | 
					
						
						|  | win_cyclic = gradio.Checkbox(value=win_cyclic, label="Cyclic sequence", visible=show_cyclic) | 
					
						
						|  | win_col = gradio.Column(visible=show_win_controls) | 
					
						
						|  | refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, | 
					
						
						|  | maximum=num_files - 1, step=1, visible=scenegraph_type == 'oneref') | 
					
						
						|  | return win_col, winsize, win_cyclic, refid | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main_demo(tmpdirname, model, device, image_size, server_name, server_port, silent=False, | 
					
						
						|  | share=False, gradio_delete_cache=False): | 
					
						
						|  | if not silent: | 
					
						
						|  | print('Outputing stuff in', tmpdirname) | 
					
						
						|  |  | 
					
						
						|  | recon_fun = functools.partial(get_reconstructed_scene, tmpdirname, gradio_delete_cache, model, device, | 
					
						
						|  | silent, image_size) | 
					
						
						|  | model_from_scene_fun = functools.partial(get_3D_model_from_scene, silent) | 
					
						
						|  |  | 
					
						
						|  | def get_context(delete_cache): | 
					
						
						|  | css = """.gradio-container {margin: 0 !important; min-width: 100%};""" | 
					
						
						|  | title = "MASt3R Demo" | 
					
						
						|  | if delete_cache: | 
					
						
						|  | return gradio.Blocks(css=css, title=title, delete_cache=(delete_cache, delete_cache)) | 
					
						
						|  | else: | 
					
						
						|  | return gradio.Blocks(css=css, title="MASt3R Demo") | 
					
						
						|  |  | 
					
						
						|  | with get_context(gradio_delete_cache) as demo: | 
					
						
						|  |  | 
					
						
						|  | scene = gradio.State(None) | 
					
						
						|  | gradio.HTML('<h2 style="text-align: center;">MASt3R Demo</h2>') | 
					
						
						|  | with gradio.Column(): | 
					
						
						|  | inputfiles = gradio.File(file_count="multiple") | 
					
						
						|  | with gradio.Row(): | 
					
						
						|  | with gradio.Column(): | 
					
						
						|  | with gradio.Row(): | 
					
						
						|  | lr1 = gradio.Slider(label="Coarse LR", value=0.07, minimum=0.01, maximum=0.2, step=0.01) | 
					
						
						|  | niter1 = gradio.Number(value=500, precision=0, minimum=0, maximum=10_000, | 
					
						
						|  | label="num_iterations", info="For coarse alignment!") | 
					
						
						|  | lr2 = gradio.Slider(label="Fine LR", value=0.014, minimum=0.005, maximum=0.05, step=0.001) | 
					
						
						|  | niter2 = gradio.Number(value=200, precision=0, minimum=0, maximum=100_000, | 
					
						
						|  | label="num_iterations", info="For refinement!") | 
					
						
						|  | optim_level = gradio.Dropdown(["coarse", "refine", "refine+depth"], | 
					
						
						|  | value='refine', label="OptLevel", | 
					
						
						|  | info="Optimization level") | 
					
						
						|  | with gradio.Row(): | 
					
						
						|  | matching_conf_thr = gradio.Slider(label="Matching Confidence Thr", value=5., | 
					
						
						|  | minimum=0., maximum=30., step=0.1, | 
					
						
						|  | info="Before Fallback to Regr3D!") | 
					
						
						|  | shared_intrinsics = gradio.Checkbox(value=False, label="Shared intrinsics", | 
					
						
						|  | info="Only optimize one set of intrinsics for all views") | 
					
						
						|  | scenegraph_type = gradio.Dropdown([("complete: all possible image pairs", "complete"), | 
					
						
						|  | ("swin: sliding window", "swin"), | 
					
						
						|  | ("logwin: sliding window with long range", "logwin"), | 
					
						
						|  | ("oneref: match one image with all", "oneref")], | 
					
						
						|  | value='complete', label="Scenegraph", | 
					
						
						|  | info="Define how to make pairs", | 
					
						
						|  | interactive=True) | 
					
						
						|  | with gradio.Column(visible=False) as win_col: | 
					
						
						|  | winsize = gradio.Slider(label="Scene Graph: Window Size", value=1, | 
					
						
						|  | minimum=1, maximum=1, step=1) | 
					
						
						|  | win_cyclic = gradio.Checkbox(value=False, label="Cyclic sequence") | 
					
						
						|  | refid = gradio.Slider(label="Scene Graph: Id", value=0, | 
					
						
						|  | minimum=0, maximum=0, step=1, visible=False) | 
					
						
						|  | run_btn = gradio.Button("Run") | 
					
						
						|  |  | 
					
						
						|  | with gradio.Row(): | 
					
						
						|  |  | 
					
						
						|  | min_conf_thr = gradio.Slider(label="min_conf_thr", value=1.5, minimum=0.0, maximum=10, step=0.1) | 
					
