zidanehammouda commited on
Commit
638a596
1 Parent(s): a50fc23

Upload folder using huggingface_hub

Browse files
.gitignore ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ .env
2
+ .vscode
3
+ log.json
4
+ gc
5
+ __pycache__
README.md CHANGED
@@ -1,12 +1,168 @@
1
  ---
2
- title: CSV Question Answering App
3
- emoji: 📉
4
- colorFrom: indigo
5
- colorTo: green
6
  sdk: gradio
7
- sdk_version: 4.27.0
8
- app_file: app.py
9
- pinned: false
10
  ---
 
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: CSV_Question_Answering_App
3
+ app_file: src/Interface.py
 
 
4
  sdk: gradio
5
+ sdk_version: 4.26.0
 
 
6
  ---
7
+ # CSV Question Answering App
8
 
9
+ CSV Question Answering App, as the name implies, is an application that leverages the capabilities of text-generation LLM deepseek-coder to answer questions and give insights about datasets and CSV files. The application gives you the freedom to ask any kind of question regarding your input dataset and It will give you responses. Questions could range from ‘Which country has the highest infection rates per capita?” to “What’s the distribution of COVID-19 cases by age group?” for the [COVID-19 dataset](https://www.kaggle.com/datasets/imdevskp/corona-virus-report/code).
10
+
11
+
12
+
13
+
14
+ ## Run Locally
15
+
16
+ The app can be run using three different methods: Remote Model Inference, Local Model Inference, and API. To start, run the ./launch_app.sh file and select your preferred method. Detailed explanations of each method are provided below.
17
+
18
+ ![alt text](https://i.imgur.com/DFGdZLn.png)
19
+
20
+ **Please note:** The first two methods require that your hardware be capable of running the model locally.
21
+
22
+ ### Remote Model Inference:
23
+
24
+ In this method, the model is deployed on a local server, meaning it runs independently of the application. The application communicates with the server via HTTP requests to send input data and receive predictions. This setup allows for easy updates and debugging without needing to reload the model with each change. To use this method, run the shell script and select mode 1. Alternatively, you can manually enter the following commands:
25
+
26
+ ```bash
27
+ python3 src/model_server.py
28
+ export method=server
29
+ python3 src/Interface.py
30
+ ```
31
+ This configuration deploys the model on a local server on port 5000 and launches the application interface on a different port.
32
+
33
+ ### Local Model Inference:
34
+
35
+ Here, the machine learning model is loaded directly within the application, eliminating the need for network communications. To use this method, choose mode 2 when running the ./launch_app.sh shell script. Alternatively, you can set it up manually with:
36
+
37
+ ```bash
38
+ export method=local
39
+ python3 src/Interface.py
40
+ ```
41
+
42
+ ### Through API:
43
+
44
+ This method utilizes the public DeepSeek model API, allowing you to make predictions without loading the model on your machine. You'll need an API key from the DeepSeek API, set as an environment variable in the .env file. Note that the DeepSeek API platform provides 10M free tokens upon account creation. To proceed, update the DEEPSEEK_API_KEY in your .env file, then run ./launch_app.sh and choose mode 3.
45
+
46
+
47
+ ## Live version
48
+ If you prefer not to install and run the app manually, you can use the hosted version on Hugging Face Spaces. Follow [this](https://huggingface.co/spaces/zidanehammouda/CSV_Question_Answering_App) link to access it.
49
+
50
+
51
+ ## Usage
52
+ Once the app is running and you have selected a dataset you're interested in exploring, simply upload the CSV file. The app will then utilize the OpenAI API (GPT3.5 model) to generate a description of the dataset and suggest example queries that you can pose to the main code generator model. Note that the description and suggestions are optional; you can manually provide the description to the model instead.
53
+
54
+ Below is an example demo of how the app works and how to use it:
55
+
56
+
57
+ ![alt text](https://i.imgur.com/dj1qnJF.gif)
58
+ ## Documentation
59
+
60
+ This app consists of four main components:
61
+
62
+ **Interface:** Utilizes the Gradio UI, which serves as the interface between the user and the rest of the application's components.
63
+
64
+ **Main App Component:** Encapsulates most of the app’s workflow, including prompt formatting, code extraction, and code execution.
65
+
66
+ **Model:** Features the deepseek-coder model, which acts as the code generator for this app. (Further details are available in the next section)
67
+
68
+ **API Client:** Calls the GPT-3.5 model to generate a brief description of the input dataset and suggests example questions that could help explore and understand the dataset. (This component is optional and can be omitted if not needed. Its primary function is to provide descriptions and suggested queries for the coder model)
69
+
70
+ ### High-level design
71
+ Below is the high-level design of the app and how the different components interact with each other to answer input questions. Step 2 which represents the calling of the GPT3.5 API is optional and depends on whether you choose to rely on the model to generate a description for you (as well as return suggested questions for the dataset) or you write it manually.
72
+ Note: Providing a description of the dataset is not mandatory for the model to function, but it is highly recommended as it offers valuable context that can enhance the accuracy and relevance of the model's responses.
73
+
74
+ ![HL design](https://i.imgur.com/b8CcaLZ.jpeg)
75
+
76
+ ### Activity Diagram (Low-level design)
77
+ Below is the activity diagram describing the flow of the answer generation and how the components interact to return a response.
78
+
79
+ ![HL design](https://i.imgur.com/HpPjjf0.jpeg)
80
+
81
+ ### Model Selection:
82
+
83
+ The choice of the model was not made arbitrarily; it was based on comparative results from tests conducted on four distinct datasets. Each dataset included a set of test cases—comprising questions and answers—where the Deepseek-coder model consistently demonstrated superior efficiency and performance. The models compared were:
84
+
85
+ * Deepseek-coder-7b-instruct-v1.5
86
+ * mistralai/Mistral-7B-Instruct-v0.2
87
+ * CodeLlama-7b-Instruct-hf
88
+
89
+ Note that the same hyperparameters were used during the evaluation of the models.
90
+
91
+ #### Evaluation Data
92
+ Below are the four datasets used in the evaluation and comparison of the three models:
93
+
94
+ * **Titanic.csv:** This dataset includes passenger details from the Titanic, such as survival status, class, name, gender, age, number of siblings/spouses and parents/children aboard, and fare amount.
95
+
96
+ * **Onlinefoods.csv:** Contains data from an online food ordering platform, covering attributes like occupation, family size, and feedback collected over a certain period.
97
+
98
+ * **Hw_200.csv:** Provides height and weight for 200 individuals. Each record includes three values: index, height (in inches), and weight (in pounds).
99
+
100
+ * **Monthly_Counts_of_Deaths_by_Select_Causes__2014-2019.csv:** Features monthly counts of deaths in the United States by select causes from 2014 to 2019, including causes such as Alzheimer's, heart disease, accidents, and drug overdose.
101
+
102
+ Each dataset was accompanied by a set of test cases ranging from 10 to 14, totaling 52 test cases for all datasets together.
103
+
104
+ Example test cases for the Titanic dataset include:
105
+ >
106
+ Question: How many females are in the dataset? Answer: 314
107
+ Question: What is the average age of the passengers? Answer: 29.471
108
+ Question: How many passengers survived? Answer: 342
109
+ Question: Who paid the highest fare? Answer: Miss. Anna Ward
110
+ Question: What is the total amount of fare paid? Answer: $28,654.91
111
+ Question: Who is the passenger with the highest number of siblings aboard?
112
+
113
+ Some test cases were generated by ChatGPT but were thoroughly reviewed and verified to ensure they were suitable for use as test cases.
114
+
115
+ #### Prompt evaluation and results:
116
+
117
+ Below are the prompts that were ultimately used to evaluate the models. These were selected after testing numerous other prompts, which helped identify the most effective ones for our purposes. The development of these prompts was an incremental process, with adjustments made gradually until the optimal configuration was achieved.
118
+
119
+ **Prompt 1:**
120
+ >
121
+ df is a dataframe that {description}. df has these columns: {columns}. Without explaining, write in a Python code block the answer to this question: Print {question}
122
+ **Prompt 2:**
123
+ >
124
+ Prompt 2: df is a dataframe that {description}. df has these columns: {columns}. Write in a Python code block the answer to this question: Print {question}. Just code, no explanation should be given.
125
+ **Prompt 3:**
126
+ >
127
+ Prompt 3: df is a dataframe that {description}. df has these columns: {columns}. Write in a Python code block the answer to this question: {question}. Just write code and print results, no explanation should be given.
128
+
129
+ Prompt 2 is derived from Prompt 1 and was specifically designed to compel the models to return only code. Prompt 3, a derivative of Prompt 2, was introduced when it was observed that the models occasionally failed to print the results.
130
+
131
+
132
+ * **CodeLlama:** This model struggled with both Prompt 1 and Prompt 2. With Prompt 1, it tended to overexplain and included many non-code tokens. With Prompt 2, it often failed to print the results, which is crucial for displaying the response. Therefore, both Prompt 2 and Prompt 3 were evaluated, with Prompt 3 proving to be the most effective for this model.
133
+
134
+ * **Deepseek:** This model delivered consistent results with both Prompts 1 and 2, and showed a slight improvement with Prompt 3.
135
+
136
+ * **Mistral:** Performed better with Prompt 1 but had issues with forgetting to print results in some test cases when using Prompt 2. It exhibited the lowest accuracy with Prompt 3.
137
+
138
+ #### Results
139
+ In this next section, the results of the three models will be compared when every model uses its best prompt. (Codellama and Deepseek prompt 3 and Mistral prompt 1).
140
+
141
+ Deepseek had the best performance with 44 true answers and 8 false answers (85% accuracy). Following it is Mistral with 34 true answers and 18 false answers (65% accuracy) and then Codellama which had the worst results with only 22 true answers and 30 false answers (42% accuracy)
142
+
143
+ ![HL design](https://i.imgur.com/Qyo2r2Z.png)
144
+ ![HL design](https://i.imgur.com/MctuZVC.png)
145
+
146
+ The models' average inference time results range from 2.2 seconds to 3.8 with Codellama being the fastest with 2.27s inference time followed by Deepseek with 3.4s and Mistral with 3.78s.
147
+
148
+ ![HL design](https://i.imgur.com/6zwiyzv.png)
149
+
150
+ ![HL design](https://i.imgur.com/DJ4gccE.png)
151
+
152
+ Because both efficiency and accuracy are important in this project Deepseek was chosen as the best coder model for this app.
153
+
154
+ Please note all comparing results and data are included in this project under the evaluation directory.
155
+
156
+
157
+
158
+
159
+
160
+
161
+
162
+
163
+ ## Contribution
164
+ Although the app heavily relies on the model code generator and its output, its success would not have been possible without significant efforts to refine and adjust the inputs before they are fed into the model. This ensures that the model provides the most accurate results possible. A major contribution to this project was the thorough evaluation of different models, utilizing a set of meticulously validated test cases to determine which model would best suit the application's needs. Equally important is the work done to extract relevant code from the model's response, converting it into a format suitable for the code executor. The seamless integration of these commands is what makes this application functional by leveraging the LLM code generator. Finally, a key contribution to this project is the engineering behind the app. This includes careful planning of its various components and comprehensive management of all potential scenarios, including unexpected behaviors. These efforts ensure robust and reliable performance of the whole application.
165
+ ## Limitations
166
+ While the model has shown strong performance compared to other options and consistently achieves good scores, it is not 100% accurate and occasionally makes errors. Currently, the app is limited to displaying results through prints or plots only. Supporting additional result formats could be a valuable improvement for future development.
167
+
168
+ Another significant limitation is that the app does not automatically process and return results for suggested questions; it merely displays these suggestions to the user. Implementing a feature that automatically runs suggested questions and analyzes the CSV file would not only enhance user interaction but also provide deeper insights and knowledge about the data. This capability could be developed in future iterations of the project.
launch_app.sh ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ chmod +x launch_app.sh
3
+
4
+ echo "Select the launch mode for the model:"
5
+ echo "1. Server"
6
+ echo "2. Local"
7
+ echo "3. Api"
8
+ read -p "Enter choice [1-3]: " mode
9
+
10
+ case $mode in
11
+ 1)
12
+ echo "Starting server..."
13
+ python3 src/model_server.py &
14
+ echo "Launching app in mode 1..."
15
+ export method=server
16
+ python3 src/Interface.py
17
+ ;;
18
+ 2)
19
+ echo "Launching app in mode 2..."
20
+ export method=local
21
+ python3 src/Interface.py
22
+ ;;
23
+ 3)
24
+ echo "Launching app in mode 3..."
25
+ export method=api
26
+ python3 src/Interface.py
27
+ ;;
28
+ *)
29
+ echo "Invalid option selected. Exiting."
30
+ exit 1
31
+ ;;
32
+ esac
requirements.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ python-dotenv
2
+ requests
3
+ gradio
4
+ pillow
5
+ flask
6
+ transformers
7
+ torch
8
+ openai
9
+
10
+ seaborn
11
+ pandas
12
+ matplotlib
13
+ numpy
14
+ scipy
src/Interface.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ from app import run, describe_file,suggest_questions
4
+ import os
5
+ from PIL import Image
6
+ import logging
7
+ import sys
8
+ from dotenv import load_dotenv
9
+ load_dotenv()
10
+
11
+ if not os.environ.get('method'):
12
+ if len(sys.argv) > 1 and sys.argv[1] in ["server","api","local"] :
13
+ os.environ['method'] = sys.argv[1]
14
+ else:
15
+ print("Please type a valid model method")
16
+ sys.exit()
17
+
18
+ logging.basicConfig(level=logging.INFO)
19
+ logging.info(os.environ.get('method'))
20
+
21
+
22
+ def read_image():
23
+ directory='./'
24
+ image_files = [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f)) and (f.endswith('.png') or f.endswith('.jpg'))]
25
+ if image_files:
26
+ image_path = os.path.join(directory, image_files[0])
27
+ try:
28
+ image = Image.open(image_path)
29
+ return image
30
+ except Exception as e:
31
+ print(f"Error {e}")
32
+ return None
33
+ return None
34
+
35
+ def delete_image():
36
+ directory='./'
37
+ image_files = [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f)) and (f.endswith('.png') or f.endswith('.jpg'))]
38
+ if image_files:
39
+ for image_file in image_files:
40
+ image_path = os.path.join(directory, image_file)
41
+ try:
42
+ os.remove(image_path)
43
+ except:
44
+ return
45
+
46
+
47
+
48
+ def generate_description(uploaded_file):
49
+ delete_image()
50
+ if uploaded_file is None:
51
+ return "", "Please upload a CSV file"
52
+ df = pd.read_csv(uploaded_file)
53
+ automatic_description = describe_file(df, uploaded_file.name)
54
+ suggestions = suggest_questions(df, uploaded_file.name)
55
+ return automatic_description, "",suggestions
56
+
57
+ def process_csv_question_and_description(uploaded_file, description, question):
58
+ delete_image()
59
+ if uploaded_file is None:
60
+ return "Please upload a CSV file."
61
+ df = pd.read_csv(uploaded_file)
62
+ df_columns = str(list(df.columns))
63
+ namespace = {'df': df}
64
+ logging.info("Generating started")
65
+ response = run(namespace, description, df_columns, question,os.environ.get("method"))
66
+ logging.info("Generating finished")
67
+ logging.info(response)
68
+
69
+ image = read_image()
70
+ # logging.basicConfig(level=logging.INFO)
71
+ # logging.info("This is an info message")
72
+ # logging.info(response)
73
+
74
+ try:
75
+ execution = response['execution']
76
+ except:
77
+ try:
78
+ execution = response['error']
79
+ except:
80
+ execution = 'An error occured while generating a response'
81
+
82
+ return execution,image
83
+
84
+
85
+ with gr.Blocks(css=".file_container {max-height:150px} .file_container > button > div {display:flex;flex-direction:row}") as app:
86
+ gr.Markdown("## CSV Question Answering App")
87
+ gr.Markdown("Upload a CSV file, and an automatic description will be generated. You can edit this description before asking your question.")
88
+
89
+ with gr.Row():
90
+ with gr.Column():
91
+ file_input = gr.File(label="Upload CSV File",elem_classes=['file_container'])
92
+ description_input = gr.Textbox(label="Dataset Description", placeholder="The description will be generated here...")
