|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from sklearn.metrics import average_precision_score |
|
|
|
import mast3r.utils.path_to_dust3r |
|
from dust3r.losses import BaseCriterion, Criterion, MultiLoss, Sum, ConfLoss |
|
from dust3r.losses import Regr3D as Regr3D_dust3r |
|
from dust3r.utils.geometry import (geotrf, inv, normalize_pointcloud) |
|
from dust3r.inference import get_pred_pts3d |
|
from dust3r.utils.geometry import get_joint_pointcloud_depth, get_joint_pointcloud_center_scale |
|
|
|
|
|
def apply_log_to_norm(xyz): |
|
d = xyz.norm(dim=-1, keepdim=True) |
|
xyz = xyz / d.clip(min=1e-8) |
|
xyz = xyz * torch.log1p(d) |
|
return xyz |
|
|
|
|
|
class Regr3D (Regr3D_dust3r): |
|
def __init__(self, criterion, norm_mode='avg_dis', gt_scale=False, opt_fit_gt=False, |
|
sky_loss_value=2, max_metric_scale=False, loss_in_log=False): |
|
self.loss_in_log = loss_in_log |
|
if norm_mode.startswith('?'): |
|
|
|
self.norm_all = False |
|
self.norm_mode = norm_mode[1:] |
|
else: |
|
self.norm_all = True |
|
self.norm_mode = norm_mode |
|
super().__init__(criterion, self.norm_mode, gt_scale) |
|
|
|
self.sky_loss_value = sky_loss_value |
|
self.max_metric_scale = max_metric_scale |
|
|
|
def get_all_pts3d(self, gt1, gt2, pred1, pred2, dist_clip=None): |
|
|
|
in_camera1 = inv(gt1['camera_pose']) |
|
gt_pts1 = geotrf(in_camera1, gt1['pts3d']) |
|
gt_pts2 = geotrf(in_camera1, gt2['pts3d']) |
|
|
|
valid1 = gt1['valid_mask'].clone() |
|
valid2 = gt2['valid_mask'].clone() |
|
|
|
if dist_clip is not None: |
|
|
|
dis1 = gt_pts1.norm(dim=-1) |
|
dis2 = gt_pts2.norm(dim=-1) |
|
valid1 = valid1 & (dis1 <= dist_clip) |
|
valid2 = valid2 & (dis2 <= dist_clip) |
|
|
|
if self.loss_in_log == 'before': |
|
|
|
gt_pts1 = apply_log_to_norm(gt_pts1) |
|
gt_pts2 = apply_log_to_norm(gt_pts2) |
|
|
|
pr_pts1 = get_pred_pts3d(gt1, pred1, use_pose=False).clone() |
|
pr_pts2 = get_pred_pts3d(gt2, pred2, use_pose=True).clone() |
|
|
|
if not self.norm_all: |
|
if self.max_metric_scale: |
|
B = valid1.shape[0] |
|
|
|
|
|
|
|
dist1_to_cam1 = torch.where(valid1, torch.linalg.norm(gt_pts1, dim=-1), 0).view(B, -1) |
|
dist2_to_cam1 = torch.where(valid2, torch.linalg.norm(gt_pts2, dim=-1), 0).view(B, -1) |
|
|
|
|
|
|
|
gt1['is_metric_scale'] = gt1['is_metric_scale'] \ |
|
& (dist1_to_cam1.max(dim=-1).values < self.max_metric_scale) \ |
|
& (dist2_to_cam1.max(dim=-1).values < self.max_metric_scale) |
|
gt2['is_metric_scale'] = gt1['is_metric_scale'] |
|
|
|
mask = ~gt1['is_metric_scale'] |
|
else: |
|
mask = torch.ones_like(gt1['is_metric_scale']) |
|
|
|
if self.norm_mode and mask.any(): |
|
pr_pts1[mask], pr_pts2[mask] = normalize_pointcloud(pr_pts1[mask], pr_pts2[mask], self.norm_mode, |
|
valid1[mask], valid2[mask]) |
|
|
|
if self.norm_mode and not self.gt_scale: |
|
gt_pts1, gt_pts2, norm_factor = normalize_pointcloud(gt_pts1, gt_pts2, self.norm_mode, |