						
						|  |  | 
					
						
						|  | cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001) | 
					
						
						|  | TSDF_thresh = gradio.Slider(label="TSDF Threshold", value=0., minimum=0., maximum=1., step=0.01) | 
					
						
						|  | with gradio.Row(): | 
					
						
						|  | as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud") | 
					
						
						|  |  | 
					
						
						|  | mask_sky = gradio.Checkbox(value=False, label="Mask sky") | 
					
						
						|  | clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps") | 
					
						
						|  | transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras") | 
					
						
						|  |  | 
					
						
						|  | outmodel = gradio.Model3D() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | scenegraph_type.change(set_scenegraph_options, | 
					
						
						|  | inputs=[inputfiles, win_cyclic, refid, scenegraph_type], | 
					
						
						|  | outputs=[win_col, winsize, win_cyclic, refid]) | 
					
						
						|  | inputfiles.change(set_scenegraph_options, | 
					
						
						|  | inputs=[inputfiles, win_cyclic, refid, scenegraph_type], | 
					
						
						|  | outputs=[win_col, winsize, win_cyclic, refid]) | 
					
						
						|  | win_cyclic.change(set_scenegraph_options, | 
					
						
						|  | inputs=[inputfiles, win_cyclic, refid, scenegraph_type], | 
					
						
						|  | outputs=[win_col, winsize, win_cyclic, refid]) | 
					
						
						|  | run_btn.click(fn=recon_fun, | 
					
						
						|  | inputs=[scene, inputfiles, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr, | 
					
						
						|  | as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, | 
					
						
						|  | scenegraph_type, winsize, win_cyclic, refid, TSDF_thresh, shared_intrinsics], | 
					
						
						|  | outputs=[scene, outmodel]) | 
					
						
						|  | min_conf_thr.release(fn=model_from_scene_fun, | 
					
						
						|  | inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, | 
					
						
						|  | clean_depth, transparent_cams, cam_size, TSDF_thresh], | 
					
						
						|  | outputs=outmodel) | 
					
						
						|  | cam_size.change(fn=model_from_scene_fun, | 
					
						
						|  | inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, | 
					
						
						|  | clean_depth, transparent_cams, cam_size, TSDF_thresh], | 
					
						
						|  | outputs=outmodel) | 
					
						
						|  | TSDF_thresh.change(fn=model_from_scene_fun, | 
					
						
						|  | inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, | 
					
						
						|  | clean_depth, transparent_cams, cam_size, TSDF_thresh], | 
					
						
						|  | outputs=outmodel) | 
					
						
						|  | as_pointcloud.change(fn=model_from_scene_fun, | 
					
						
						|  | inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, | 
					
						
						|  | clean_depth, transparent_cams, cam_size, TSDF_thresh], | 
					
						
						|  | outputs=outmodel) | 
					
						
						|  | mask_sky.change(fn=model_from_scene_fun, | 
					
						
						|  | inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, | 
					
						
						|  | clean_depth, transparent_cams, cam_size, TSDF_thresh], | 
					
						
						|  | outputs=outmodel) | 
					
						
						|  | clean_depth.change(fn=model_from_scene_fun, | 
					
						
						|  | inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, | 
					
						
						|  | clean_depth, transparent_cams, cam_size, TSDF_thresh], | 
					
						
						|  | outputs=outmodel) | 
					
						
						|  | transparent_cams.change(model_from_scene_fun, | 
					
						
						|  | inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, | 
					
						
						|  | clean_depth, transparent_cams, cam_size, TSDF_thresh], | 
					
						
						|  | outputs=outmodel) | 
					
						
						|  | demo.launch(share=share, server_name=server_name, server_port=server_port) | 
					
						
						|  |  |