93
+ question_input = gr.Textbox(label="For better visualization results start your input with \"Plot\"")
94
+ submit_button = gr.Button("Submit")
95
+ suggestions=gr.Text(label="Suggestions")
96
+ with gr.Column():
97
+ output = gr.Text(label="Answer")
98
+ image = gr.Image()
99
+ message = gr.Textbox(label="Message", visible=False)
100
+
101
+ file_input.change(fn=generate_description, inputs=[file_input], outputs=[description_input, message,suggestions])
102
+ submit_button.click(fn=process_csv_question_and_description, inputs=[file_input, description_input, question_input], outputs=[output,image])
103
+
104
+ app.launch(debug=True)
src/api_client.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from openai import OpenAI
2
+ import os
3
+ import requests
4
+ import json
5
+ from dotenv import load_dotenv
6
+ load_dotenv()
7
+
8
+
9
+ gpt_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
10
+
11
+ def predict_gpt(prompt):
12
+ response = gpt_client.chat.completions.create(
13
+ model="gpt-4",
14
+ messages=[{"role": "user", "content": prompt}])
15
+ text_response = response.choices[0].message.content
16
+ return text_response
17
+
18
+ def predict_deepseek(prompt):
19
+ try:
20
+ url = "https://api.deepseek.com/v1/chat/completions"
21
+
22
+ payload = json.dumps({
23
+ "messages":[{"role": "user", "content": prompt}],
24
+ "model": "deepseek-coder",
25
+ "max_tokens": 1000,
26
+ "temperature": 0.1,
27
+ })
28
+ os.environ.get("DEEPSEEK_API_KEY")
29
+ headers = {
30
+ 'Content-Type': 'application/json',
31
+ 'Accept': 'application/json',
32
+ 'Authorization': f'Bearer {os.environ.get("DEEPSEEK_API_KEY")}'
33
+ }
34
+
35
+ response = requests.request("POST", url, headers=headers, data=payload).text
36
+ response = json.loads(response)
37
+ return response['choices'][0]['message']['content']
38
+
39
+ except Exception as e:
40
+ raise Exception("Error generating: ",e) from e
src/app.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import re
3
+ from dotenv import load_dotenv
4
+ import requests
5
+ import json
6
+ import os
7
+ import logging
8
+ import io
9
+ import sys
10
+ from api_client import predict_deepseek,predict_gpt
11
+
12
+ load_dotenv()
13
+
14
+ if os.environ.get("method") =="local":
15
+ from model import generate_response
16
+
17
+
18
+
19
+ from prompt_templates import prompt_template_textual,prompt_template_visual,description_template,suggestion_template,libraries
20
+
21
+
22
+ def describe_file(df,filename):
23
+ first_row = df.iloc[0].to_dict()
24
+ prompt = description_template.format(filename=filename,example_row=first_row)
25
+ response = predict_gpt(prompt)
26
+ return response
27
+
28
+ def suggest_questions(df,filename):
29
+ example_row = dict(df.iloc[0])
30
+ prompt = suggestion_template.format(filename=filename,example_row=example_row)
31
+ response = predict_gpt(prompt)
32
+ return response
33
+
34
+ def extract_code(text):
35
+ try:
36
+ matches = []
37
+ pattern = r"```python(.*?)```"
38
+ if text:
39
+ matches = re.findall(pattern, text, re.DOTALL)
40
+ if matches:
41
+ return matches[0]
42
+ else:
43
+ raise Exception("Error extracting code: No match")
44
+ except Exception as e:
45
+ raise Exception("Error extracting code: ",e) from e
46
+
47
+ def execute(code,namespace):
48
+ try:
49
+ buffer = io.StringIO()
50
+ sys.stdout = buffer
51
+ exec(libraries+code,namespace)
52
+
53
+ sys.stdout = sys.__stdout__
54
+
55
+ return buffer.getvalue()
56
+
57
+ except Exception as e:
58
+ raise Exception("Error executing: ",e) from e
59
+
60
+
61
+
62
+ def run(namespace,description,columns,question,method):
63
+ try:
64
+ if question.lower().startswith('plot'):
65
+ prompt = prompt_template_visual.format(description=description,columns=columns,question=question)
66
+ else:
67
+ prompt = prompt_template_textual.format(description=description,columns=columns,question=question)
68
+ full_response= None
69
+ extracted_code= None
70
+ execution= None
71
+ error = None
72
+ try:
73
+ if method == 'server':
74
+ request = {
75
+ 'url' : os.environ.get("MODEL_URL"),
76
+ 'payload' : json.dumps({"prompt": prompt}),
77
+ 'headers' : {
78
+ 'Content-Type': 'application/json'
79
+ }}
80
+ full_response = requests.request("POST", request['url'], headers=request['headers'], data=request['payload']).json()["response"]
81
+
82
+ elif method == 'local':
83
+ full_response = generate_response(prompt)
84
+
85
+ elif method == 'api':
86
+ full_response = predict_deepseek(prompt)
87
+
88
+ else:
89
+ return {'execution': 'Wrong model method'}
90
+
91
+ extracted_code = extract_code(full_response)
92
+ execution = execute(extracted_code,namespace)
93
+
94
+ except Exception as e:
95
+ error = e
96
+
97
+
98
+
99
+ data = {
100
+ 'question': question,
101
+ 'prompt':prompt,
102
+ 'full_response': full_response,
103
+ 'extracted_code': extracted_code,
104
+ 'execution': execution,
105
+ 'error': error
106
+ }
107
+
108
+ logging.info(data)
109
+ with open("log.json", 'w') as file:
110
+ json.dump(data, file, indent=4)
111
+
112
+ return data
113
+
114
+ except Exception as e:
115
+ print(e)
116
+
117
+
src/evaluation/datasets/Monthly_Counts_of_Deaths_by_Select_Causes__2014-2019.csv ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Jurisdiction of Occurrence,Year,Month,All Cause,Natural Cause,Septicemia,Malignant Neoplasms,Diabetes Mellitus,Alzheimer Disease,Influenza and Pneumonia,Chronic Lower Respiratory Diseases,Other Diseases of Respiratory System,"Nephritis, Nephrotic Syndrome, and Nephrosis","Symptoms, Signs, and Abnormal Clinical and Laboratory Findings, Not Elsewhere Classified",Diseases of Heart,Cerebrovascular Diseases,Accidents (Unintentional Injuries),Motor Vehicle Accidents,Intentional Self-Harm (Suicide),Assault (Homicide),Drug Overdose
2
+ United States,2014,1,243298,226621,3944,51101,7344,8305,7929,15078,3466,4600,2815,58229,12074,11461,2572,3320,1213,4026
3
+ United States,2015,1,265355,247269,4194,52346,8053,11638,10005,16769,3797,4979,3005,63190,13576,12311,2754,3618,1437,4354
4
+ United States,2016,1,245823,227341,3846,51863,7392,10612,5295,14331,3705,4645,2755,58049,12968,12559,2734,3720,1499,4631
5
+ United States,2017,1,262832,241918,4089,52120,7907,12018,6925,16574,4083,4818,2769,61650,13595,14520,3034,3709,1726,6233
6
+ United States,2018,1,286744,265418,4502,52876,8674,13410,12164,18271,4603,5346,3138,67024,14653,14748,3010,3966,1674,5659
7
+ United States,2019,1,257649,237219,3580,52087,8218,10961,5720,15330,4116,4740,2738,60675,13447,13988,2948,3833,1574,5519
8
+ United States,2014,2,211980,197001,3214,45558,6443,7315,5561,12747,2873,4064,2532,50435,10780,10286,2248,3091,1050,3895
9
+ United States,2015,2,227047,211028,3559,46226,6809,9477,6402,14196,3245,4344,2578,54374,11679,11040,2350,3215,1124,4087
10
+ United States,2016,2,230021,212140,3459,48258,6851,9729,5162,13986,3266,4307,2553,54652,11823,12442,2820,3445,1266,5022
11
+ United States,2017,2,233819,215160,3511,46531,7013,10309,6657,14934,3581,4317,2595,54944,11975,12994,2748,3381,1428,5619
12
+ United States,2018,2,236998,218466,3660,46447,7028,10623,8554,14579,3879,4398,2560,54673,12176,12686,2734,3596,1376,5244
13
+ United States,2019,2,232821,214074,3257,46739,7485,10098,5551,13890,3641,4270,2451,54835,12125,12892,2535,3561,1356,5180
14
+ United States,2014,3,228477,212045,3451,50646,6738,7999,5148,13493,3260,4300,2632,54347,11395,11120,2589,3408,1261,4106
15
+ United States,2015,3,242712,224708,3723,51192,7106,9790,5601,15185,3668,4597,2674,57615,12546,12028,2764,3935,1365,4583
16
+ United States,2016,3,244283,224696,3773,51566,7108,10076,6208,15417,3668,4652,2655,57206,12431,13382,3105,3921,1476,5511
17
+ United States,2017,3,251732,231028,3796,50785,7588,11179,6490,15832,3885,4628,2859,58476,12969,14392,3164,3870,1467,6164
18
+ United States,2018,3,248805,228464,3673,50689,7415,10815,6133,14995,3990,4534,2665,58301,12927,13926,3015,4011,1449,5793
19
+ United States,2019,3,254929,234074,3559,51450,7886,10809,6292,15149,4126,4649,2718,59728,13433,14220,2956,4161,1467,5887
20
+ United States,2014,4,215600,199454,3125,48304,6343,7117,4512,12573,3179,3902,2549,50954,10773,10608,2720,3606,1277,3733
21
+ United States,2015,4,224423,207336,3342,48745,6568,8859,4878,13982,3306,4247,2551,52961,11343,11419,2830,3726,1297,4281
22
+ United States,2016,4,227191,208249,3480,48574,6522,9479,5068,13634,3277,4124,2634,52973,11671,12832,3152,3812,1525,5259
23
+ United States,2017,4,231830,211542,3484,49056,6701,9932,4799,13916,3680,4281,2633,53081,12047,13839,3238,3972,1530,5886
24
+ United States,2018,4,233164,213483,3278,48786,7032,9902,4633,13857,3688,4219,2552,54235,12312,13275,2979,3920,1572,5555
25
+ United States,2019,4,235254,215336,3254,48493,7360,9824,4603,13785,3698,4286,2557,54920,12443,13481,3079,4029,1444,5562
26
+ United States,2014,5,216862,199843,3105,49497,6272,7266,4099,12281,3101,3980,2584,50810,10963,11360,3038,3589,1398,3925
27
+ United States,2015,5,223600,205087,3204,50072,6479,8674,4109,13376,3109,4046,2489,52243,11445,12324,3339,3966,1531,4462
28
+ United States,2016,5,224528,205011,3257,49589,6626,9274,4053,12809,3232,4082,2631,51910,11637,13225,3481,3853,1649,5158
29
+ United States,2017,5,229670,208638,3242,49814,6713,9498,3877,13410,3344,4235,2566,52924,11978,14137,3416,4257,1688,6036
30
+ United States,2018,5,228772,208108,3092,49582,6805,9333,3588,13218,3606,4081,2508,53298,11812,14025,3443,4190,1559,5773
31
+ United States,2019,5,236893,215726,3089,50627,7202,9722,3742,13428,3629,4237,2575,54985,12232,14475,3417,4052,1662,5829
32
+ United States,2014,6,204687,187644,2947,48103,5802,6755,3658,11207,2782,3631,2518,47144,9973,11446,3084,3552,1376,3783
33
+ United States,2015,6,211175,193014,3019,48055,6076,8109,3679,11946,2983,3881,2489,48672,10897,12176,3222,3785,1546,4176
34
+ United States,2016,6,213051,193541,2993,47587,6051,8687,3391,11703,3058,3927,2545,49210,10980,13289,3542,3726,1657,5128
35
+ United States,2017,6,218929,198032,3060,48436,6349,8943,3482,12161,3146,3777,2559,50117,11126,14267,3492,4081,1670,5884
36
+ United States,2018,6,220103,198902,2933,48344,6481,8906,3252,12206,3327,3904,2521,50456,11445,14200,3514,4378,1674,5817
37
+ United States,2019,6,225422,204218,2886,48621,6867,9351,3300,12335,3427,4054,2513,51680,11556,14518,3449,4050,1673,5807
38
+ United States,2014,7,209373,192035,3112,49259,5983,6990,3535,11161,2690,3690,2449,47991,10449,11743,3227,3534,1382,3902
39
+ United States,2015,7,216951,197673,3151,50112,6251,8361,3476,11473,2906,3935,2529,50265,11218,12941,3530,3944,1676,4497
40
+ United States,2016,7,219691,198767,3222,49792,6221,9038,3412,11681,3051,3845,2726,49709,11036,14245,3582,4033,1804,5592
41
+ United States,2017,7,221869,200090,3014,50439,6472,9027,3363,11535,3136,3735,2496,50217,11362,14863,3730,4179,1803,5938
42
+ United States,2018,7,225111,203310,3178,49870,6612,9082,3153,11720,3438,3947,2626,51396,11656,14813,3552,4356,1755,5940
43
+ United States,2019,7,229211,207062,3015,50055,6880,9418,3068,11941,3369,4097,2622,52335,11870,15292,3527,4193,1729,6162
44
+ United States,2014,8,208013,190204,2931,49519,5930,6986,3312,10722,2778,3778,2465,47109,10369,11688,3277,4027,1467,3987
45
+ United States,2015,8,214404,195312,3236,50196,6173,8346,3439,10768,2877,3797,2464,48945,10964,12803,3642,3912,1650,4492
46
+ United States,2016,8,219911,199453,3134,50593,6282,8991,3298,11464,2907,3929,2811,49701,11290,13827,3600,4042,1804,5397
47
+ United States,2017,8,221887,200838,3071,50351,6390,9298,3189,11260,3166,3874,2551,49894,11687,14242,3409,4275,1651,5863
48
+ United States,2018,8,224254,203330,3134,50582,6598,9277,3011,11339,3210,4083,2668,50652,11640,14116,3490,4300,1607,5836
49
+ United States,2019,8,227280,205220,2893,50508,6658,9420,3035,11399,3334,3929,2668,51346,11816,15171,3645,4181,1639,6194
50
+ United States,2014,9,205274,188322,2918,48331,5810,7238,3352,10426,2696,3823,2586,46909,10513,11022,3069,4034,1307,3748
51
+ United States,2015,9,209905,191754,3123,48835,6012,8419,3378,10729,2844,3781,2518,47849,10826,12293,3372,3578,1610,4481
52
+ United States,2016,9,214310,194685,3138,48688,6175,9077,3307,11107,2936,3723,2674,48258,11057,13495,3612,3720,1675,5195
53
+ United States,2017,9,220262,199625,3173,48987,6558,9363,3313,11313,3167,3922,2734,49742,11426,14169,3572,4024,1595,5786
54
+ United States,2018,9,218696,198209,3092,49018,6458,9250,3082,11061,3238,3885,2535,49112,11296,13900,3579,4136,1613,5500
55
+ United States,2019,9,222715,201663,2952,48945,6585,9330,2882,11247,3346,3882,2591,50100,11752,14341,3543,4109,1647,5882
56
+ United States,2014,10,218147,200741,3203,50900,6183,8319,3804,11412,2903,3881,2703,50401,11321,11579,3304,3791,1423,4021
57
+ United States,2015,10,223535,204815,3390,50889,6566,9368,3883,11675,3057,3927,2733,51290,11792,12845,3550,3688,1486,4546
58
+ United States,2016,10,228919,208592,3287,50815,6669,9875,3622,12009,3277,4212,2967,52414,11766,14051,3834,3838,1678,5446
59
+ United States,2017,10,231125,210453,3275,51132,6829,10080,3614,12095,3311,4053,2817,52495,12177,14012,3629,4072,1725,5538