|
valid1, valid2, ret_factor=True) |
|
|
|
pr_pts1[~mask] = pr_pts1[~mask] / norm_factor[~mask] |
|
pr_pts2[~mask] = pr_pts2[~mask] / norm_factor[~mask] |
|
|
|
|
|
sky1 = gt1['sky_mask'] & (~valid1) |
|
sky2 = gt2['sky_mask'] & (~valid2) |
|
return gt_pts1, gt_pts2, pr_pts1, pr_pts2, valid1, valid2, sky1, sky2, {} |
|
|
|
def compute_loss(self, gt1, gt2, pred1, pred2, **kw): |
|
gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, sky1, sky2, monitoring = \ |
|
self.get_all_pts3d(gt1, gt2, pred1, pred2, **kw) |
|
|
|
if self.sky_loss_value > 0: |
|
assert self.criterion.reduction == 'none', 'sky_loss_value should be 0 if no conf loss' |
|
|
|
mask1 = mask1 | sky1 |
|
mask2 = mask2 | sky2 |
|
|
|
|
|
pred_pts1 = pred_pts1[mask1] |
|
gt_pts1 = gt_pts1[mask1] |
|
if self.loss_in_log and self.loss_in_log != 'before': |
|
|
|
pred_pts1 = apply_log_to_norm(pred_pts1) |
|
gt_pts1 = apply_log_to_norm(gt_pts1) |
|
l1 = self.criterion(pred_pts1, gt_pts1) |
|
|
|
|
|
pred_pts2 = pred_pts2[mask2] |
|
gt_pts2 = gt_pts2[mask2] |
|
if self.loss_in_log and self.loss_in_log != 'before': |
|
pred_pts2 = apply_log_to_norm(pred_pts2) |
|
gt_pts2 = apply_log_to_norm(gt_pts2) |
|
l2 = self.criterion(pred_pts2, gt_pts2) |
|
|
|
if self.sky_loss_value > 0: |
|
assert self.criterion.reduction == 'none', 'sky_loss_value should be 0 if no conf loss' |
|
|
|
l1 = torch.where(sky1[mask1], self.sky_loss_value, l1) |
|
l2 = torch.where(sky2[mask2], self.sky_loss_value, l2) |
|
self_name = type(self).__name__ |
|
details = {self_name + '_pts3d_1': float(l1.mean()), self_name + '_pts3d_2': float(l2.mean())} |
|
return Sum((l1, mask1), (l2, mask2)), (details | monitoring) |
|
|
|
|
|
class Regr3D_ShiftInv (Regr3D): |
|
""" Same than Regr3D but invariant to depth shift. |
|
""" |
|
|
|
def get_all_pts3d(self, gt1, gt2, pred1, pred2): |
|
|
|
gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, sky1, sky2, monitoring = \ |
|
super().get_all_pts3d(gt1, gt2, pred1, pred2) |
|
|
|
|
|
gt_z1, gt_z2 = gt_pts1[..., 2], gt_pts2[..., 2] |
|
pred_z1, pred_z2 = pred_pts1[..., 2], pred_pts2[..., 2] |
|
gt_shift_z = get_joint_pointcloud_depth(gt_z1, gt_z2, mask1, mask2)[:, None, None] |
|
pred_shift_z = get_joint_pointcloud_depth(pred_z1, pred_z2, mask1, mask2)[:, None, None] |
|
|
|
|
|
gt_z1 -= gt_shift_z |
|
gt_z2 -= gt_shift_z |
|
pred_z1 -= pred_shift_z |
|
pred_z2 -= pred_shift_z |
|
|
|
|
|
return gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, sky1, sky2, monitoring |
|
|
|
|
|
class Regr3D_ScaleInv (Regr3D): |
|
""" Same than Regr3D but invariant to depth scale. |
|
if gt_scale == True: enforce the prediction to take the same scale than GT |
|
""" |
|
|
|
def get_all_pts3d(self, gt1, gt2, pred1, pred2): |
|
|
|
gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, sky1, sky2, monitoring = \ |
|
super().get_all_pts3d(gt1, gt2, pred1, pred2) |
|
|
|
|
|
_, gt_scale = get_joint_pointcloud_center_scale(gt_pts1, gt_pts2, mask1, mask2) |
|
_, pred_scale = get_joint_pointcloud_center_scale(pred_pts1, pred_pts2, mask1, mask2) |
|
|
|
|
|
pred_scale = pred_scale.clip(min=1e-3, max=1e3) |
|
|
|
|
|
if self.gt_scale: |
|
pred_pts1 *= gt_scale / pred_scale |
|
pred_pts2 *= gt_scale / pred_scale |
|
|
|
else: |
|
gt_pts1 /= gt_scale |
|
gt_pts2 /= gt_scale |
|
pred_pts1 /= pred_scale |
|
pred_pts2 /= pred_scale |
|
|
|
|
|
return gt_pts1, gt_pts2, pred_pts1, pred_pts2, mask1, mask2, sky1, sky2, monitoring |
|
|
|
|
|
class Regr3D_ScaleShiftInv (Regr3D_ScaleInv, Regr3D_ShiftInv): |
|
|
|
pass |
|
|
|
|
|
def get_similarities(desc1, desc2, euc=False): |
|
if euc: |
|
dists = (desc1[:, :, None] - desc2[:, None]).norm(dim=-1) |
|
sim = 1 / (1 + dists) |
|
else: |
|
|
|
sim = desc1 @ desc2.transpose(-2, -1) |
|
return sim |
|
|
|
|
|
class MatchingCriterion(BaseCriterion): |
|
def __init__(self, reduction='mean', fp=torch.float32): |
|
super().__init__(reduction) |
|
self.fp = fp |
|
|
|
def forward(self, a, b, valid_matches=None, euc=False): |
|
assert a.ndim >= 2 and 1 <= a.shape[-1], f'Bad shape = {a.shape}' |
|
dist = self.loss(a.to(self.fp), b.to(self.fp), valid_matches, euc=euc) |
|
|
|
assert (valid_matches is None and dist.ndim == a.ndim - |
|
1) or self.reduction in ['mean', 'sum', '1-mean', 'none'] |
|
if self.reduction == 'none': |
|
return dist |
|
if self.reduction == 'sum': |
|
return dist.sum() |
|
if self.reduction == 'mean': |
|
return dist.mean() if dist.numel() > 0 else dist.new_zeros(()) |
|
if self.reduction == '1-mean': |
|
return 1. - dist.mean() if dist.numel() > 0 else dist.new_ones(()) |
|
raise ValueError(f'bad {self.reduction=} mode') |
|
|
|
def loss(self, a, b, valid_matches=None): |
|
raise NotImplementedError |
|
|
|
|
|
class InfoNCE(MatchingCriterion): |
|
def __init__(self, temperature=0.07, eps=1e-8, mode='all', **kwargs): |
|
super().__init__(**kwargs) |
|
self.temperature = temperature |
|
self.eps = eps |
|
assert mode in ['all', 'proper', 'dual'] |
|
self.mode = mode |
|
|
|
def loss(self, desc1, desc2, valid_matches=None, euc=False): |
|
|
|
B, N, D = desc1.shape |
|
B2, N2, D2 = desc2.shape |
|
assert B == B2 and D == D2 |
|
if valid_matches is None: |
|
valid_matches = torch.ones([B, N], dtype=bool) |
|
|
|
assert valid_matches.shape == torch.Size([B, N]) and valid_matches.sum() > 0 |
|
|
|
|
|
sim = get_similarities(desc1, desc2, euc) / self.temperature |
|
sim[sim.isnan()] = -torch.inf |
|
|
|
sim = sim.exp_() |
|
positives = sim.diagonal(dim1=-2, dim2=-1) |
|
|
|
|
|
if self.mode == 'all': |
|
loss = -torch.log((positives / sim.sum(dim=-1).sum(dim=-1, keepdim=True)).clip(self.eps)) |
|
elif self.mode == 'proper': |
|
loss = -(torch.log((positives / sim.sum(dim=-2)).clip(self.eps)) + |
|