60
+ United States,2018,10,233903,213240,3359,51631,7028,10080,3447,12073,3510,4047,2775,53232,12355,14114,3657,4127,1512,5522
61
+ United States,2019,10,237661,216275,3186,51501,7082,10423,3294,11970,3640,4316,2817,53795,12693,14822,3506,4043,1610,6133
62
+ United States,2014,11,221317,204268,3192,49377,6477,9069,3875,11759,2977,3954,3000,52027,11863,11644,3175,3480,1307,3927
63
+ United States,2015,11,219788,202283,3315,48800,6582,9408,3763,11749,3141,4060,2801,51218,11777,12002,3159,3357,1503,4199
64
+ United States,2016,11,227313,207691,3310,49285,6715,9988,3740,12279,3227,4128,2957,52606,12163,13664,3535,3458,1720,5464
65
+ United States,2017,11,230891,210862,3348,49456,7061,10006,3905,12171,3378,4263,2854,53015,12301,13773,3408,3724,1647,5491
66
+ United States,2018,11,233375,213904,3197,49827,7152,10391,3614,12258,3426,4295,2885,54389,12427,13473,3250,3651,1483,5177
67
+ United States,2019,11,239028,218156,3176,49697,7332,10632,3520,12196,3766,4427,2885,54979,12955,14701,3274,3597,1625,6176
68
+ United States,2014,12,243390,225948,3798,51105,7163,10182,6442,14242,3482,4543,3409,57992,12630,11971,3095,3394,1411,4002
69
+ United States,2015,12,233735,215657,3517,50462,6860,10112,4449,13193,3353,4365,3211,55220,12260,12389,3245,3469,1568,4246
70
+ United States,2016,12,249207,228888,3714,51428,7446,11277,4981,14176,3620,4472,3465,58572,13320,14363,3330,3397,1609,5829
71
+ United States,2017,12,258657,237819,3859,52001,7983,11751,6058,15000,3816,4730,3317,60902,13740,14728,3391,3629,1580,5799
72
+ United States,2018,12,249280,229184,3620,51622,7663,10950,4489,13909,3899,4647,3104,58613,13111,13851,3181,3713,1556,5551
73
+ United States,2019,12,255975,234438,3584,50878,8092,11511,4776,14309,4020,4678,3273,59663,13683,15139,3228,3702,1715,6299
src/evaluation/datasets/hw_200.csv ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Index,Height(Inches),Weight(Pounds)
2
+ 1, 65.78, 112.99
3
+ 2, 71.52, 136.49
4
+ 3, 69.40, 153.03
5
+ 4, 68.22, 142.34
6
+ 5, 67.79, 144.30
7
+ 6, 68.70, 123.30
8
+ 7, 69.80, 141.49
9
+ 8, 70.01, 136.46
10
+ 9, 67.90, 112.37
11
+ 10, 66.78, 120.67
12
+ 11, 66.49, 127.45
13
+ 12, 67.62, 114.14
14
+ 13, 68.30, 125.61
15
+ 14, 67.12, 122.46
16
+ 15, 68.28, 116.09
17
+ 16, 71.09, 140.00
18
+ 17, 66.46, 129.50
19
+ 18, 68.65, 142.97
20
+ 19, 71.23, 137.90
21
+ 20, 67.13, 124.04
22
+ 21, 67.83, 141.28
23
+ 22, 68.88, 143.54
24
+ 23, 63.48, 97.90
25
+ 24, 68.42, 129.50
26
+ 25, 67.63, 141.85
27
+ 26, 67.21, 129.72
28
+ 27, 70.84, 142.42
29
+ 28, 67.49, 131.55
30
+ 29, 66.53, 108.33
31
+ 30, 65.44, 113.89
32
+ 31, 69.52, 103.30
33
+ 32, 65.81, 120.75
34
+ 33, 67.82, 125.79
35
+ 34, 70.60, 136.22
36
+ 35, 71.80, 140.10
37
+ 36, 69.21, 128.75
38
+ 37, 66.80, 141.80
39
+ 38, 67.66, 121.23
40
+ 39, 67.81, 131.35
41
+ 40, 64.05, 106.71
42
+ 41, 68.57, 124.36
43
+ 42, 65.18, 124.86
44
+ 43, 69.66, 139.67
45
+ 44, 67.97, 137.37
46
+ 45, 65.98, 106.45
47
+ 46, 68.67, 128.76
48
+ 47, 66.88, 145.68
49
+ 48, 67.70, 116.82
50
+ 49, 69.82, 143.62
51
+ 50, 69.09, 134.93
52
+ 51, 69.91, 147.02
53
+ 52, 67.33, 126.33
54
+ 53, 70.27, 125.48
55
+ 54, 69.10, 115.71
56
+ 55, 65.38, 123.49
57
+ 56, 70.18, 147.89
58
+ 57, 70.41, 155.90
59
+ 58, 66.54, 128.07
60
+ 59, 66.36, 119.37
61
+ 60, 67.54, 133.81
62
+ 61, 66.50, 128.73
63
+ 62, 69.00, 137.55
64
+ 63, 68.30, 129.76
65
+ 64, 67.01, 128.82
66
+ 65, 70.81, 135.32
67
+ 66, 68.22, 109.61
68
+ 67, 69.06, 142.47
69
+ 68, 67.73, 132.75
70
+ 69, 67.22, 103.53
71
+ 70, 67.37, 124.73
72
+ 71, 65.27, 129.31
73
+ 72, 70.84, 134.02
74
+ 73, 69.92, 140.40
75
+ 74, 64.29, 102.84
76
+ 75, 68.25, 128.52
77
+ 76, 66.36, 120.30
78
+ 77, 68.36, 138.60
79
+ 78, 65.48, 132.96
80
+ 79, 69.72, 115.62
81
+ 80, 67.73, 122.52
82
+ 81, 68.64, 134.63
83
+ 82, 66.78, 121.90
84
+ 83, 70.05, 155.38
85
+ 84, 66.28, 128.94
86
+ 85, 69.20, 129.10
87
+ 86, 69.13, 139.47
88
+ 87, 67.36, 140.89
89
+ 88, 70.09, 131.59
90
+ 89, 70.18, 121.12
91
+ 90, 68.23, 131.51
92
+ 91, 68.13, 136.55
93
+ 92, 70.24, 141.49
94
+ 93, 71.49, 140.61
95
+ 94, 69.20, 112.14
96
+ 95, 70.06, 133.46
97
+ 96, 70.56, 131.80
98
+ 97, 66.29, 120.03
99
+ 98, 63.43, 123.10
100
+ 99, 66.77, 128.14
101
+ 100, 68.89, 115.48
102
+ 101, 64.87, 102.09
103
+ 102, 67.09, 130.35
104
+ 103, 68.35, 134.18
105
+ 104, 65.61, 98.64
106
+ 105, 67.76, 114.56
107
+ 106, 68.02, 123.49
108
+ 107, 67.66, 123.05
109
+ 108, 66.31, 126.48
110
+ 109, 69.44, 128.42
111
+ 110, 63.84, 127.19
112
+ 111, 67.72, 122.06
113
+ 112, 70.05, 127.61
114
+ 113, 70.19, 131.64
115
+ 114, 65.95, 111.90
116
+ 115, 70.01, 122.04
117
+ 116, 68.61, 128.55
118
+ 117, 68.81, 132.68
119
+ 118, 69.76, 136.06
120
+ 119, 65.46, 115.94
121
+ 120, 68.83, 136.90
122
+ 121, 65.80, 119.88
123
+ 122, 67.21, 109.01
124
+ 123, 69.42, 128.27
125
+ 124, 68.94, 135.29
126
+ 125, 67.94, 106.86
127
+ 126, 65.63, 123.29
128
+ 127, 66.50, 109.51
129
+ 128, 67.93, 119.31
130
+ 129, 68.89, 140.24
131
+ 130, 70.24, 133.98
132
+ 131, 68.27, 132.58
133
+ 132, 71.23, 130.70
134
+ 133, 69.10, 115.56
135
+ 134, 64.40, 123.79
136
+ 135, 71.10, 128.14
137
+ 136, 68.22, 135.96
138
+ 137, 65.92, 116.63
139
+ 138, 67.44, 126.82
140
+ 139, 73.90, 151.39
141
+ 140, 69.98, 130.40
142
+ 141, 69.52, 136.21
143
+ 142, 65.18, 113.40
144
+ 143, 68.01, 125.33
145
+ 144, 68.34, 127.58
146
+ 145, 65.18, 107.16
147
+ 146, 68.26, 116.46
148
+ 147, 68.57, 133.84
149
+ 148, 64.50, 112.89
150
+ 149, 68.71, 130.76
151
+ 150, 68.89, 137.76
152
+ 151, 69.54, 125.40
153
+ 152, 67.40, 138.47
154
+ 153, 66.48, 120.82
155
+ 154, 66.01, 140.15
156
+ 155, 72.44, 136.74
157
+ 156, 64.13, 106.11
158
+ 157, 70.98, 158.96
159
+ 158, 67.50, 108.79
160
+ 159, 72.02, 138.78
161
+ 160, 65.31, 115.91
162
+ 161, 67.08, 146.29
163
+ 162, 64.39, 109.88
164
+ 163, 69.37, 139.05
165
+ 164, 68.38, 119.90
166
+ 165, 65.31, 128.31
167
+ 166, 67.14, 127.24
168
+ 167, 68.39, 115.23
169
+ 168, 66.29, 124.80
170
+ 169, 67.19, 126.95
171
+ 170, 65.99, 111.27
172
+ 171, 69.43, 122.61
173
+ 172, 67.97, 124.21
174
+ 173, 67.76, 124.65
175
+ 174, 65.28, 119.52
176
+ 175, 73.83, 139.30
177
+ 176, 66.81, 104.83
178
+ 177, 66.89, 123.04
179
+ 178, 65.74, 118.89
180
+ 179, 65.98, 121.49
181
+ 180, 66.58, 119.25
182
+ 181, 67.11, 135.02
183
+ 182, 65.87, 116.23
184
+ 183, 66.78, 109.17
185
+ 184, 68.74, 124.22
186
+ 185, 66.23, 141.16
187
+ 186, 65.96, 129.15
188
+ 187, 68.58, 127.87
189
+ 188, 66.59, 120.92
190
+ 189, 66.97, 127.65
191
+ 190, 68.08, 101.47
192
+ 191, 70.19, 144.99
193
+ 192, 65.52, 110.95
194
+ 193, 67.46, 132.86
195
+ 194, 67.41, 146.34
196
+ 195, 69.66, 145.59
197
+ 196, 65.80, 120.84
198
+ 197, 66.11, 115.78
199
+ 198, 68.24, 128.30
200
+ 199, 68.02, 127.47
201
+ 200, 71.39, 127.88
src/evaluation/datasets/onlinefoods.csv ADDED
@@ -0,0 +1,389 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Age,Gender,Marital Status,Occupation,Monthly Income,Educational Qualifications,Family size,latitude,longitude,Pin code,Output,Feedback,
2
+ 20,Female,Single,Student,No Income,Post Graduate,4,12.9766,77.5993,560001,Yes,Positive,Yes
3
+ 24,Female,Single,Student,Below Rs.10000,Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
4
+ 22,Male,Single,Student,Below Rs.10000,Post Graduate,3,12.9551,77.6593,560017,Yes,Negative ,Yes
5
+ 22,Female,Single,Student,No Income,Graduate,6,12.9473,77.5616,560019,Yes,Positive,Yes
6
+ 22,Male,Single,Student,Below Rs.10000,Post Graduate,4,12.985,77.5533,560010,Yes,Positive,Yes
7
+ 27,Female,Married,Employee,More than 50000,Post Graduate,2,12.9299,77.6848,560103,Yes,Positive,Yes
8
+ 22,Male,Single,Student,No Income,Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
9
+ 24,Female,Single,Student,No Income,Post Graduate,3,12.9828,77.6131,560042,Yes,Positive,Yes
10
+ 23,Female,Single,Student,No Income,Post Graduate,2,12.9766,77.5993,560001,Yes,Positive,Yes
11
+ 23,Female,Single,Student,No Income,Post Graduate,4,12.9854,77.7081,560048,Yes,Positive,Yes
12
+ 22,Female,Single,Student,No Income,Post Graduate,5,12.985,77.5533,560010,Yes,Positive,Yes
13
+ 23,Male,Single,Student,Below Rs.10000,Post Graduate,2,12.977,77.5773,560009,Yes,Negative ,Yes
14
+ 23,Male,Single,Student,No Income,Post Graduate,5,12.8988,77.5764,560078,Yes,Positive,Yes
15
+ 21,Male,Single,Student,No Income,Graduate,4,12.977,77.5773,560009,Yes,Positive,Yes
16
+ 23,Female,Single,Self Employeed,10001 to 25000,Post Graduate,5,12.9438,77.5738,560004,Yes,Positive,Yes
17
+ 24,Female,Single,Student,No Income,Post Graduate,6,12.8893,77.6399,560068,Yes,Positive,Yes
18
+ 28,Female,Single,Employee,25001 to 50000,Post Graduate,2,12.9783,77.6408,560038,Yes,Positive,Yes
19
+ 23,Female,Single,Student,No Income,Graduate,3,12.982,77.6256,560008,Yes,Negative ,Yes
20
+ 25,Male,Single,Student,No Income,Graduate,4,12.8988,77.5764,560078,Yes,Negative ,Yes
21
+ 21,Female,Single,Student,Below Rs.10000,Post Graduate,1,12.9783,77.6408,560038,Yes,Positive,Yes
22
+ 24,Male,Single,Student,No Income,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
23
+ 22,Male,Single,Student,No Income,Post Graduate,4,13.0298,77.6047,560032,Yes,Positive,Yes
24
+ 22,Female,Single,Student,No Income,Graduate,4,12.9983,77.6409,560033,Yes,Positive,Yes
25
+ 23,Male,Single,Student,No Income,Graduate,4,12.9925,77.5633,560021,Yes,Positive,Yes
26
+ 21,Male,Single,Student,Below Rs.10000,Post Graduate,3,12.9306,77.5434,560085,Yes,Positive,Yes
27
+ 25,Male,Single,Student,No Income,Post Graduate,3,12.982,77.6256,560008,Yes,Positive,Yes
28
+ 22,Female,Single,Student,No Income,Post Graduate,5,12.9353,77.5585,560050,Yes,Positive,Yes
29
+ 22,Male,Single,Student,No Income,Post Graduate,3,12.9155,77.5135,560098,Yes,Positive,Yes
30
+ 23,Female,Single,Employee,10001 to 25000,Graduate,3,12.9854,77.7081,560048,Yes,Positive,Yes
31
+ 22,Male,Single,Student,Below Rs.10000,Post Graduate,4,13.0019,77.5713,560003,Yes,Positive,Yes
32
+ 22,Female,Single,Employee,10001 to 25000,Graduate,5,12.9698,77.75,560066,Yes,Positive,Yes
33
+ 22,Male,Single,Student,No Income,Post Graduate,4,12.9783,77.6408,560038,Yes,Positive,Yes
34
+ 25,Male,Married,Employee,More than 50000,Ph.D,4,12.9261,77.6221,560034,Yes,Positive,Yes
35
+ 22,Female,Single,Student,10001 to 25000,Post Graduate,5,12.985,77.5533,560010,Yes,Positive,Yes
36
+ 22,Female,Single,Student,No Income,Post Graduate,2,12.9119,77.6446,560102,Yes,Positive,Yes
37
+ 25,Male,Single,Student,10001 to 25000,Post Graduate,3,12.9306,77.5434,560085,Yes,Positive,Yes
38
+ 25,Male,Single,Student,No Income,Post Graduate,5,12.977,77.5773,560009,No,Positive,No
39
+ 32,Female,Prefer not to say,House wife,No Income,Graduate,5,12.982,77.6256,560008,Yes,Negative ,Yes
40
+ 23,Female,Single,Student,No Income,Post Graduate,3,12.9438,77.5738,560004,Yes,Positive,Yes
41
+ 23,Female,Single,Student,No Income,Post Graduate,4,12.8988,77.5764,560078,Yes,Positive,Yes
42
+ 30,Male,Married,Self Employeed,More than 50000,Uneducated,4,12.9662,77.6068,560025,Yes,Negative ,Yes
43
+ 23,Male,Single,Student,No Income,Graduate,3,12.9565,77.5484,560026,Yes,Positive,Yes
44
+ 23,Male,Single,Student,No Income,Post Graduate,4,12.9925,77.5633,560021,Yes,Positive,Yes
45
+ 22,Female,Single,Student,No Income,Post Graduate,5,12.985,77.5533,560010,Yes,Positive,Yes
46
+ 22,Male,Single,Student,No Income,Graduate,5,12.985,77.5533,560010,Yes,Positive,Yes
47
+ 27,Female,Married,Self Employeed,10001 to 25000,Post Graduate,2,12.9261,77.6221,560034,Yes,Positive,Yes
48
+ 24,Female,Single,Student,No Income,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
49
+ 23,Male,Single,Student,No Income,Post Graduate,2,12.977,77.5773,560009,Yes,Positive,Yes
50
+ 23,Female,Single,Student,No Income,Graduate,3,12.982,77.6256,560008,Yes,Negative ,Yes
51
+ 22,Female,Single,Student,10001 to 25000,Post Graduate,5,12.985,77.5533,560010,Yes,Positive,Yes
52
+ 23,Female,Single,Student,No Income,Graduate,5,13.0206,77.6479,560043,Yes,Positive,Yes
53
+ 23,Female,Single,Student,No Income,Post Graduate,2,12.977,77.5773,560009,Yes,Positive,Yes
54
+ 24,Male,Single,Student,No Income,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
55
+ 25,Male,Single,Student,No Income,Post Graduate,2,12.9635,77.5821,560002,Yes,Positive,Yes
56
+ 22,Male,Single,Student,No Income,Post Graduate,3,12.9306,77.5434,560085,Yes,Positive,Yes
57
+ 28,Female,Married,Student,No Income,Graduate,2,13.0067,77.545,560086,Yes,Positive,Yes
58
+ 22,Female,Single,Student,No Income,Post Graduate,1,12.8845,77.6036,560076,Yes,Positive,Yes
59
+ 24,Female,Single,Student,No Income,Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
60
+ 31,Male,Married,Employee,More than 50000,Ph.D,5,12.9119,77.6446,560102,Yes,Positive,Yes
61
+ 25,Male,Single,Student,No Income,Post Graduate,4,13.0067,77.545,560086,Yes,Positive,Yes
62
+ 23,Male,Single,Student,No Income,Post Graduate,5,12.8988,77.5764,560078,Yes,Positive,Yes
63
+ 22,Male,Single,Student,No Income,Post Graduate,3,12.8845,77.6036,560076,Yes,Positive,Yes
64
+ 23,Male,Single,Student,25001 to 50000,Post Graduate,1,13.0158,77.539,560096,Yes,Positive,Yes
65