torch.log((positives / sim.sum(dim=-1)).clip(self.eps))) |
|
elif self.mode == 'dual': |
|
loss = -(torch.log((positives**2 / sim.sum(dim=-1) / sim.sum(dim=-2)).clip(self.eps))) |
|
else: |
|
raise ValueError("This should not happen...") |
|
return loss[valid_matches] |
|
|
|
|
|
class APLoss (MatchingCriterion): |
|
""" AP loss. |
|
|
|
Input: (N, M) values in [min, max] |
|
label: (N, M) values in {0, 1} |
|
|
|
Returns: 1 - mAP (mean AP for each n in {1..N}) |
|
Note: typically, this is what you wanna minimize |
|
""" |
|
|
|
def __init__(self, nq='torch', min=0, max=1, euc=False, **kw): |
|
super().__init__(**kw) |
|
|
|
if nq == 0: |
|
nq = 'sklearn' |
|
try: |
|
self.compute_AP = eval('self.compute_true_AP_' + nq) |
|
except: |
|
raise ValueError("Unknown mode %s for AP loss" % nq) |
|
|
|
@staticmethod |
|
def compute_true_AP_sklearn(scores, labels): |
|
def compute_AP(label, score): |
|
return average_precision_score(label, score) |
|
|
|
aps = scores.new_zeros((scores.shape[0], scores.shape[1])) |
|
label_np = labels.cpu().numpy().astype(bool) |
|
scores_np = scores.cpu().numpy() |
|
for bi in range(scores_np.shape[0]): |
|
for i in range(scores_np.shape[1]): |
|
labels = label_np[bi, i, :] |
|
if labels.sum() < 1: |
|
continue |
|
aps[bi, i] = compute_AP(labels, scores_np[bi, i, :]) |
|
return aps |
|
|
|
@staticmethod |
|
def compute_true_AP_torch(scores, labels): |
|
assert scores.shape == labels.shape |
|
B, N, M = labels.shape |
|
dev = labels.device |
|
with torch.no_grad(): |
|
|
|
_, order = scores.sort(dim=-1, descending=True) |
|
|
|
labels = labels[torch.arange(B, device=dev)[:, None, None].expand(order.shape), |
|
torch.arange(N, device=dev)[None, :, None].expand(order.shape), |
|
order] |
|
|
|
npos = labels.sum(dim=-1) |
|
assert torch.all(torch.isclose(npos, npos[0, 0]) |
|
), "only implemented for constant number of positives per query" |
|
npos = int(npos[0, 0]) |
|
|
|
posrank = labels.nonzero()[:, -1].view(B, N, npos) |
|
recall = torch.arange(1, 1 + npos, dtype=torch.float32, device=dev)[None, None, :].expand(B, N, npos) |
|
precision = recall / (1 + posrank).float() |
|
|
|
aps = precision.mean(dim=-1) |
|
|
|
return aps |
|
|
|
def loss(self, desc1, desc2, valid_matches=None, euc=False): |
|
B, N1, D = desc1.shape |
|
B2, N2, D2 = desc2.shape |
|
assert B == B2 and D == D2 |
|
|
|
scores = get_similarities(desc1, desc2, euc) |
|
|
|
labels = torch.zeros([B, N1, N2], dtype=scores.dtype, device=scores.device) |
|
|
|
|
|
labels.diagonal(dim1=-2, dim2=-1)[...] = 1. |
|
apscore = self.compute_AP(scores, labels) |
|
if valid_matches is not None: |
|
apscore = apscore[valid_matches] |
|
return apscore |
|
|
|
|
|
class MatchingLoss (Criterion, MultiLoss): |
|
""" |
|
Matching loss per image |
|
only compare pixels inside an image but not in the whole batch as what would be done usually |
|
""" |
|
|
|
def __init__(self, criterion, withconf=False, use_pts3d=False, negatives_padding=0, blocksize=4096): |
|
super().__init__(criterion) |
|
self.negatives_padding = negatives_padding |
|
self.use_pts3d = use_pts3d |
|
self.blocksize = blocksize |
|
self.withconf = withconf |
|
|
|
def add_negatives(self, outdesc2, desc2, batchid, x2, y2): |
|
if self.negatives_padding: |
|
B, H, W, D = desc2.shape |
|
negatives = torch.ones([B, H, W], device=desc2.device, dtype=bool) |
|
negatives[batchid, y2, x2] = False |
|
sel = negatives & (negatives.view([B, -1]).cumsum(dim=-1).view(B, H, W) |
|
<= self.negatives_padding) |
|
outdesc2 = torch.cat([outdesc2, desc2[sel].view([B, -1, D])], dim=1) |
|
return outdesc2 |
|
|
|
def get_confs(self, pred1, pred2, sel1, sel2): |
|
if self.withconf: |
|
if self.use_pts3d: |
|
outconfs1 = pred1['conf'][sel1] |
|
outconfs2 = pred2['conf'][sel2] |
|
else: |
|
outconfs1 = pred1['desc_conf'][sel1] |
|
outconfs2 = pred2['desc_conf'][sel2] |
|
else: |
|
outconfs1 = outconfs2 = None |
|
return outconfs1, outconfs2 |
|
|
|
def get_descs(self, pred1, pred2): |
|
if self.use_pts3d: |
|
desc1, desc2 = pred1['pts3d'], pred2['pts3d_in_other_view'] |
|
else: |
|
desc1, desc2 = pred1['desc'], pred2['desc'] |
|
return desc1, desc2 |
|
|
|
def get_matching_descs(self, gt1, gt2, pred1, pred2, **kw): |
|
outdesc1 = outdesc2 = outconfs1 = outconfs2 = None |
|
|
|
desc1, desc2 = self.get_descs(pred1, pred2) |
|
|
|
(x1, y1), (x2, y2) = gt1['corres'].unbind(-1), gt2['corres'].unbind(-1) |
|
valid_matches = gt1['valid_corres'] |
|
|
|
|
|
B, N = x1.shape |
|
batchid = torch.arange(B)[:, None].repeat(1, N) |
|
outdesc1, outdesc2 = desc1[batchid, y1, x1], desc2[batchid, y2, x2] |
|
|
|
|
|
outdesc2 = self.add_negatives(outdesc2, desc2, batchid, x2, y2) |
|
|
|
|
|
sel1 = batchid, y1, x1 |
|
sel2 = batchid, y2, x2 |
|
outconfs1, outconfs2 = self.get_confs(pred1, pred2, sel1, sel2) |
|
|
|
return outdesc1, outdesc2, outconfs1, outconfs2, valid_matches, {'use_euclidean_dist': self.use_pts3d} |
|
|
|
def blockwise_criterion(self, descs1, descs2, confs1, confs2, valid_matches, euc, rng=np.random, shuffle=True): |
|
loss = None |
|
details = {} |
|
B, N, D = descs1.shape |
|
|
|
if N <= self.blocksize: |
|
loss = self.criterion(descs1, descs2, valid_matches, euc=euc) |
|
else: |
|
|
|
matches_perm = slice(None) |
|
if shuffle: |
|
matches_perm = np.stack([rng.choice(range(N), size=N, replace=False) for _ in range(B)]) |
|
batchid = torch.tile(torch.arange(B), (N, 1)).T |
|
matches_perm = batchid, matches_perm |
|
|
|
descs1 = descs1[matches_perm] |
|
descs2 = descs2[matches_perm] |
|
valid_matches = valid_matches[matches_perm] |
|
|
|
assert N % self.blocksize == 0, "Error, can't chunk block-diagonal, please check blocksize" |
|
n_chunks = N // self.blocksize |
|
descs1 = descs1.reshape([B * n_chunks, self.blocksize, D]) |