+ 23,Male,Single,Student,No Income,Graduate,4,12.9343,77.6044,560029,Yes,Positive,Yes
66
+ 23,Female,Single,Student,No Income,Post Graduate,2,13.0019,77.5713,560003,Yes,Positive,Yes
67
+ 25,Male,Single,Student,No Income,Post Graduate,6,13.0012,77.5995,560046,Yes,Positive,Yes
68
+ 24,Male,Single,Employee,10001 to 25000,Graduate,4,12.9442,77.6076,560030,Yes,Positive,Yes
69
+ 23,Female,Single,Student,No Income,Post Graduate,4,13.0487,77.5923,560024,Yes,Positive,Yes
70
+ 23,Female,Single,Student,No Income,Post Graduate,4,13.0487,77.5923,560024,Yes,Positive,Yes
71
+ 24,Female,Married,Employee,More than 50000,Ph.D,4,12.9438,77.5738,560004,Yes,Positive,Yes
72
+ 22,Male,Single,Student,No Income,Graduate,4,12.9889,77.5741,560020,Yes,Positive,Yes
73
+ 24,Female,Single,Student,10001 to 25000,Post Graduate,3,12.9335,77.5691,560028,No,Positive,No
74
+ 25,Female,Single,Student,No Income,Post Graduate,3,12.9766,77.5993,560001,Yes,Positive,Yes
75
+ 23,Male,Single,Student,No Income,Post Graduate,2,12.8845,77.6036,560076,Yes,Positive,Yes
76
+ 26,Male,Single,Student,No Income,Post Graduate,4,13.0019,77.5713,560003,Yes,Positive,Yes
77
+ 24,Female,Single,Student,25001 to 50000,Post Graduate,3,13.102,77.5864,560064,Yes,Positive,Yes
78
+ 26,Male,Single,Student,No Income,Post Graduate,4,12.9048,77.6821,560036,Yes,Positive,Yes
79
+ 21,Male,Single,Student,No Income,Graduate,4,12.977,77.5773,560009,Yes,Positive,Yes
80
+ 22,Female,Single,Student,No Income,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
81
+ 24,Male,Single,Student,No Income,Post Graduate,5,12.9337,77.59,560011,Yes,Positive,Yes
82
+ 24,Male,Single,Student,10001 to 25000,Post Graduate,4,12.9037,77.5376,560061,Yes,Positive,Yes
83
+ 23,Female,Single,Student,No Income,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
84
+ 23,Male,Single,Student,No Income,Post Graduate,3,12.9343,77.6044,560029,Yes,Positive,Yes
85
+ 22,Male,Single,Student,No Income,Post Graduate,3,12.9438,77.5738,560004,Yes,Positive,Yes
86
+ 23,Male,Single,Student,No Income,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
87
+ 24,Female,Single,Student,No Income,Post Graduate,4,12.9783,77.6408,560038,Yes,Positive,Yes
88
+ 24,Male,Single,Student,No Income,Post Graduate,5,12.9337,77.59,560011,Yes,Positive,Yes
89
+ 25,Male,Single,Student,No Income,Graduate,1,12.977,77.5773,560009,Yes,Positive,Yes
90
+ 25,Male,Single,Student,No Income,Post Graduate,5,12.977,77.5773,560009,No,Positive,No
91
+ 28,Male,Married,Self Employeed,10001 to 25000,Graduate,2,13.0289,77.54,560022,No,Negative ,No
92
+ 27,Female,Prefer not to say,Employee,25001 to 50000,Post Graduate,5,13.0289,77.54,560022,No,Positive,No
93
+ 26,Male,Single,Self Employeed,10001 to 25000,Ph.D,1,12.9698,77.75,560066,No,Positive,No
94
+ 22,Male,Single,Student,No Income,Post Graduate,2,12.977,77.5773,560009,Yes,Positive,Yes
95
+ 24,Female,Single,Student,No Income,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
96
+ 23,Male,Single,Student,No Income,Post Graduate,1,12.9561,77.5921,560027,Yes,Positive,Yes
97
+ 25,Male,Single,Student,No Income,Graduate,1,12.977,77.5773,560009,Yes,Positive,Yes
98
+ 23,Female,Single,Student,No Income,Graduate,5,13.0206,77.6479,560043,Yes,Positive,Yes
99
+ 23,Female,Single,Student,No Income,Graduate,5,13.0206,77.6479,560043,Yes,Positive,Yes
100
+ 26,Male,Married,Employee,25001 to 50000,Graduate,5,12.9579,77.6309,560007,No,Positive,No
101
+ 32,Female,Married,House wife,No Income,Uneducated,3,13.014,77.5658,560012,No,Positive,No
102
+ 24,Female,Single,Student,10001 to 25000,Post Graduate,3,12.9335,77.5691,560028,No,Positive,No
103
+ 23,Male,Single,Student,No Income,Post Graduate,2,12.9442,77.6076,560030,Yes,Positive,Yes
104
+ 22,Female,Single,Employee,10001 to 25000,Graduate,3,12.9698,77.75,560066,Yes,Positive,Yes
105
+ 24,Female,Single,Student,No Income,Ph.D,3,12.9438,77.5738,560004,Yes,Positive,Yes
106
+ 26,Male,Single,Employee,25001 to 50000,Graduate,2,12.9261,77.6221,560034,Yes,Negative ,Yes
107
+ 28,Male,Married,Employee,More than 50000,Graduate,3,12.9698,77.75,560066,No,Positive,No
108
+ 26,Male,Single,Employee,More than 50000,Post Graduate,2,12.9698,77.75,560066,No,Positive,No
109
+ 25,Male,Single,Student,No Income,Post Graduate,1,12.9343,77.6044,560029,Yes,Positive,Yes
110
+ 25,Male,Single,Employee,Below Rs.10000,Graduate,2,12.9698,77.75,560066,No,Positive,No
111
+ 18,Male,Single,Student,No Income,Graduate,5,12.9635,77.5821,560002,Yes,Positive,Yes
112
+ 21,Male,Single,Student,No Income,Post Graduate,4,12.977,77.5773,560009,Yes,Positive,Yes
113
+ 25,Male,Single,Student,No Income,Post Graduate,1,12.9343,77.6044,560029,Yes,Positive,Yes
114
+ 25,Male,Single,Student,Below Rs.10000,Post Graduate,2,12.9925,77.5633,560021,Yes,Positive,Yes
115
+ 23,Female,Single,Student,No Income,Graduate,5,13.0206,77.6479,560043,Yes,Positive,Yes
116
+ 23,Male,Single,Employee,10001 to 25000,Post Graduate,2,12.985,77.5533,560010,Yes,Positive,Yes
117
+ 25,Female,Married,Employee,25001 to 50000,Graduate,4,12.9551,77.6593,560017,No,Negative ,No
118
+ 31,Female,Married,House wife,No Income,School,5,13.0289,77.54,560022,Yes,Positive,Yes
119
+ 24,Male,Prefer not to say,Self Employeed,More than 50000,Ph.D,2,13.0138,77.5877,560006,No,Positive,No
120
+ 32,Female,Married,Employee,25001 to 50000,Graduate,5,12.9261,77.6221,560034,Yes,Positive,Yes
121
+ 25,Male,Single,Employee,25001 to 50000,Graduate,3,12.9766,77.5993,560001,Yes,Positive,Yes
122
+ 27,Female,Married,Self Employeed,More than 50000,Graduate,5,12.9766,77.5993,560001,No,Positive,No
123
+ 26,Male,Single,Self Employeed,25001 to 50000,Graduate,3,12.9766,77.5993,560001,Yes,Positive,Yes
124
+ 26,Female,Single,Self Employeed,25001 to 50000,Post Graduate,3,12.9635,77.5821,560002,Yes,Positive,Yes
125
+ 32,Male,Married,Employee,More than 50000,Ph.D,5,12.9635,77.5821,560002,Yes,Negative ,Yes
126
+ 24,Male,Married,Self Employeed,More than 50000,Ph.D,6,12.9635,77.5821,560002,No,Negative ,No
127
+ 27,Female,Married,Self Employeed,25001 to 50000,Graduate,3,12.9635,77.5821,560002,Yes,Positive,Yes
128
+ 23,Male,Single,Student,No Income,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
129
+ 25,Male,Single,Student,No Income,Post Graduate,4,12.977,77.5773,560009,Yes,Positive,Yes
130
+ 23,Male,Single,Student,No Income,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
131
+ 23,Female,Single,Student,No Income,Post Graduate,4,13.0487,77.5923,560024,Yes,Positive,Yes
132
+ 28,Male,Married,Employee,More than 50000,Post Graduate,3,13.0019,77.5713,560003,Yes,Positive,Yes
133
+ 32,Female,Married,Employee,More than 50000,Graduate,1,13.0019,77.5713,560003,No,Positive,No
134
+ 23,Male,Single,Student,No Income,Post Graduate,2,13.0019,77.5713,560003,Yes,Positive,Yes
135
+ 19,Male,Single,Student,No Income,Graduate,2,13.0019,77.5713,560003,No,Negative ,No
136
+ 19,Female,Single,Student,No Income,Graduate,4,12.9537,77.6176,560047,Yes,Positive,Yes
137
+ 27,Female,Married,Employee,25001 to 50000,Post Graduate,2,12.9698,77.75,560066,No,Positive,No
138
+ 25,Male,Single,Self Employeed,25001 to 50000,Graduate,3,12.998,77.6227,560005,Yes,Positive,Yes
139
+ 33,Male,Married,Employee,More than 50000,Ph.D,5,12.998,77.6227,560005,No,Negative ,No
140
+ 26,Female,Single,Employee,More than 50000,Graduate,3,12.998,77.6227,560005,Yes,Positive,Yes
141
+ 22,Female,Single,Student,Below Rs.10000,Post Graduate,4,12.9343,77.6044,560029,Yes,Positive,Yes
142
+ 23,Male,Single,Student,No Income,Post Graduate,3,13.102,77.5864,560064,No,Positive,No
143
+ 22,Female,Single,Student,No Income,Graduate,3,13.0158,77.539,560096,Yes,Negative ,Yes
144
+ 25,Male,Married,Employee,25001 to 50000,Graduate,2,12.998,77.6227,560005,Yes,Positive,Yes
145
+ 30,Female,Married,House wife,No Income,School,5,12.998,77.6227,560005,Yes,Positive,Yes
146
+ 24,Male,Single,Student,No Income,Post Graduate,3,13.0138,77.5877,560006,No,Negative ,No
147
+ 25,Male,Single,Employee,10001 to 25000,Post Graduate,3,13.0138,77.5877,560006,Yes,Positive,Yes
148
+ 23,Male,Single,Student,More than 50000,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
149
+ 24,Female,Single,Student,No Income,Post Graduate,4,13.0496,77.4941,560073,Yes,Positive,Yes
150
+ 32,Male,Married,Employee,10001 to 25000,Graduate,4,12.9783,77.6408,560038,Yes,Positive,Yes
151
+ 22,Male,Single,Student,No Income,Post Graduate,4,12.9889,77.5741,560020,Yes,Positive,Yes
152
+ 23,Male,Single,Student,More than 50000,Post Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
153
+ 23,Female,Single,Student,No Income,Post Graduate,4,13.0487,77.5923,560024,Yes,Positive,Yes
154
+ 20,Male,Single,Student,No Income,Graduate,2,12.9579,77.6309,560007,Yes,Positive,Yes
155
+ 21,Male,Single,Student,No Income,Graduate,2,12.9579,77.6309,560007,Yes,Positive,Yes
156
+ 24,Female,Married,Self Employeed,10001 to 25000,Graduate,5,12.9579,77.6309,560007,Yes,Positive,Yes
157
+ 23,Female,Single,Student,No Income,Post Graduate,4,13.0487,77.5923,560024,Yes,Positive,Yes
158
+ 25,Male,Single,Employee,25001 to 50000,Post Graduate,3,12.985,77.5533,560010,Yes,Positive,Yes
159
+ 32,Female,Married,House wife,No Income,Graduate,3,12.985,77.5533,560010,Yes,Positive,Yes
160
+ 27,Male,Married,Employee,More than 50000,Ph.D,5,12.985,77.5533,560010,No,Negative ,No
161
+ 20,Female,Single,Student,No Income,Graduate,2,12.9337,77.59,560011,Yes,Positive,Yes
162
+ 21,Male,Single,Student,No Income,Graduate,2,12.9337,77.59,560011,Yes,Positive,Yes
163
+ 26,Male,Single,Employee,More than 50000,Post Graduate,3,12.9337,77.59,560011,No,Negative ,No
164
+ 25,Male,Single,Employee,10001 to 25000,Graduate,4,13.0166,77.6804,560016,Yes,Positive,Yes
165
+ 26,Male,Single,Employee,25001 to 50000,Post Graduate,3,13.014,77.5658,560012,Yes,Positive,Yes
166
+ 26,Female,Married,Employee,25001 to 50000,Graduate,3,13.014,77.5658,560012,Yes,Positive,Yes
167
+ 27,Male,Single,Employee,More than 50000,Ph.D,4,13.0503,77.5529,560013,No,Positive,No
168
+ 27,Female,Single,Student,No Income,Ph.D,5,13.0503,77.5529,560013,No,Negative ,No
169
+ 24,Female,Single,Student,No Income,Post Graduate,5,12.9883,77.5987,560051,Yes,Positive,Yes
170
+ 25,Male,Married,Self Employeed,More than 50000,School,2,13.0626,77.5284,560015,Yes,Positive,Yes
171
+ 20,Male,Single,Student,No Income,Graduate,2,13.0626,77.5284,560015,No,Negative ,No
172
+ 22,Male,Single,Student,No Income,Post Graduate,1,13.0626,77.5284,560015,Yes,Positive,Yes
173
+ 26,Female,Married,Student,Below Rs.10000,Ph.D,3,13.0166,77.6804,560016,Yes,Positive,Yes
174
+ 27,Male,Prefer not to say,Employee,25001 to 50000,Post Graduate,1,13.0166,77.6804,560016,Yes,Positive,Yes
175
+ 25,Female,Single,Student,No Income,Post Graduate,3,12.9551,77.6593,560017,Yes,Positive,Yes
176
+ 24,Male,Single,Employee,Below Rs.10000,Graduate,2,12.9551,77.6593,560017,Yes,Positive,Yes
177
+ 23,Female,Single,Employee,10001 to 25000,Graduate,6,12.9551,77.6593,560017,Yes,Positive,Yes
178
+ 22,Male,Single,Student,No Income,Graduate,2,12.957,77.5637,560018,No,Positive,No
179
+ 26,Male,Married,Self Employeed,More than 50000,Post Graduate,3,12.957,77.5637,560018,No,Negative ,No
180
+ 26,Male,Single,Employee,Below Rs.10000,Post Graduate,1,12.957,77.5637,560018,Yes,Negative ,Yes
181
+ 25,Female,Married,Self Employeed,25001 to 50000,Post Graduate,3,12.957,77.5637,560018,No,Positive,No
182
+ 29,Female,Married,Employee,More than 50000,Graduate,3,12.957,77.5637,560018,No,Positive,No
183
+ 23,Male,Single,Student,Below Rs.10000,Graduate,3,12.8652,77.524,560109,Yes,Negative ,Yes
184
+ 22,Female,Single,Employee,25001 to 50000,Graduate,4,12.9698,77.75,560066,Yes,Positive,Yes
185
+ 22,Male,Single,Student,No Income,Graduate,2,12.9889,77.5741,560020,No,Positive,No
186
+ 32,Female,Married,House wife,No Income,School,5,12.9889,77.5741,560020,Yes,Positive,Yes
187
+ 28,Male,Married,Employee,More than 50000,Post Graduate,1,12.9925,77.5633,560021,Yes,Positive,Yes
188
+ 22,Male,Single,Student,No Income,Post Graduate,2,12.977,77.5773,560009,Yes,Positive,Yes
189
+ 25,Male,Single,Employee,10001 to 25000,Graduate,2,12.9757,77.5586,560023,Yes,Positive,Yes
190
+ 26,Female,Married,Employee,25001 to 50000,Post Graduate,2,12.9757,77.5586,560023,No,Negative ,No
191
+ 31,Male,Married,Self Employeed,More than 50000,School,6,13.0487,77.5923,560024,Yes,Positive,Yes
192
+ 24,Male,Single,Student,No Income,Post Graduate,3,13.0487,77.5923,560024,No,Negative ,No
193
+ 24,Male,Single,Employee,25001 to 50000,Post Graduate,2,12.9662,77.6068,560025,Yes,Positive,Yes
194
+ 31,Female,Married,Employee,More than 50000,Ph.D,5,12.9662,77.6068,560025,Yes,Positive,Yes
195
+ 26,Male,Single,Employee,25001 to 50000,Graduate,2,12.9343,77.6044,560029,Yes,Positive,Yes
196
+ 24,Female,Married,Self Employeed,More than 50000,Graduate,2,12.9343,77.6044,560029,Yes,Positive,Yes
197
+ 22,Female,Single,Student,No Income,Graduate,3,12.9343,77.6044,560029,Yes,Positive,Yes
198
+ 19,Male,Single,Student,No Income,Graduate,6,12.9442,77.6076,560030,Yes,Positive,Yes
199
+ 25,Male,Married,Employee,More than 50000,Post Graduate,6,12.9442,77.6076,560030,Yes,Positive,Yes
200
+ 23,Female,Married,House wife,No Income,School,6,12.9442,77.6076,560030,Yes,Positive,Yes
201
+ 23,Female,Single,Student,No Income,Graduate,2,13.0298,77.6047,560032,No,Negative ,No
202
+ 23,Male,Single,Student,No Income,Post Graduate,2,12.9261,77.6221,560034,Yes,Positive,Yes
203
+ 24,Male,Single,Student,No Income,Post Graduate,5,12.9621,77.5376,560104,Yes,Positive,Yes
204
+ 22,Female,Single,Employee,25001 to 50000,Graduate,4,12.8845,77.6036,560076,Yes,Positive,Yes
205
+ 26,Male,Married,Employee,More than 50000,Graduate,4,12.9048,77.6821,560036,Yes,Positive,Yes
206
+ 25,Female,Single,Student,No Income,Ph.D,3,12.9048,77.6821,560036,Yes,Positive,Yes
207
+ 20,Male,Single,Student,No Income,Graduate,2,12.9261,77.6221,560034,Yes,Positive,Yes
208
+ 29,Male,Married,Employee,25001 to 50000,Graduate,4,12.9261,77.6221,560034,No,Negative ,No
209
+ 23,Female,Single,Student,No Income,Graduate,1,12.977,77.5773,560009,Yes,Positive,Yes
210
+ 25,Male,Single,Self Employeed,More than 50000,Graduate,2,12.9783,77.6408,560038,Yes,Positive,Yes
211
+ 29,Female,Married,Employee,25001 to 50000,Graduate,4,12.9783,77.6408,560038,No,Negative ,No
212
+ 27,Male,Married,Self Employeed,25001 to 50000,Graduate,6,12.9217,77.5936,560041,No,Negative ,No
213
+ 25,Male,Single,Self Employeed,10001 to 25000,Graduate,3,13.0206,77.6479,560043,Yes,Positive,Yes
214
+ 21,Male,Single,Student,No Income,Graduate,2,13.0012,77.5995,560046,No,Negative ,No
215
+ 23,Male,Single,Student,No Income,Graduate,3,13.0223,77.7132,560049,Yes,Positive,Yes
216
+ 24,Female,Single,Employee,10001 to 25000,Post Graduate,4,12.9337,77.59,560011,Yes,Positive,Yes
217
+ 32,Male,Married,Self Employeed,10001 to 25000,School,3,12.982,77.6256,560008,Yes,Negative ,Yes
218
+ 28,Male,Married,Employee,25001 to 50000,Post Graduate,5,13.0262,77.62,560045,Yes,Positive,Yes
219
+ 26,Male,Single,Employee,10001 to 25000,Graduate,2,12.9217,77.5936,560041,No,Negative ,No
220
+ 31,Female,Married,House wife,No Income,Graduate,5,13.0078,77.5577,560055,Yes,Positive,Yes
221
+ 27,Female,Married,Self Employeed,25001 to 50000,Graduate,3,13.0078,77.5577,560055,Yes,Positive,Yes
222
+ 21,Female,Single,Student,No Income,Post Graduate,1,12.9217,77.5936,560041,Yes,Positive,Yes
223
+ 23,Female,Single,Student,No Income,Graduate,2,12.9105,77.4842,560060,No,Positive,No
224
+ 26,Male,Married,Employee,10001 to 25000,Graduate,4,12.9105,77.4842,560060,No,Positive,No
225
+ 32,Male,Married,Employee,More than 50000,Graduate,5,12.9037,77.5376,560061,Yes,Positive,Yes
226
+ 25,Female,Married,Student,No Income,Post Graduate,2,12.8834,77.5486,560062,Yes,Positive,Yes
227
+ 28,Male,Single,Self Employeed,10001 to 25000,Post Graduate,2,12.9149,77.5635,560070,Yes,Positive,Yes
228
+ 21,Female,Single,Student,No Income,Post Graduate,3,12.9149,77.5635,560070,Yes,Positive,Yes
229
+ 24,Male,Single,Student,No Income,Post Graduate,2,12.9706,77.6529,560075,Yes,Positive,Yes
230
+ 26,Female,Married,Self Employeed,10001 to 25000,Graduate,5,12.9706,77.6529,560075,No,Negative ,No
231
+ 32,Male,Married,Employee,25001 to 50000,Graduate,3,12.9706,77.6529,560075,Yes,Positive,Yes
232
+ 29,Male,Single,Self Employeed,More than 50000,Graduate,6,12.8845,77.6036,560076,Yes,Positive,Yes
233
+ 21,Male,Single,Student,No Income,Graduate,5,12.9783,77.6408,560038,Yes,Positive,Yes
234
+ 24,Female,Single,Self Employeed,25001 to 50000,Post Graduate,3,13.0103,77.5796,560080,No,Negative ,No
235
+ 26,Male,Prefer not to say,Self Employeed,More than 50000,Post Graduate,2,13.0103,77.5796,560080,Yes,Positive,Yes
236
+ 25,Male,Married,Employee,More than 50000,Ph.D,3,12.9306,77.5434,560085,Yes,Positive,Yes
237
+ 29,Male,Single,Employee,25001 to 50000,Graduate,3,13.0641,77.5931,560092,No,Negative ,No
238
+ 22,Male,Single,Student,No Income,Graduate,3,13.0158,77.539,560096,Yes,Positive,Yes
239
+ 24,Male,Single,Student,No Income,Graduate,2,12.9561,77.5921,560027,Yes,Positive,Yes
240
+ 27,Male,Married,Employee,25001 to 50000,Graduate,2,12.8845,77.6036,560076,Yes,Positive,Yes
241
+ 23,Female,Single,Student,No Income,Post Graduate,3,12.9369,77.6407,560095,No,Positive,No
242
+ 32,Male,Married,Employee,More than 50000,Post Graduate,6,12.9369,77.6407,560095,Yes,Positive,Yes
243
+ 22,Female,Single,Student,No Income,Graduate,2,12.9369,77.6407,560095,Yes,Positive,Yes
244
+ 28,Male,Married,Employee,25001 to 50000,Graduate,3,12.9369,77.6407,560095,Yes,Positive,Yes
245
+ 23,Female,Single,Student,No Income,Post Graduate,2,13.0158,77.539,560096,Yes,Positive,Yes
246
+ 30,Male,Married,Self Employeed,More than 50000,Graduate,1,13.0809,77.5565,560097,No,Negative ,No
247
+ 21,Male,Single,Student,No Income,Graduate,3,13.0641,77.5931,560092,Yes,Positive,Yes
248
+ 26,Female,Married,Employee,Below Rs.10000,Graduate,6,12.9859,77.6713,560093,No,Negative ,No
249
+ 25,Male,Single,Self Employeed,More than 50000,School,3,12.9859,77.6713,560093,Yes,Positive,Yes
250
+ 31,Male,Prefer not to say,Employee,Below Rs.10000,Graduate,1,12.9866,77.4904,560091,No,Negative ,No
251
+ 23,Female,Single,Employee,25001 to 50000,Post Graduate,2,12.9847,77.5491,560100,Yes,Positive,Yes
252
+ 29,Female,Married,Employee,25001 to 50000,Ph.D,3,12.9847,77.5491,560100,Yes,Positive,Yes
253
+ 21,Male,Single,Student,No Income,Graduate,6,12.9847,77.5491,560100,Yes,Positive,Yes
254
+ 20,Male,Single,Student,No Income,Graduate,3,12.9299,77.6848,560103,Yes,Positive,Yes
255
+ 22,Male,Single,Employee,10001 to 25000,Graduate,2,12.9299,77.6848,560103,Yes,Positive,Yes
256
+ 30,Female,Married,House wife,No Income,School,6,12.9828,77.6131,560042,No,Positive,No
257
+ 27,Male,Married,Self Employeed,More than 50000,Graduate,3,12.989,77.5332,560079,Yes,Positive,Yes
258
+ 23,Male,Single,Student,No Income,Post Graduate,2,12.977,77.5773,560009,No,Negative ,No
259
+ 30,Male,Married,Self Employeed,25001 to 50000,School,6,12.9251,77.4992,560059,No,Negative ,No
260
+ 23,Male,Single,Student,No Income,Post Graduate,3,12.9967,77.7582,560067,Yes,Positive,Yes
261
+ 28,Female,Married,Employee,25001 to 50000,Post Graduate,6,12.9967,77.7582,560067,No,Negative ,No
262
+ 30,Male,Married,Self Employeed,More than 50000,Graduate,6,12.9967,77.7582,560067,Yes,Positive,Yes
263
+ 24,Female,Married,Employee,25001 to 50000,Post Graduate,2,12.957,77.5637,560018,Yes,Negative ,Yes
264
+ 21,Male,Single,Student,No Income,Graduate,2,12.957,77.5637,560018,No,Negative ,No
265
+ 23,Female,Prefer not to say,Employee,10001 to 25000,Graduate,3,12.9889,77.5741,560020,No,Negative ,No
266
+ 25,Male,Married,Self Employeed,More than 50000,Post Graduate,4,13.0206,77.6479,560043,Yes,Positive,Yes
267
+ 24,Female,Single,Employee,25001 to 50000,Graduate,2,12.8893,77.6399,560068,Yes,Positive,Yes
268
+ 26,Male,Married,Employee,10001 to 25000,Graduate,3,12.8893,77.6399,560068,No,Negative ,No
269
+ 25,Female,Single,Employee,25001 to 50000,Post Graduate,2,12.9967,77.7582,560067,Yes,Positive,Yes
270
+ 22,Male,Single,Student,25001 to 50000,Graduate,3,12.9783,77.6408,560038,Yes,Positive,Yes
271
+ 26,Female,Single,Employee,25001 to 50000,Post Graduate,2,12.9783,77.6408,560038,Yes,Positive,Yes
272
+ 23,Male,Single,Employee,10001 to 25000,Graduate,2,12.9925,77.5633,560021,Yes,Positive,Yes
273
+ 21,Female,Single,Employee,Below Rs.10000,Graduate,2,12.9925,77.5633,560021,No,Negative ,No
274
+ 25,Male,Married,Self Employeed,25001 to 50000,Graduate,3,12.9561,77.5921,560027,Yes,Positive,Yes
275
+ 24,Female,Married,Employee,10001 to 25000,Post Graduate,2,12.9561,77.5921,560027,Yes,Positive,Yes
276
+ 22,Male,Married,Student,No Income,Graduate,2,13.0734,77.5464,560014,Yes,Positive,Yes
277
+ 23,Female,Single,Student,No Income,Post Graduate,4,13.0487,77.5923,560024,Yes,Positive,Yes
278
+ 24,Male,Married,Employee,More than 50000,Post Graduate,3,12.9515,77.4921,560056,Yes,Positive,Yes
279
+ 22,Female,Single,Student,No Income,Graduate,2,12.9515,77.4921,560056,Yes,Positive,Yes
280
+ 30,Male,Married,Employee,More than 50000,Graduate,5,12.9719,77.5128,560072,No,Negative ,No
281
+ 23,Female,Prefer not to say,Employee,10001 to 25000,Graduate,4,12.9048,77.6821,560036,Yes,Positive,Yes
282
+ 19,Male,Single,Student,No Income,Graduate,6,12.9048,77.6821,560036,Yes,Positive,Yes
283
+ 21,Female,Single,Student,No Income,Graduate,2,13.0103,77.5796,560080,Yes,Positive,Yes
284
+ 23,Male,Single,Student,No Income,Graduate,4,13.0103,77.5796,560080,Yes,Positive,Yes
285
+ 24,Female,Single,Employee,25001 to 50000,Graduate,3,12.8893,77.6399,560068,Yes,Positive,Yes
286
+ 26,Female,Married,Employee,10001 to 25000,Post Graduate,2,12.9828,77.6131,560042,No,Positive,No
287
+ 26,Female,Single,Student,No Income,Ph.D,2,12.9757,77.5586,560023,Yes,Positive,Yes
288
+ 25,Female,Single,Student,10001 to 25000,Graduate,2,12.9757,77.5586,560023,Yes,Positive,Yes
289
+ 28,Female,Married,Employee,25001 to 50000,Graduate,5,12.9757,77.5586,560023,No,Negative ,No
290
+ 25,Female,Single,Student,No Income,Post Graduate,3,13.0734,77.5464,560014,Yes,Positive,Yes
291
+ 20,Female,Single,Student,No Income,Graduate,2,13.0734,77.5464,560014,Yes,Positive,Yes
292
+ 27,Female,Married,Self Employeed,More than 50000,Graduate,6,13.0734,77.5464,560014,No,Positive,No
293
+ 25,Female,Married,Employee,25001 to 50000,Graduate,3,13.0626,77.5284,560015,No,Positive,No
294
+ 24,Female,Single,Student,No Income,Post Graduate,5,13.0626,77.5284,560015,No,Negative ,No
295
+ 25,Female,Married,Employee,More than 50000,Graduate,1,12.977,77.5773,560009,No,Negative ,No
296
+ 25,Female,Prefer not to say,Employee,25001 to 50000,Post Graduate,3,12.998,77.6227,560005,No,Negative ,No
297
+ 24,Female,Married,Student,Below Rs.10000,Ph.D,5,13.0626,77.5284,560015,Yes,Positive,Yes
298
+ 24,Male,Single,Student,No Income,Post Graduate,3,13.0626,77.5284,560015,Yes,Positive,Yes
299
+ 22,Male,Single,Employee,10001 to 25000,Graduate,1,13.0138,77.5877,560006,Yes,Positive,Yes
300
+ 28,Male,Single,Employee,25001 to 50000,Post Graduate,2,13.0138,77.5877,560006,No,Negative ,No
301
+ 25,Female,Single,Employee,More than 50000,Post Graduate,6,13.014,77.5658,560012,No,Negative ,No
302
+ 22,Male,Single,Student,Below Rs.10000,Post Graduate,3,12.9551,77.6593,560017,Yes,Negative ,Yes
303
+ 22,Female,Single,Student,No Income,Graduate,6,12.9473,77.5616,560019,Yes,Positive,Yes
304
+ 22,Male,Single,Student,Below Rs.10000,Post Graduate,4,12.985,77.5533,560010,Yes,Positive,Yes
305
+ 27,Female,Married,Employee,More than 50000,Post Graduate,2,12.9299,77.6848,560103,Yes,Positive,Yes
306
+ 22,Male,Single,Student,No Income,Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
307
+ 24,Female,Single,Student,No Income,Post Graduate,3,12.9828,77.6131,560042,Yes,Positive,Yes
308
+ 23,Female,Single,Student,No Income,Post Graduate,2,12.9766,77.5993,560001,Yes,Positive,Yes
309
+ 23,Female,Single,Student,No Income,Post Graduate,4,12.9854,77.7081,560048,Yes,Positive,Yes
310
+ 22,Female,Single,Student,No Income,Post Graduate,5,12.985,77.5533,560010,Yes,Positive,Yes
311
+ 23,Male,Single,Student,Below Rs.10000,Post Graduate,2,12.977,77.5773,560009,Yes,Negative ,Yes
312
+ 32,Male,Married,Employee,More than 50000,Graduate,5,12.9037,77.5376,560061,Yes,Positive,Yes
313
+ 25,Female,Married,Student,No Income,Post Graduate,2,12.8834,77.5486,560062,Yes,Positive,Yes
314
+ 28,Male,Single,Self Employeed,10001 to 25000,Post Graduate,2,12.9149,77.5635,560070,Yes,Positive,Yes
315
+ 21,Female,Single,Student,No Income,Post Graduate,3,12.9149,77.5635,560070,Yes,Positive,Yes
316
+ 24,Male,Single,Student,No Income,Post Graduate,2,12.9706,77.6529,560075,Yes,Positive,Yes
317
+ 26,Female,Married,Self Employeed,10001 to 25000,Graduate,5,12.9706,77.6529,560075,No,Negative ,No
318
+ 32,Male,Married,Employee,25001 to 50000,Graduate,3,12.9706,77.6529,560075,Yes,Positive,Yes
319
+ 29,Male,Single,Self Employeed,More than 50000,Graduate,6,12.8845,77.6036,560076,Yes,Positive,Yes
320
+ 21,Male,Single,Student,No Income,Graduate,5,12.9783,77.6408,560038,Yes,Positive,Yes
321
+ 24,Female,Single,Self Employeed,25001 to 50000,Post Graduate,3,13.0103,77.5796,560080,No,Negative ,No
322
+ 26,Male,Prefer not to say,Self Employeed,More than 50000,Post Graduate,2,13.0103,77.5796,560080,Yes,Positive,Yes
323
+ 21,Male,Married,Employee,More than 50000,Ph.D,3,12.9306,77.5434,560085,Yes,Positive,Yes
324
+ 29,Male,Single,Employee,25001 to 50000,Graduate,3,13.0641,77.5931,560092,No,Negative ,No
325
+ 22,Male,Single,Student,No Income,Graduate,3,13.0158,77.539,560096,Yes,Positive,Yes
326
+ 24,Male,Single,Student,No Income,Graduate,2,12.9561,77.5921,560027,Yes,Positive,Yes
327
+ 27,Male,Married,Employee,25001 to 50000,Graduate,2,12.8845,77.6036,560076,Yes,Positive,Yes
328
+ 23,Female,Single,Student,No Income,Post Graduate,3,12.9369,77.6407,560095,No,Positive,No
329
+ 32,Male,Married,Employee,More than 50000,Post Graduate,6,12.9369,77.6407,560095,Yes,Positive,Yes
330
+ 22,Female,Single,Student,No Income,Graduate,2,12.9369,77.6407,560095,Yes,Positive,Yes
331
+ 22,Female,Single,Employee,25001 to 50000,Graduate,4,12.8845,77.6036,560076,Yes,Positive,Yes
332
+ 26,Male,Married,Employee,More than 50000,Graduate,4,12.9048,77.6821,560036,Yes,Positive,Yes
333
+ 25,Female,Single,Student,No Income,Ph.D,3,12.9048,77.6821,560036,Yes,Positive,Yes