|
descs2 = descs2.reshape([B * n_chunks, self.blocksize, D]) |
|
valid_matches = valid_matches.view([B * n_chunks, self.blocksize]) |
|
loss = self.criterion(descs1, descs2, valid_matches, euc=euc) |
|
if self.withconf: |
|
confs1, confs2 = map(lambda x: x[matches_perm], (confs1, confs2)) |
|
|
|
if self.withconf: |
|
|
|
details['conf_pos'] = map(lambda x: x[valid_matches.view(B, -1)], (confs1, confs2)) |
|
details['conf_neg'] = map(lambda x: x[~valid_matches.view(B, -1)], (confs1, confs2)) |
|
details['Conf1_std'] = confs1.std() |
|
details['Conf2_std'] = confs2.std() |
|
|
|
return loss, details |
|
|
|
def compute_loss(self, gt1, gt2, pred1, pred2, **kw): |
|
|
|
descs1, descs2, confs1, confs2, valid_matches, monitoring = self.get_matching_descs( |
|
gt1, gt2, pred1, pred2, **kw) |
|
|
|
|
|
loss, details = self.blockwise_criterion(descs1, descs2, confs1, confs2, |
|
valid_matches, euc=monitoring.pop('use_euclidean_dist', False)) |
|
|
|
details[type(self).__name__] = float(loss.mean()) |
|
return loss, (details | monitoring) |
|
|
|
|
|
class ConfMatchingLoss(ConfLoss): |
|
""" Weight matching by learned confidence. Same as ConfLoss but for a matching criterion |
|
Assuming the input matching_loss is a match-level loss. |
|
""" |
|
|
|
def __init__(self, pixel_loss, alpha=1., confmode='prod', neg_conf_loss_quantile=False): |
|
super().__init__(pixel_loss, alpha) |
|
self.pixel_loss.withconf = True |
|
self.confmode = confmode |
|
self.neg_conf_loss_quantile = neg_conf_loss_quantile |
|
|
|
def aggregate_confs(self, confs1, confs2): |
|
if self.confmode == 'prod': |
|
confs = confs1 * confs2 if confs1 is not None and confs2 is not None else 1. |
|
elif self.confmode == 'mean': |
|
confs = .5 * (confs1 + confs2) if confs1 is not None and confs2 is not None else 1. |
|
else: |
|
raise ValueError(f"Unknown conf mode {self.confmode}") |
|
return confs |
|
|
|
def compute_loss(self, gt1, gt2, pred1, pred2, **kw): |
|
|
|
loss, details = self.pixel_loss(gt1, gt2, pred1, pred2, **kw) |
|
|
|
conf1_pos, conf2_pos = details.pop('conf_pos') |
|
conf1_neg, conf2_neg = details.pop('conf_neg') |
|
conf_pos = self.aggregate_confs(conf1_pos, conf2_pos) |
|
|
|
|
|
conf_pos, log_conf_pos = self.get_conf_log(conf_pos) |
|
conf_loss = loss * conf_pos - self.alpha * log_conf_pos |
|
|
|
conf_loss = conf_loss.mean() if conf_loss.numel() > 0 else 0 |
|
|
|
if self.neg_conf_loss_quantile: |
|
conf_neg = torch.cat([conf1_neg, conf2_neg]) |
|
conf_neg, log_conf_neg = self.get_conf_log(conf_neg) |
|
|
|
|
|
neg_loss_value = torch.quantile(loss, self.neg_conf_loss_quantile).detach() |
|
neg_loss = neg_loss_value * conf_neg - self.alpha * log_conf_neg |
|
|
|
neg_loss = neg_loss.mean() if neg_loss.numel() > 0 else 0 |
|
conf_loss = conf_loss + neg_loss |
|
|
|
return conf_loss, dict(matching_conf_loss=float(conf_loss), **details) |
|
|