334
+ 20,Male,Single,Student,No Income,Graduate,2,12.9261,77.6221,560034,Yes,Positive,Yes
335
+ 29,Male,Married,Employee,25001 to 50000,Graduate,4,12.9261,77.6221,560034,No,Negative ,No
336
+ 23,Female,Single,Student,No Income,Graduate,1,12.977,77.5773,560009,Yes,Positive,Yes
337
+ 25,Male,Single,Self Employeed,More than 50000,Graduate,2,12.9783,77.6408,560038,Yes,Positive,Yes
338
+ 29,Female,Married,Employee,25001 to 50000,Graduate,4,12.9783,77.6408,560038,No,Negative ,No
339
+ 27,Male,Married,Self Employeed,25001 to 50000,Graduate,6,12.9217,77.5936,560041,No,Positive,No
340
+ 25,Male,Single,Self Employeed,10001 to 25000,Graduate,3,13.0206,77.6479,560043,Yes,Positive,Yes
341
+ 21,Male,Single,Student,No Income,Graduate,2,13.0012,77.5995,560046,No,Negative ,No
342
+ 23,Male,Single,Student,No Income,Graduate,3,13.0223,77.7132,560049,Yes,Positive,Yes
343
+ 24,Female,Single,Employee,10001 to 25000,Post Graduate,4,12.9337,77.59,560011,Yes,Positive,Yes
344
+ 22,Male,Married,Self Employeed,10001 to 25000,School,3,12.982,77.6256,560008,Yes,Negative ,Yes
345
+ 28,Male,Married,Employee,25001 to 50000,Post Graduate,5,13.0262,77.62,560045,Yes,Positive,Yes
346
+ 26,Male,Single,Employee,10001 to 25000,Graduate,2,12.9217,77.5936,560041,No,Negative ,No
347
+ 22,Female,Single,Employee,25001 to 50000,Graduate,4,12.8845,77.6036,560076,Yes,Positive,Yes
348
+ 26,Male,Married,Employee,More than 50000,Graduate,4,12.9048,77.6821,560036,Yes,Positive,Yes
349
+ 25,Female,Single,Student,No Income,Ph.D,3,12.9048,77.6821,560036,Yes,Positive,Yes
350
+ 20,Male,Single,Student,No Income,Graduate,2,12.9261,77.6221,560034,Yes,Positive,Yes
351
+ 29,Male,Married,Employee,25001 to 50000,Graduate,4,12.9261,77.6221,560034,No,Negative ,No
352
+ 23,Female,Single,Student,No Income,Graduate,1,12.977,77.5773,560009,Yes,Positive,Yes
353
+ 25,Male,Single,Self Employeed,More than 50000,Graduate,2,12.9783,77.6408,560038,Yes,Positive,Yes
354
+ 29,Female,Married,Employee,25001 to 50000,Graduate,4,12.9783,77.6408,560038,No,Positive,No
355
+ 27,Male,Married,Self Employeed,25001 to 50000,Graduate,6,12.9217,77.5936,560041,No,Positive,No
356
+ 25,Male,Single,Self Employeed,10001 to 25000,Graduate,3,13.0206,77.6479,560043,Yes,Positive,Yes
357
+ 21,Male,Single,Student,No Income,Graduate,2,13.0012,77.5995,560046,No,Positive,No
358
+ 24,Male,Single,Student,No Income,Post Graduate,2,12.9706,77.6529,560075,Yes,Positive,Yes
359
+ 26,Female,Married,Self Employeed,10001 to 25000,Graduate,5,12.9706,77.6529,560075,No,Negative ,No
360
+ 32,Male,Married,Employee,25001 to 50000,Graduate,3,12.9706,77.6529,560075,Yes,Positive,Yes
361
+ 29,Male,Single,Self Employeed,More than 50000,Graduate,6,12.8845,77.6036,560076,Yes,Positive,Yes
362
+ 21,Male,Single,Student,No Income,Graduate,5,12.9783,77.6408,560038,Yes,Positive,Yes
363
+ 24,Female,Single,Self Employeed,25001 to 50000,Post Graduate,3,13.0103,77.5796,560080,No,Negative ,No
364
+ 26,Male,Prefer not to say,Self Employeed,More than 50000,Post Graduate,2,13.0103,77.5796,560080,Yes,Positive,Yes
365
+ 31,Male,Married,Employee,More than 50000,Ph.D,3,12.9306,77.5434,560085,Yes,Positive,Yes
366
+ 29,Male,Single,Employee,25001 to 50000,Graduate,3,13.0641,77.5931,560092,No,Negative ,No
367
+ 22,Male,Single,Student,No Income,Graduate,3,13.0158,77.539,560096,Yes,Positive,Yes
368
+ 24,Male,Single,Student,No Income,Graduate,2,12.9561,77.5921,560027,Yes,Positive,Yes
369
+ 27,Male,Married,Employee,25001 to 50000,Graduate,2,12.8845,77.6036,560076,Yes,Positive,Yes
370
+ 23,Female,Single,Student,No Income,Post Graduate,3,12.9369,77.6407,560095,No,Positive,No
371
+ 30,Male,Married,Employee,More than 50000,Post Graduate,6,12.9369,77.6407,560095,Yes,Positive,Yes
372
+ 22,Female,Single,Student,No Income,Graduate,2,12.9369,77.6407,560095,Yes,Positive,Yes
373
+ 28,Male,Married,Employee,25001 to 50000,Graduate,3,12.9369,77.6407,560095,Yes,Positive,Yes
374
+ 23,Female,Single,Student,No Income,Post Graduate,2,13.0158,77.539,560096,Yes,Positive,Yes
375
+ 30,Male,Married,Self Employeed,More than 50000,Graduate,1,13.0809,77.5565,560097,No,Negative ,No
376
+ 21,Male,Single,Student,No Income,Graduate,3,13.0641,77.5931,560092,Yes,Negative ,Yes
377
+ 26,Female,Married,Employee,Below Rs.10000,Graduate,6,12.9859,77.6713,560093,No,Negative ,No
378
+ 25,Male,Single,Self Employeed,More than 50000,School,3,12.9859,77.6713,560093,Yes,Positive,Yes
379
+ 31,Male,Prefer not to say,Employee,Below Rs.10000,Graduate,1,12.9866,77.4904,560091,No,Negative ,No
380
+ 23,Female,Single,Employee,25001 to 50000,Post Graduate,2,12.9847,77.5491,560100,Yes,Positive,Yes
381
+ 22,Male,Single,Student,Below Rs.10000,Post Graduate,4,12.985,77.5533,560010,Yes,Positive,Yes
382
+ 27,Female,Married,Employee,More than 50000,Post Graduate,2,12.9299,77.6848,560103,Yes,Positive,Yes
383
+ 22,Male,Single,Student,No Income,Graduate,3,12.977,77.5773,560009,Yes,Positive,Yes
384
+ 24,Female,Single,Student,No Income,Post Graduate,3,12.9828,77.6131,560042,Yes,Positive,Yes
385
+ 23,Female,Single,Student,No Income,Post Graduate,2,12.9766,77.5993,560001,Yes,Positive,Yes
386
+ 23,Female,Single,Student,No Income,Post Graduate,4,12.9854,77.7081,560048,Yes,Positive,Yes
387
+ 22,Female,Single,Student,No Income,Post Graduate,5,12.985,77.5533,560010,Yes,Positive,Yes
388
+ 23,Male,Single,Student,Below Rs.10000,Post Graduate,2,12.977,77.5773,560009,Yes,Positive,Yes
389
+ 23,Male,Single,Student,No Income,Post Graduate,5,12.8988,77.5764,560078,Yes,Positive,Yes
src/evaluation/datasets/titanic.csv ADDED
@@ -0,0 +1,888 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Survived,Pclass,Name,Sex,Age,Siblings/Spouses Aboard,Parents/Children Aboard,Fare
2
+ 0,3,Mr. Owen Harris Braund,male,22,1,0,7.25
3
+ 1,1,Mrs. John Bradley (Florence Briggs Thayer) Cumings,female,38,1,0,71.2833
4
+ 1,3,Miss. Laina Heikkinen,female,26,0,0,7.925
5
+ 1,1,Mrs. Jacques Heath (Lily May Peel) Futrelle,female,35,1,0,53.1
6
+ 0,3,Mr. William Henry Allen,male,35,0,0,8.05
7
+ 0,3,Mr. James Moran,male,27,0,0,8.4583
8
+ 0,1,Mr. Timothy J McCarthy,male,54,0,0,51.8625
9
+ 0,3,Master. Gosta Leonard Palsson,male,2,3,1,21.075
10
+ 1,3,Mrs. Oscar W (Elisabeth Vilhelmina Berg) Johnson,female,27,0,2,11.1333
11
+ 1,2,Mrs. Nicholas (Adele Achem) Nasser,female,14,1,0,30.0708
12
+ 1,3,Miss. Marguerite Rut Sandstrom,female,4,1,1,16.7
13
+ 1,1,Miss. Elizabeth Bonnell,female,58,0,0,26.55
14
+ 0,3,Mr. William Henry Saundercock,male,20,0,0,8.05
15
+ 0,3,Mr. Anders Johan Andersson,male,39,1,5,31.275
16
+ 0,3,Miss. Hulda Amanda Adolfina Vestrom,female,14,0,0,7.8542
17
+ 1,2,Mrs. (Mary D Kingcome) Hewlett,female,55,0,0,16
18
+ 0,3,Master. Eugene Rice,male,2,4,1,29.125
19
+ 1,2,Mr. Charles Eugene Williams,male,23,0,0,13
20
+ 0,3,Mrs. Julius (Emelia Maria Vandemoortele) Vander Planke,female,31,1,0,18
21
+ 1,3,Mrs. Fatima Masselmani,female,22,0,0,7.225
22
+ 0,2,Mr. Joseph J Fynney,male,35,0,0,26
23
+ 1,2,Mr. Lawrence Beesley,male,34,0,0,13
24
+ 1,3,Miss. Anna McGowan,female,15,0,0,8.0292
25
+ 1,1,Mr. William Thompson Sloper,male,28,0,0,35.5
26
+ 0,3,Miss. Torborg Danira Palsson,female,8,3,1,21.075
27
+ 1,3,Mrs. Carl Oscar (Selma Augusta Emilia Johansson) Asplund,female,38,1,5,31.3875
28
+ 0,3,Mr. Farred Chehab Emir,male,26,0,0,7.225
29
+ 0,1,Mr. Charles Alexander Fortune,male,19,3,2,263
30
+ 1,3,Miss. Ellen O'Dwyer,female,24,0,0,7.8792
31
+ 0,3,Mr. Lalio Todoroff,male,23,0,0,7.8958
32
+ 0,1,Don. Manuel E Uruchurtu,male,40,0,0,27.7208
33
+ 1,1,Mrs. William Augustus (Marie Eugenie) Spencer,female,48,1,0,146.5208
34
+ 1,3,Miss. Mary Agatha Glynn,female,18,0,0,7.75
35
+ 0,2,Mr. Edward H Wheadon,male,66,0,0,10.5
36
+ 0,1,Mr. Edgar Joseph Meyer,male,28,1,0,82.1708
37
+ 0,1,Mr. Alexander Oskar Holverson,male,42,1,0,52
38
+ 1,3,Mr. Hanna Mamee,male,18,0,0,7.2292
39
+ 0,3,Mr. Ernest Charles Cann,male,21,0,0,8.05
40
+ 0,3,Miss. Augusta Maria Vander Planke,female,18,2,0,18
41
+ 1,3,Miss. Jamila Nicola-Yarred,female,14,1,0,11.2417
42
+ 0,3,Mrs. Johan (Johanna Persdotter Larsson) Ahlin,female,40,1,0,9.475
43
+ 0,2,Mrs. William John Robert (Dorothy Ann Wonnacott) Turpin,female,27,1,0,21
44
+ 1,2,Miss. Simonne Marie Anne Andree Laroche,female,3,1,2,41.5792
45
+ 1,3,Miss. Margaret Delia Devaney,female,19,0,0,7.8792
46
+ 0,3,Mr. William John Rogers,male,30,0,0,8.05
47
+ 0,3,Mr. Denis Lennon,male,20,1,0,15.5
48
+ 1,3,Miss. Bridget O'Driscoll,female,27,0,0,7.75
49
+ 0,3,Mr. Youssef Samaan,male,16,2,0,21.6792
50
+ 0,3,Mrs. Josef (Josefine Franchi) Arnold-Franchi,female,18,1,0,17.8
51
+ 0,3,Master. Juha Niilo Panula,male,7,4,1,39.6875
52
+ 0,3,Mr. Richard Cater Nosworthy,male,21,0,0,7.8
53
+ 1,1,Mrs. Henry Sleeper (Myna Haxtun) Harper,female,49,1,0,76.7292
54
+ 1,2,Mrs. Lizzie (Elizabeth Anne Wilkinson) Faunthorpe,female,29,1,0,26
55
+ 0,1,Mr. Engelhart Cornelius Ostby,male,65,0,1,61.9792
56
+ 1,1,Mr. Hugh Woolner,male,46,0,0,35.5
57
+ 1,2,Miss. Emily Rugg,female,21,0,0,10.5
58
+ 0,3,Mr. Mansouer Novel,male,28.5,0,0,7.2292
59
+ 1,2,Miss. Constance Mirium West,female,5,1,2,27.75
60
+ 0,3,Master. William Frederick Goodwin,male,11,5,2,46.9
61
+ 0,3,Mr. Orsen Sirayanian,male,22,0,0,7.2292
62
+ 1,1,Miss. Amelie Icard,female,38,0,0,80
63
+ 0,1,Mr. Henry Birkhardt Harris,male,45,1,0,83.475
64
+ 0,3,Master. Harald Skoog,male,4,3,2,27.9
65
+ 0,1,Mr. Albert A Stewart,male,64,0,0,27.7208
66
+ 1,3,Master. Gerios Moubarek,male,7,1,1,15.2458
67
+ 1,2,Mrs. (Elizabeth Ramell) Nye,female,29,0,0,10.5
68
+ 0,3,Mr. Ernest James Crease,male,19,0,0,8.1583
69
+ 1,3,Miss. Erna Alexandra Andersson,female,17,4,2,7.925
70
+ 0,3,Mr. Vincenz Kink,male,26,2,0,8.6625
71
+ 0,2,Mr. Stephen Curnow Jenkin,male,32,0,0,10.5
72
+ 0,3,Miss. Lillian Amy Goodwin,female,16,5,2,46.9
73
+ 0,2,Mr. Ambrose Jr Hood,male,21,0,0,73.5
74
+ 0,3,Mr. Apostolos Chronopoulos,male,26,1,0,14.4542
75
+ 1,3,Mr. Lee Bing,male,32,0,0,56.4958
76
+ 0,3,Mr. Sigurd Hansen Moen,male,25,0,0,7.65
77
+ 0,3,Mr. Ivan Staneff,male,23,0,0,7.8958
78
+ 0,3,Mr. Rahamin Haim Moutal,male,28,0,0,8.05
79
+ 1,2,Master. Alden Gates Caldwell,male,0.83,0,2,29
80
+ 1,3,Miss. Elizabeth Dowdell,female,30,0,0,12.475
81
+ 0,3,Mr. Achille Waelens,male,22,0,0,9
82
+ 1,3,Mr. Jan Baptist Sheerlinck,male,29,0,0,9.5
83
+ 1,3,Miss. Brigdet Delia McDermott,female,31,0,0,7.7875
84
+ 0,1,Mr. Francisco M Carrau,male,28,0,0,47.1
85
+ 1,2,Miss. Bertha Ilett,female,17,0,0,10.5
86
+ 1,3,Mrs. Karl Alfred (Maria Mathilda Gustafsson) Backstrom,female,33,3,0,15.85
87
+ 0,3,Mr. William Neal Ford,male,16,1,3,34.375
88
+ 0,3,Mr. Selman Francis Slocovski,male,20,0,0,8.05
89
+ 1,1,Miss. Mabel Helen Fortune,female,23,3,2,263
90
+ 0,3,Mr. Francesco Celotti,male,24,0,0,8.05
91
+ 0,3,Mr. Emil Christmann,male,29,0,0,8.05
92
+ 0,3,Mr. Paul Edvin Andreasson,male,20,0,0,7.8542
93
+ 0,1,Mr. Herbert Fuller Chaffee,male,46,1,0,61.175
94
+ 0,3,Mr. Bertram Frank Dean,male,26,1,2,20.575
95
+ 0,3,Mr. Daniel Coxon,male,59,0,0,7.25
96
+ 0,3,Mr. Charles Joseph Shorney,male,22,0,0,8.05
97
+ 0,1,Mr. George B Goldschmidt,male,71,0,0,34.6542
98
+ 1,1,Mr. William Bertram Greenfield,male,23,0,1,63.3583
99
+ 1,2,Mrs. John T (Ada Julia Bone) Doling,female,34,0,1,23
100
+ 0,2,Mr. Sinai Kantor,male,34,1,0,26
101
+ 0,3,Miss. Matilda Petranec,female,28,0,0,7.8958
102
+ 0,3,Mr. Pastcho Petroff,male,29,0,0,7.8958
103
+ 0,1,Mr. Richard Frasar White,male,21,0,1,77.2875
104
+ 0,3,Mr. Gustaf Joel Johansson,male,33,0,0,8.6542
105
+ 0,3,Mr. Anders Vilhelm Gustafsson,male,37,2,0,7.925
106
+ 0,3,Mr. Stoytcho Mionoff,male,28,0,0,7.8958
107
+ 1,3,Miss. Anna Kristine Salkjelsvik,female,21,0,0,7.65
108
+ 1,3,Mr. Albert Johan Moss,male,29,0,0,7.775
109
+ 0,3,Mr. Tido Rekic,male,38,0,0,7.8958
110
+ 1,3,Miss. Bertha Moran,female,28,1,0,24.15
111
+ 0,1,Mr. Walter Chamberlain Porter,male,47,0,0,52
112
+ 0,3,Miss. Hileni Zabour,female,14.5,1,0,14.4542
113
+ 0,3,Mr. David John Barton,male,22,0,0,8.05
114
+ 0,3,Miss. Katriina Jussila,female,20,1,0,9.825
115
+ 0,3,Miss. Malake Attalah,female,17,0,0,14.4583
116
+ 0,3,Mr. Edvard Pekoniemi,male,21,0,0,7.925
117
+ 0,3,Mr. Patrick Connors,male,70.5,0,0,7.75
118
+ 0,2,Mr. William John Robert Turpin,male,29,1,0,21
119
+ 0,1,Mr. Quigg Edmond Baxter,male,24,0,1,247.5208
120
+ 0,3,Miss. Ellis Anna Maria Andersson,female,2,4,2,31.275
121
+ 0,2,Mr. Stanley George Hickman,male,21,2,0,73.5
122
+ 0,3,Mr. Leonard Charles Moore,male,19,0,0,8.05
123
+ 0,2,Mr. Nicholas Nasser,male,32.5,1,0,30.0708
124
+ 1,2,Miss. Susan Webber,female,32.5,0,0,13
125
+ 0,1,Mr. Percival Wayland White,male,54,0,1,77.2875
126
+ 1,3,Master. Elias Nicola-Yarred,male,12,1,0,11.2417
127
+ 0,3,Mr. Martin McMahon,male,19,0,0,7.75
128
+ 1,3,Mr. Fridtjof Arne Madsen,male,24,0,0,7.1417
129
+ 1,3,Miss. Anna Peter,female,2,1,1,22.3583
130
+ 0,3,Mr. Johan Ekstrom,male,45,0,0,6.975
131
+ 0,3,Mr. Jozef Drazenoic,male,33,0,0,7.8958
132
+ 0,3,Mr. Domingos Fernandeo Coelho,male,20,0,0,7.05
133
+ 0,3,Mrs. Alexander A (Grace Charity Laury) Robins,female,47,1,0,14.5
134
+ 1,2,Mrs. Leopold (Mathilde Francoise Pede) Weisz,female,29,1,0,26
135
+ 0,2,Mr. Samuel James Hayden Sobey,male,25,0,0,13
136
+ 0,2,Mr. Emile Richard,male,23,0,0,15.0458
137
+ 1,1,Miss. Helen Monypeny Newsom,female,19,0,2,26.2833
138
+ 0,1,Mr. Jacques Heath Futrelle,male,37,1,0,53.1
139
+ 0,3,Mr. Olaf Elon Osen,male,16,0,0,9.2167
140
+ 0,1,Mr. Victor Giglio,male,24,0,0,79.2
141
+ 0,3,Mrs. Joseph (Sultana) Boulos,female,40,0,2,15.2458
142
+ 1,3,Miss. Anna Sofia Nysten,female,22,0,0,7.75
143
+ 1,3,Mrs. Pekka Pietari (Elin Matilda Dolck) Hakkarainen,female,24,1,0,15.85
144
+ 0,3,Mr. Jeremiah Burke,male,19,0,0,6.75
145
+ 0,2,Mr. Edgardo Samuel Andrew,male,18,0,0,11.5
146
+ 0,2,Mr. Joseph Charles Nicholls,male,19,1,1,36.75
147
+ 1,3,Mr. August Edvard Andersson,male,27,0,0,7.7958
148
+ 0,3,Miss. Robina Maggie Ford,female,9,2,2,34.375
149
+ 0,2,Mr. Michel Navratil,male,36.5,0,2,26
150
+ 0,2,Rev. Thomas Roussel Davids Byles,male,42,0,0,13
151
+ 0,2,Rev. Robert James Bateman,male,51,0,0,12.525
152
+ 1,1,Mrs. Thomas (Edith Wearne) Pears,female,22,1,0,66.6
153
+ 0,3,Mr. Alfonzo Meo,male,55.5,0,0,8.05
154
+ 0,3,Mr. Austin Blyler van Billiard,male,40.5,0,2,14.5
155
+ 0,3,Mr. Ole Martin Olsen,male,27,0,0,7.3125
156
+ 0,1,Mr. Charles Duane Williams,male,51,0,1,61.3792
157
+ 1,3,Miss. Katherine Gilnagh,female,16,0,0,7.7333
158
+ 0,3,Mr. Harry Corn,male,30,0,0,8.05
159
+ 0,3,Mr. Mile Smiljanic,male,37,0,0,8.6625
160
+ 0,3,Master. Thomas Henry Sage,male,5,8,2,69.55
161
+ 0,3,Mr. John Hatfield Cribb,male,44,0,1,16.1
162
+ 1,2,Mrs. James (Elizabeth Inglis Milne) Watt,female,40,0,0,15.75
163
+ 0,3,Mr. John Viktor Bengtsson,male,26,0,0,7.775
164
+ 0,3,Mr. Jovo Calic,male,17,0,0,8.6625
165
+ 0,3,Master. Eino Viljami Panula,male,1,4,1,39.6875
166
+ 1,3,Master. Frank John William Goldsmith,male,9,0,2,20.525
167
+ 1,1,Mrs. (Edith Martha Bowerman) Chibnall,female,48,0,1,55
168
+ 0,3,Mrs. William (Anna Bernhardina Karlsson) Skoog,female,45,1,4,27.9
169
+ 0,1,Mr. John D Baumann,male,60,0,0,25.925
170
+ 0,3,Mr. Lee Ling,male,28,0,0,56.4958
171
+ 0,1,Mr. Wyckoff Van der hoef,male,61,0,0,33.5
172
+ 0,3,Master. Arthur Rice,male,4,4,1,29.125
173
+ 1,3,Miss. Eleanor Ileen Johnson,female,1,1,1,11.1333
174
+ 0,3,Mr. Antti Wilhelm Sivola,male,21,0,0,7.925
175
+ 0,1,Mr. James Clinch Smith,male,56,0,0,30.6958
176
+ 0,3,Mr. Klas Albin Klasen,male,18,1,1,7.8542
177
+ 0,3,Master. Henry Forbes Lefebre,male,5,3,1,25.4667
178
+ 0,1,Miss. Ann Elizabeth Isham,female,50,0,0,28.7125
179
+ 0,2,Mr. Reginald Hale,male,30,0,0,13
180
+ 0,3,Mr. Lionel Leonard,male,36,0,0,0
181
+ 0,3,Miss. Constance Gladys Sage,female,8,8,2,69.55
182
+ 0,2,Mr. Rene Pernot,male,39,0,0,15.05
183
+ 0,3,Master. Clarence Gustaf Hugo Asplund,male,9,4,2,31.3875
184
+ 1,2,Master. Richard F Becker,male,1,2,1,39
185
+ 1,3,Miss. Luise Gretchen Kink-Heilmann,female,4,0,2,22.025
186
+ 0,1,Mr. Hugh Roscoe Rood,male,39,0,0,50
187
+ 1,3,Mrs. Thomas (Johanna Godfrey) O'Brien,female,26,1,0,15.5
188
+ 1,1,Mr. Charles Hallace Romaine,male,45,0,0,26.55
189
+ 0,3,Mr. John Bourke,male,40,1,1,15.5
190
+ 0,3,Mr. Stjepan Turcin,male,36,0,0,7.8958
191
+ 1,2,Mrs. (Rosa) Pinsky,female,32,0,0,13
192
+ 0,2,Mr. William Carbines,male,19,0,0,13
193
+ 1,3,Miss. Carla Christine Nielsine Andersen-Jensen,female,19,1,0,7.8542
194
+ 1,2,Master. Michel M Navratil,male,3,1,1,26
195
+ 1,1,Mrs. James Joseph (Margaret Tobin) Brown,female,44,0,0,27.7208
196
+ 1,1,Miss. Elise Lurette,female,58,0,0,146.5208
197
+ 0,3,Mr. Robert Mernagh,male,28,0,0,7.75
198
+ 0,3,Mr. Karl Siegwart Andreas Olsen,male,42,0,1,8.4042
199
+ 1,3,Miss. Margaret Madigan,female,21,0,0,7.75
200
+ 0,2,Miss. Henriette Yrois,female,24,0,0,13
201
+ 0,3,Mr. Nestor Cyriel Vande Walle,male,28,0,0,9.5
202
+ 0,3,Mr. Frederick Sage,male,17,8,2,69.55
203
+ 0,3,Mr. Jakob Alfred Johanson,male,34,0,0,6.4958
204
+ 0,3,Mr. Gerious Youseff,male,45.5,0,0,7.225
205
+ 1,3,Mr. Gurshon Cohen,male,18,0,0,8.05
206
+ 0,3,Miss. Telma Matilda Strom,female,2,0,1,10.4625
207
+ 0,3,Mr. Karl Alfred Backstrom,male,32,1,0,15.85
208
+ 1,3,Mr. Nassef Cassem Albimona,male,26,0,0,18.7875
209
+ 1,3,Miss. Helen Carr,female,16,0,0,7.75
210
+ 1,1,Mr. Henry Blank,male,40,0,0,31
211
+ 0,3,Mr. Ahmed Ali,male,24,0,0,7.05
212
+ 1,2,Miss. Clear Annie Cameron,female,35,0,0,21
213
+ 0,3,Mr. John Henry Perkin,male,22,0,0,7.25
214
+ 0,2,Mr. Hans Kristensen Givard,male,30,0,0,13
215
+ 0,3,Mr. Philip Kiernan,male,22,1,0,7.75
216
+ 1,1,Miss. Madeleine Newell,female,31,1,0,113.275
217
+ 1,3,Miss. Eliina Honkanen,female,27,0,0,7.925
218
+ 0,2,Mr. Sidney Samuel Jacobsohn,male,42,1,0,27
219
+ 1,1,Miss. Albina Bazzani,female,32,0,0,76.2917
220
+ 0,2,Mr. Walter Harris,male,30,0,0,10.5
221
+ 1,3,Mr. Victor Francis Sunderland,male,16,0,0,8.05
222
+ 0,2,Mr. James H Bracken,male,27,0,0,13
223
+ 0,3,Mr. George Henry Green,male,51,0,0,8.05
224
+ 0,3,Mr. Christo Nenkoff,male,22,0,0,7.8958
225
+ 1,1,Mr. Frederick Maxfield Hoyt,male,38,1,0,90
226
+ 0,3,Mr. Karl Ivar Sven Berglund,male,22,0,0,9.35
227
+ 1,2,Mr. William John Mellors,male,19,0,0,10.5
228
+ 0,3,Mr. John Hall Lovell,male,20.5,0,0,7.25
229
+ 0,2,Mr. Arne Jonas Fahlstrom,male,18,0,0,13
230
+ 0,3,Miss. Mathilde Lefebre,female,12,3,1,25.4667
231
+ 1,1,Mrs. Henry Birkhardt (Irene Wallach) Harris,female,35,1,0,83.475
232
+ 0,3,Mr. Bengt Edvin Larsson,male,29,0,0,7.775
233
+ 0,2,Mr. Ernst Adolf Sjostedt,male,59,0,0,13.5
234
+ 1,3,Miss. Lillian Gertrud Asplund,female,5,4,2,31.3875
235
+ 0,2,Mr. Robert William Norman Leyson,male,24,0,0,10.5
236
+ 0,3,Miss. Alice Phoebe Harknett,female,21,0,0,7.55
237
+ 0,2,Mr. Stephen Hold,male,44,1,0,26
238
+ 1,2,Miss. Marjorie Collyer,female,8,0,2,26.25
239
+ 0,2,Mr. Frederick William Pengelly,male,19,0,0,10.5
240
+ 0,2,Mr. George Henry Hunt,male,33,0,0,12.275
241
+ 0,3,Miss. Thamine Zabour,female,19,1,0,14.4542
242
+ 1,3,Miss. Katherine Murphy,female,18,1,0,15.5
243
+ 0,2,Mr. Reginald Charles Coleridge,male,29,0,0,10.5
244
+ 0,3,Mr. Matti Alexanteri Maenpaa,male,22,0,0,7.125
245
+ 0,3,Mr. Sleiman Attalah,male,30,0,0,7.225
246
+ 0,1,Dr. William Edward Minahan,male,44,2,0,90
247
+ 0,3,Miss. Agda Thorilda Viktoria Lindahl,female,25,0,0,7.775
248
+ 1,2,Mrs. William (Anna) Hamalainen,female,24,0,2,14.5
249
+ 1,1,Mr. Richard Leonard Beckwith,male,37,1,1,52.5542
250
+ 0,2,Rev. Ernest Courtenay Carter,male,54,1,0,26
251
+ 0,3,Mr. James George Reed,male,18,0,0,7.25
252
+ 0,3,Mrs. Wilhelm (Elna Matilda Persson) Strom,female,29,1,1,10.4625
253
+ 0,1,Mr. William Thomas Stead,male,62,0,0,26.55
254
+ 0,3,Mr. William Arthur Lobb,male,30,1,0,16.1
255
+ 0,3,Mrs. Viktor (Helena Wilhelmina) Rosblom,female,41,0,2,20.2125
256
+ 1,3,Mrs. Darwis (Hanne Youssef Razi) Touma,female,29,0,2,15.2458
257
+ 1,1,Mrs. Gertrude Maybelle Thorne,female,38,0,0,79.2
258
+ 1,1,Miss. Gladys Cherry,female,30,0,0,86.5
259
+ 1,1,Miss. Anna Ward,female,35,0,0,512.3292
260
+ 1,2,Mrs. (Lutie Davis) Parrish,female,50,0,1,26
261
+ 1,3,Master. Edvin Rojj Felix Asplund,male,3,4,2,31.3875
262
+ 0,1,Mr. Emil Taussig,male,52,1,1,79.65
263
+ 0,1,Mr. William Harrison,male,40,0,0,0
264
+ 0,3,Miss. Delia Henry,female,21,0,0,7.75
265
+ 0,2,Mr. David Reeves,male,36,0,0,10.5
266
+ 0,3,Mr. Ernesti Arvid Panula,male,16,4,1,39.6875
267
+ 1,3,Mr. Ernst Ulrik Persson,male,25,1,0,7.775
268
+ 1,1,Mrs. William Thompson (Edith Junkins) Graham,female,58,0,1,153.4625
269
+ 1,1,Miss. Amelia Bissette,female,35,0,0,135.6333
270
+ 0,1,Mr. Alexander Cairns,male,28,0,0,31
271
+ 1,3,Mr. William Henry Tornquist,male,25,0,0,0
272
+ 1,2,Mrs. (Elizabeth Anne Maidment) Mellinger,female,41,0,1,19.5
273
+ 0,1,Mr. Charles H Natsch,male,37,0,1,29.7
274
+ 1,3,Miss. Hanora Healy,female,33,0,0,7.75
275
+ 1,1,Miss. Kornelia Theodosia Andrews,female,63,1,0,77.9583
276
+ 0,3,Miss. Augusta Charlotta Lindblom,female,45,0,0,7.75
277
+ 0,2,Mr. Francis Parkes,male,21,0,0,0
278
+ 0,3,Master. Eric Rice,male,7,4,1,29.125
279
+ 1,3,Mrs. Stanton (Rosa Hunt) Abbott,female,35,1,1,20.25
280
+ 0,3,Mr. Frank Duane,male,65,0,0,7.75
281
+ 0,3,Mr. Nils Johan Goransson Olsson,male,28,0,0,7.8542
282
+ 0,3,Mr. Alfons de Pelsmaeker,male,16,0,0,9.5
283
+ 1,3,Mr. Edward Arthur Dorking,male,19,0,0,8.05
284
+ 0,1,Mr. Richard William Smith,male,57,0,0,26
285
+ 0,3,Mr. Ivan Stankovic,male,33,0,0,8.6625
286
+ 1,3,Mr. Theodore de Mulder,male,30,0,0,9.5
287
+ 0,3,Mr. Penko Naidenoff,male,22,0,0,7.8958
288
+ 1,2,Mr. Masabumi Hosono,male,42,0,0,13
289
+ 1,3,Miss. Kate Connolly,female,22,0,0,7.75
290
+ 1,1,Miss. Ellen Barber,female,26,0,0,78.85
291
+ 1,1,Mrs. Dickinson H (Helen Walton) Bishop,female,19,1,0,91.0792
292
+ 0,2,Mr. Rene Jacques Levy,male,36,0,0,12.875
293
+ 0,3,Miss. Aloisia Haas,female,24,0,0,8.85
294
+ 0,3,Mr. Ivan Mineff,male,24,0,0,7.8958
295
+ 0,1,Mr. Ervin G Lewy,male,30,0,0,27.7208
296
+ 0,3,Mr. Mansour Hanna,male,23.5,0,0,7.2292
297
+ 0,1,Miss. Helen Loraine Allison,female,2,1,2,151.55
298
+ 1,1,Mr. Adolphe Saalfeld,male,47,0,0,30.5
299
+ 1,1,Mrs. James (Helene DeLaudeniere Chaput) Baxter,female,50,0,1,247.5208
300
+ 1,3,Miss. Anna Katherine Kelly,female,20,0,0,7.75
301
+ 1,3,Mr. Bernard McCoy,male,24,2,0,23.25
302
+ 0,3,Mr. William Cahoone Jr Johnson,male,19,0,0,0
303
+ 1,2,Miss. Nora A Keane,female,46,0,0,12.35
304
+ 0,3,Mr. Howard Hugh Williams,male,28,0,0,8.05
305
+ 1,1,Master. Hudson Trevor Allison,male,0.92,1,2,151.55
306
+ 1,1,Miss. Margaret Fleming,female,42,0,0,110.8833
307
+ 1,1,Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo) Penasco y Castellana,female,17,1,0,108.9
308
+ 0,2,Mr. Samuel Abelson,male,30,1,0,24
309
+ 1,1,Miss. Laura Mabel Francatelli,female,30,0,0,56.9292
310
+ 1,1,Miss. Margaret Bechstein Hays,female,24,0,0,83.1583
311
+ 1,1,Miss. Emily Borie Ryerson,female,18,2,2,262.375
312
+ 0,2,Mrs. William (Anna Sylfven) Lahtinen,female,26,1,1,26
313
+ 0,3,Mr. Ignjac Hendekovic,male,28,0,0,7.8958
314
+ 0,2,Mr. Benjamin Hart,male,43,1,1,26.25
315
+ 1,3,Miss. Helmina Josefina Nilsson,female,26,0,0,7.8542
316
+ 1,2,Mrs. Sinai (Miriam Sternin) Kantor,female,24,1,0,26
317
+ 0,2,Dr. Ernest Moraweck,male,54,0,0,14
318
+ 1,1,Miss. Mary Natalie Wick,female,31,0,2,164.8667
319
+ 1,1,Mrs. Frederic Oakley (Margaretta Corning Stone) Spedden,female,40,1,1,134.5
320
+ 0,3,Mr. Samuel Dennis,male,22,0,0,7.25
321
+ 0,3,Mr. Yoto Danoff,male,27,0,0,7.8958
322
+ 1,2,Miss. Hilda Mary Slayter,female,30,0,0,12.35
323
+ 1,2,Mrs. Albert Francis (Sylvia Mae Harbaugh) Caldwell,female,22,1,1,29
324
+ 0,3,Mr. George John Jr Sage,male,20,8,2,69.55
325
+ 1,1,Miss. Marie Grice Young,female,36,0,0,135.6333
326
+ 0,3,Mr. Johan Hansen Nysveen,male,61,0,0,6.2375
327
+ 1,2,Mrs. (Ada E Hall) Ball,female,36,0,0,13
328
+ 1,3,Mrs. Frank John (Emily Alice Brown) Goldsmith,female,31,1,1,20.525
329
+ 1,1,Miss. Jean Gertrude Hippach,female,16,0,1,57.9792
330
+ 1,3,Miss. Agnes McCoy,female,28,2,0,23.25
331
+ 0,1,Mr. Austen Partner,male,45.5,0,0,28.5
332
+ 0,1,Mr. George Edward Graham,male,38,0,1,153.4625
333
+ 0,3,Mr. Leo Edmondus Vander Planke,male,16,2,0,18
334
+ 1,1,Mrs. Henry William (Clara Heinsheimer) Frauenthal,female,42,1,0,133.65
335
+ 0,3,Mr. Mitto Denkoff,male,30,0,0,7.8958
336
+ 0,1,Mr. Thomas Clinton Pears,male,29,1,0,66.6
337
+ 1,1,Miss. Elizabeth Margaret Burns,female,41,0,0,134.5
338
+ 1,3,Mr. Karl Edwart Dahl,male,45,0,0,8.05
339
+ 0,1,Mr. Stephen Weart Blackwell,male,45,0,0,35.5
340
+ 1,2,Master. Edmond Roger Navratil,male,2,1,1,26
341
+ 1,1,Miss. Alice Elizabeth Fortune,female,24,3,2,263
342
+ 0,2,Mr. Erik Gustaf Collander,male,28,0,0,13
343
+ 0,2,Mr. Charles Frederick Waddington Sedgwick,male,25,0,0,13
344
+ 0,2,Mr. Stanley Hubert Fox,male,36,0,0,13
345
+ 1,2,Miss. Amelia Brown,female,24,0,0,13
346
+ 1,2,Miss. Marion Elsie Smith,female,40,0,0,13
347
+ 1,3,Mrs. Thomas Henry (Mary E Finck) Davison,female,34,1,0,16.1
348
+ 1,3,Master. William Loch Coutts,male,3,1,1,15.9
349
+ 0,3,Mr. Jovan Dimic,male,42,0,0,8.6625
350
+ 0,3,Mr. Nils Martin Odahl,male,23,0,0,9.225
351
+ 0,1,Mr. Fletcher Fellows Williams-Lambert,male,43,0,0,35
352
+ 0,3,Mr. Tannous Elias,male,15,1,1,7.2292
353
+ 0,3,Mr. Josef Arnold-Franchi,male,25,1,0,17.8
354
+ 0,3,Mr. Wazli Yousif,male,23,0,0,7.225
355
+ 0,3,Mr. Leo Peter Vanden Steen,male,28,0,0,9.5
356
+ 1,1,Miss. Elsie Edith Bowerman,female,22,0,1,55
357
+ 0,2,Miss. Annie Clemmer Funk,female,38,0,0,13
358
+ 1,3,Miss. Mary McGovern,female,22,0,0,7.8792
359
+ 1,3,Miss. Helen Mary Mockler,female,23,0,0,7.8792
360
+ 0,3,Mr. Wilhelm Skoog,male,40,1,4,27.9
361
+ 0,2,Mr. Sebastiano del Carlo,male,29,1,0,27.7208
362
+ 0,3,Mrs. (Catherine David) Barbara,female,45,0,1,14.4542
363
+ 0,3,Mr. Adola Asim,male,35,0,0,7.05
364
+ 0,3,Mr. Thomas O'Brien,male,27,1,0,15.5
365
+ 0,3,Mr. Mauritz Nils Martin Adahl,male,30,0,0,7.25
366
+ 1,1,Mrs. Frank Manley (Anna Sophia Atkinson) Warren,female,60,1,0,75.25
367
+ 1,3,Mrs. (Mantoura Boulos) Moussa,female,35,0,0,7.2292
368
+ 1,3,Miss. Annie Jermyn,female,22,0,0,7.75
369
+ 1,1,Mme. Leontine Pauline Aubart,female,24,0,0,69.3
370
+ 1,1,Mr. George Achilles Harder,male,25,1,0,55.4417
371
+ 0,3,Mr. Jakob Alfred Wiklund,male,18,1,0,6.4958
372
+ 0,3,Mr. William Thomas Beavan,male,19,0,0,8.05
373
+ 0,1,Mr. Sante Ringhini,male,22,0,0,135.6333
374
+ 0,3,Miss. Stina Viola Palsson,female,3,3,1,21.075
375
+ 1,1,Mrs. Edgar Joseph (Leila Saks) Meyer,female,25,1,0,82.1708
376
+ 1,3,Miss. Aurora Adelia Landergren,female,22,0,0,7.25
377
+ 0,1,Mr. Harry Elkins Widener,male,27,0,2,211.5
378
+ 0,3,Mr. Tannous Betros,male,20,0,0,4.0125
379
+ 0,3,Mr. Karl Gideon Gustafsson,male,19,0,0,7.775
380
+ 1,1,Miss. Rosalie Bidois,female,42,0,0,227.525
381
+ 1,3,Miss. Maria Nakid,female,1,0,2,15.7417
382
+ 0,3,Mr. Juho Tikkanen,male,32,0,0,7.925
383
+ 1,1,Mrs. Alexander Oskar (Mary Aline Towner) Holverson,female,35,1,0,52
384
+ 0,3,Mr. Vasil Plotcharsky,male,27,0,0,7.8958
385
+ 0,2,Mr. Charles Henry Davies,male,18,0,0,73.5
386
+ 0,3,Master. Sidney Leonard Goodwin,male,1,5,2,46.9
387
+ 1,2,Miss. Kate Buss,female,36,0,0,13
388
+ 0,3,Mr. Matthew Sadlier,male,19,0,0,7.7292
389
+ 1,2,Miss. Bertha Lehmann,female,17,0,0,12
390
+ 1,1,Mr. William Ernest Carter,male,36,1,2,120
391
+ 1,3,Mr. Carl Olof Jansson,male,21,0,0,7.7958
392
+ 0,3,Mr. Johan Birger Gustafsson,male,28,2,0,7.925
393
+ 1,1,Miss. Marjorie Newell,female,23,1,0,113.275
394
+ 1,3,Mrs. Hjalmar (Agnes Charlotta Bengtsson) Sandstrom,female,24,0,2,16.7
395
+ 0,3,Mr. Erik Johansson,male,22,0,0,7.7958
396
+ 0,3,Miss. Elina Olsson,female,31,0,0,7.8542
397
+ 0,2,Mr. Peter David McKane,male,46,0,0,26
398
+ 0,2,Dr. Alfred Pain,male,23,0,0,10.5
399
+ 1,2,Mrs. William H (Jessie L) Trout,female,28,0,0,12.65
400
+ 1,3,Mr. Juha Niskanen,male,39,0,0,7.925
401
+ 0,3,Mr. John Adams,male,26,0,0,8.05
402
+ 0,3,Miss. Mari Aina Jussila,female,21,1,0,9.825
403
+ 0,3,Mr. Pekka Pietari Hakkarainen,male,28,1,0,15.85
404
+ 0,3,Miss. Marija Oreskovic,female,20,0,0,8.6625
405
+ 0,2,Mr. Shadrach Gale,male,34,1,0,21
406
+ 0,3,Mr. Carl/Charles Peter Widegren,male,51,0,0,7.75
407
+ 1,2,Master. William Rowe Richards,male,3,1,1,18.75
408
+ 0,3,Mr. Hans Martin Monsen Birkeland,male,21,0,0,7.775
409
+ 0,3,Miss. Ida Lefebre,female,3,3,1,25.4667
410
+ 0,3,Mr. Todor Sdycoff,male,42,0,0,7.8958
411
+ 0,3,Mr. Henry Hart,male,27,0,0,6.8583
412
+ 1,1,Miss. Daisy E Minahan,female,33,1,0,90
413
+ 0,2,Mr. Alfred Fleming Cunningham,male,22,0,0,0
414
+ 1,3,Mr. Johan Julian Sundman,male,44,0,0,7.925
415
+ 0,3,Mrs. Thomas (Annie Louise Rowley) Meek,female,32,0,0,8.05
416
+ 1,2,Mrs. James Vivian (Lulu Thorne Christian) Drew,female,34,1,1,32.5
417
+ 1,2,Miss. Lyyli Karoliina Silven,female,18,0,2,13
418
+ 0,2,Mr. William John Matthews,male,30,0,0,13
419
+ 0,3,Miss. Catharina Van Impe,female,10,0,2,24.15
420
+ 0,3,Mr. David Charters,male,21,0,0,7.7333
421
+ 0,3,Mr. Leo Zimmerman,male,29,0,0,7.875
422
+ 0,3,Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren) Danbom,female,28,1,1,14.4
423
+ 0,3,Mr. Viktor Richard Rosblom,male,18,1,1,20.2125
424
+ 0,3,Mr. Phillippe Wiseman,male,54,0,0,7.25
425
+ 1,2,Mrs. Charles V (Ada Maria Winfield) Clarke,female,28,1,0,26
426
+ 1,2,Miss. Kate Florence Phillips,female,19,0,0,26
427
+ 0,3,Mr. James Flynn,male,28,0,0,7.75
428
+ 1,3,Mr. Berk (Berk Trembisky) Pickard,male,32,0,0,8.05
429
+ 1,1,Mr. Mauritz Hakan Bjornstrom-Steffansson,male,28,0,0,26.55
430
+ 1,3,Mrs. Percival (Florence Kate White) Thorneycroft,female,33,1,0,16.1
431
+ 1,2,Mrs. Charles Alexander (Alice Adelaide Slow) Louch,female,42,1,0,26
432
+ 0,3,Mr. Nikolai Erland Kallio,male,17,0,0,7.125
433
+ 0,1,Mr. William Baird Silvey,male,50,1,0,55.9
434
+ 1,1,Miss. Lucile Polk Carter,female,14,1,2,120
435
+ 0,3,Miss. Doolina Margaret Ford,female,21,2,2,34.375
436
+ 1,2,Mrs. Sidney (Emily Hocking) Richards,female,24,2,3,18.75
437
+ 0,1,Mr. Mark Fortune,male,64,1,4,263
438
+ 0,2,Mr. Johan Henrik Johannesson Kvillner,male,31,0,0,10.5
439
+ 1,2,Mrs. Benjamin (Esther Ada Bloomfield) Hart,female,45,1,1,26.25
440
+ 0,3,Mr. Leon Hampe,male,20,0,0,9.5
441
+ 0,3,Mr. Johan Emil Petterson,male,25,1,0,7.775
442
+ 1,2,Ms. Encarnacion Reynaldo,female,28,0,0,13
443
+ 1,3,Mr. Bernt Johannesen-Bratthammer,male,29,0,0,8.1125
444
+ 1,1,Master. Washington Dodge,male,4,0,2,81.8583
445
+ 1,2,Miss. Madeleine Violet Mellinger,female,13,0,1,19.5
446
+ 1,1,Mr. Frederic Kimber Seward,male,34,0,0,26.55
447
+ 1,3,Miss. Marie Catherine Baclini,female,5,2,1,19.2583
448
+ 1,1,Major. Arthur Godfrey Peuchen,male,52,0,0,30.5
449
+ 0,2,Mr. Edwy Arthur West,male,36,1,2,27.75
450
+ 0,3,Mr. Ingvald Olai Olsen Hagland,male,28,1,0,19.9667
451
+ 0,1,Mr. Benjamin Laventall Foreman,male,30,0,0,27.75
452
+ 1,1,Mr. Samuel L Goldenberg,male,49,1,0,89.1042
453
+ 0,3,Mr. Joseph Peduzzi,male,24,0,0,8.05
454
+ 1,3,Mr. Ivan Jalsevac,male,29,0,0,7.8958
455
+ 0,1,Mr. Francis Davis Millet,male,65,0,0,26.55
456
+ 1,1,Mrs. Frederick R (Marion) Kenyon,female,41,1,0,51.8625
457
+ 1,2,Miss. Ellen Toomey,female,50,0,0,10.5
458
+ 0,3,Mr. Maurice O'Connor,male,17,0,0,7.75
459
+ 1,1,Mr. Harry Anderson,male,48,0,0,26.55
460
+ 0,3,Mr. William Morley,male,34,0,0,8.05
461
+ 0,1,Mr. Arthur H Gee,male,47,0,0,38.5
462
+ 0,2,Mr. Jacob Christian Milling,male,48,0,0,13
463
+ 0,3,Mr. Simon Maisner,male,34,0,0,8.05
464
+ 0,3,Mr. Manuel Estanslas Goncalves,male,38,0,0,7.05
465
+ 0,2,Mr. William Campbell,male,21,0,0,0
466
+ 0,1,Mr. John Montgomery Smart,male,56,0,0,26.55
467
+ 0,3,Mr. James Scanlan,male,22,0,0,7.725
468
+ 1,3,Miss. Helene Barbara Baclini,female,0.75,2,1,19.2583
469
+ 0,3,Mr. Arthur Keefe,male,39,0,0,7.25
470
+ 0,3,Mr. Luka Cacic,male,38,0,0,8.6625
471
+ 1,2,Mrs. Edwy Arthur (Ada Mary Worth) West,female,33,1,2,27.75
472
+ 1,2,Mrs. Amin S (Marie Marthe Thuillard) Jerwan,female,23,0,0,13.7917
473
+ 0,3,Miss. Ida Sofia Strandberg,female,22,0,0,9.8375
474
+ 0,1,Mr. George Quincy Clifford,male,40,0,0,52
475
+ 0,2,Mr. Peter Henry Renouf,male,34,1,0,21
476
+ 0,3,Mr. Lewis Richard Braund,male,29,1,0,7.0458
477
+ 0,3,Mr. Nils August Karlsson,male,22,0,0,7.5208
478
+ 1,3,Miss. Hildur E Hirvonen,female,2,0,1,12.2875
479
+ 0,3,Master. Harold Victor Goodwin,male,9,5,2,46.9
480
+ 0,2,Mr. Anthony Wood Frost,male,37,0,0,0
481
+ 0,3,Mr. Richard Henry Rouse,male,50,0,0,8.05
482
+ 1,3,Mrs. (Hedwig) Turkula,female,63,0,0,9.5875
483
+ 1,1,Mr. Dickinson H Bishop,male,25,1,0,91.0792
484
+ 0,3,Miss. Jeannie Lefebre,female,8,3,1,25.4667
485
+ 1,1,Mrs. Frederick Maxfield (Jane Anne Forby) Hoyt,female,35,1,0,90
486
+ 0,1,Mr. Edward Austin Kent,male,58,0,0,29.7
487
+ 0,3,Mr. Francis William Somerton,male,30,0,0,8.05
488
+ 1,3,Master. Eden Leslie Coutts,male,9,1,1,15.9
489
+ 0,3,Mr. Konrad Mathias Reiersen Hagland,male,19,1,0,19.9667
490
+ 0,3,Mr. Einar Windelov,male,21,0,0,7.25
491
+ 0,1,Mr. Harry Markland Molson,male,55,0,0,30.5
492
+ 0,1,Mr. Ramon Artagaveytia,male,71,0,0,49.5042
493
+ 0,3,Mr. Edward Roland Stanley,male,21,0,0,8.05
494
+ 0,3,Mr. Gerious Yousseff,male,26,0,0,14.4583
495
+ 1,1,Miss. Elizabeth Mussey Eustis,female,54,1,0,78.2667
496
+ 0,3,Mr. Frederick William Shellard,male,55,0,0,15.1
497
+ 0,1,Mrs. Hudson J C (Bessie Waldo Daniels) Allison,female,25,1,2,151.55
498
+ 0,3,Mr. Olof Svensson,male,24,0,0,7.7958
499
+ 0,3,Mr. Petar Calic,male,17,0,0,8.6625
500
+ 0,3,Miss. Mary Canavan,female,21,0,0,7.75
501
+ 0,3,Miss. Bridget Mary O'Sullivan,female,21,0,0,7.6292
502
+ 0,3,Miss. Kristina Sofia Laitinen,female,37,0,0,9.5875
503
+ 1,1,Miss. Roberta Maioni,female,16,0,0,86.5
504
+ 0,1,Mr. Victor de Satode Penasco y Castellana,male,18,1,0,108.9
505
+ 1,2,Mrs. Frederick Charles (Jane Richards) Quick,female,33,0,2,26
506
+ 1,1,Mr. George Bradley,male,37,0,0,26.55
507
+ 0,3,Mr. Henry Margido Olsen,male,28,0,0,22.525
508
+ 1,3,Mr. Fang Lang,male,26,0,0,56.4958
509
+ 1,3,Mr. Eugene Patrick Daly,male,29,0,0,7.75
510
+ 0,3,Mr. James Webber,male,66,0,0,8.05
511
+ 1,1,Mr. James Robert McGough,male,36,0,0,26.2875
512
+ 1,1,Mrs. Martin (Elizabeth L. Barrett) Rothschild,female,54,1,0,59.4
513
+ 0,3,Mr. Satio Coleff,male,24,0,0,7.4958
514
+ 0,1,Mr. William Anderson Walker,male,47,0,0,34.0208
515
+ 1,2,Mrs. (Amelia Milley) Lemore,female,34,0,0,10.5
516
+ 0,3,Mr. Patrick Ryan,male,30,0,0,24.15
517
+ 1,2,Mrs. William A (Florence Agnes Hughes) Angle,female,36,1,0,26
518
+ 0,3,Mr. Stefo Pavlovic,male,32,0,0,7.8958
519
+ 1,1,Miss. Anne Perreault,female,30,0,0,93.5
520
+ 0,3,Mr. Janko Vovk,male,22,0,0,7.8958
521
+ 0,3,Mr. Sarkis Lahoud,male,35,0,0,7.225
522
+ 1,1,Mrs. Louis Albert (Ida Sophia Fischer) Hippach,female,44,0,1,57.9792
523
+ 0,3,Mr. Fared Kassem,male,18,0,0,7.2292
524
+ 0,3,Mr. James Farrell,male,40.5,0,0,7.75
525
+ 1,2,Miss. Lucy Ridsdale,female,50,0,0,10.5
526
+ 0,1,Mr. John Farthing,male,49,0,0,221.7792
527
+ 0,3,Mr. Johan Werner Salonen,male,39,0,0,7.925
528
+ 0,2,Mr. Richard George Hocking,male,23,2,1,11.5
529
+ 1,2,Miss. Phyllis May Quick,female,2,1,1,26
530
+ 0,3,Mr. Nakli Toufik,male,17,0,0,7.2292
531
+ 0,3,Mr. Joseph Jr Elias,male,17,1,1,7.2292
532
+ 1,3,Mrs. Catherine (Catherine Rizk) Peter,female,24,0,2,22.3583
533
+ 0,3,Miss. Marija Cacic,female,30,0,0,8.6625
534
+ 1,2,Miss. Eva Miriam Hart,female,7,0,2,26.25
535
+ 0,1,Major. Archibald Willingham Butt,male,45,0,0,26.55
536
+ 1,1,Miss. Bertha LeRoy,female,30,0,0,106.425
537
+ 0,3,Mr. Samuel Beard Risien,male,69,0,0,14.5
538
+ 1,1,Miss. Hedwig Margaritha Frolicher,female,22,0,2,49.5
539
+ 1,1,Miss. Harriet R Crosby,female,36,0,2,71
540
+ 0,3,Miss. Ingeborg Constanzia Andersson,female,9,4,2,31.275
541
+ 0,3,Miss. Sigrid Elisabeth Andersson,female,11,4,2,31.275
542
+ 1,2,Mr. Edward Beane,male,32,1,0,26
543
+ 0,1,Mr. Walter Donald Douglas,male,50,1,0,106.425
544
+ 0,1,Mr. Arthur Ernest Nicholson,male,64,0,0,26
545
+ 1,2,Mrs. Edward (Ethel Clarke) Beane,female,19,1,0,26
546
+ 1,2,Mr. Julian Padro y Manent,male,27,0,0,13.8625
547
+ 0,3,Mr. Frank John Goldsmith,male,33,1,1,20.525
548
+ 1,2,Master. John Morgan Jr Davies,male,8,1,1,36.75
549
+ 1,1,Mr. John Borland Jr Thayer,male,17,0,2,110.8833
550
+ 0,2,Mr. Percival James R Sharp,male,27,0,0,26
551
+ 0,3,Mr. Timothy O'Brien,male,21,0,0,7.8292
552
+ 1,3,Mr. Fahim Leeni,male,22,0,0,7.225
553
+ 1,3,Miss. Velin Ohman,female,22,0,0,7.775
554
+ 0,1,Mr. George Wright,male,62,0,0,26.55
555
+ 1,1,Lady. (Lucille Christiana Sutherland)Duff Gordon,female,48,1,0,39.6
556
+ 0,1,Mr. Victor Robbins,male,45,0,0,227.525
557
+ 1,1,Mrs. Emil (Tillie Mandelbaum) Taussig,female,39,1,1,79.65
558
+ 1,3,Mrs. Guillaume Joseph (Emma) de Messemaeker,female,36,1,0,17.4
559
+ 0,3,Mr. Thomas Rowan Morrow,male,30,0,0,7.75
560
+ 0,3,Mr. Husein Sivic,male,40,0,0,7.8958
561
+ 0,2,Mr. Robert Douglas Norman,male,28,0,0,13.5
562
+ 0,3,Mr. John Simmons,male,40,0,0,8.05
563
+ 0,3,Miss. (Marion Ogden) Meanwell,female,62,0,0,8.05
564
+ 0,3,Mr. Alfred J Davies,male,24,2,0,24.15
565
+ 0,3,Mr. Ilia Stoytcheff,male,19,0,0,7.8958
566
+ 0,3,Mrs. Nils (Alma Cornelia Berglund) Palsson,female,29,0,4,21.075
567
+ 0,3,Mr. Tannous Doharr,male,28,0,0,7.2292
568
+ 1,3,Mr. Carl Jonsson,male,32,0,0,7.8542
569
+ 1,2,Mr. George Harris,male,62,0,0,10.5
570
+ 1,1,Mrs. Edward Dale (Charlotte Lamson) Appleton,female,53,2,0,51.4792
571
+ 1,1,Mr. John Irwin Flynn,male,36,0,0,26.3875
572
+ 1,3,Miss. Mary Kelly,female,22,0,0,7.75
573
+ 0,3,Mr. Alfred George John Rush,male,16,0,0,8.05
574
+ 0,3,Mr. George Patchett,male,19,0,0,14.5
575
+ 1,2,Miss. Ethel Garside,female,34,0,0,13
576
+ 1,1,Mrs. William Baird (Alice Munger) Silvey,female,39,1,0,55.9
577
+ 0,3,Mrs. Joseph (Maria Elias) Caram,female,18,1,0,14.4583
578
+ 1,3,Mr. Eiriik Jussila,male,32,0,0,7.925
579
+ 1,2,Miss. Julie Rachel Christy,female,25,1,1,30
580
+ 1,1,Mrs. John Borland (Marian Longstreth Morris) Thayer,female,39,1,1,110.8833
581
+ 0,2,Mr. William James Downton,male,54,0,0,26
582
+ 0,1,Mr. John Hugo Ross,male,36,0,0,40.125
583
+ 0,3,Mr. Uscher Paulner,male,16,0,0,8.7125
584
+ 1,1,Miss. Ruth Taussig,female,18,0,2,79.65
585
+ 0,2,Mr. John Denzil Jarvis,male,47,0,0,15
586
+ 1,1,Mr. Maxmillian Frolicher-Stehli,male,60,1,1,79.2
587
+ 0,3,Mr. Eliezer Gilinski,male,22,0,0,8.05
588
+ 0,3,Mr. Joseph Murdlin,male,22,0,0,8.05
589
+ 0,3,Mr. Matti Rintamaki,male,35,0,0,7.125
590
+ 1,1,Mrs. Walter Bertram (Martha Eustis) Stephenson,female,52,1,0,78.2667
591
+ 0,3,Mr. William James Elsbury,male,47,0,0,7.25
592
+ 0,3,Miss. Mary Bourke,female,40,0,2,7.75
593
+ 0,2,Mr. John Henry Chapman,male,37,1,0,26
594
+ 0,3,Mr. Jean Baptiste Van Impe,male,36,1,1,24.15
595
+ 1,2,Miss. Jessie Wills Leitch,female,31,0,0,33
596
+ 0,3,Mr. Alfred Johnson,male,49,0,0,0
597
+ 0,3,Mr. Hanna Boulos,male,18,0,0,7.225
598
+ 1,1,Sir. Cosmo Edmund Duff Gordon,male,49,1,0,56.9292
599
+ 1,2,Mrs. Sidney Samuel (Amy Frances Christy) Jacobsohn,female,24,2,1,27
600
+ 0,3,Mr. Petco Slabenoff,male,42,0,0,7.8958
601
+ 0,1,Mr. Charles H Harrington,male,37,0,0,42.4
602
+ 0,3,Mr. Ernst William Torber,male,44,0,0,8.05
603
+ 1,1,Mr. Harry Homer,male,35,0,0,26.55
604
+ 0,3,Mr. Edvard Bengtsson Lindell,male,36,1,0,15.55
605
+ 0,3,Mr. Milan Karaic,male,30,0,0,7.8958
606
+ 1,1,Mr. Robert Williams Daniel,male,27,0,0,30.5
607
+ 1,2,Mrs. Joseph (Juliette Marie Louise Lafargue) Laroche,female,22,1,2,41.5792
608
+ 1,1,Miss. Elizabeth W Shutes,female,40,0,0,153.4625
609
+ 0,3,Mrs. Anders Johan (Alfrida Konstantia Brogren) Andersson,female,39,1,5,31.275
610
+ 0,3,Mr. Jose Neto Jardin,male,21,0,0,7.05
611
+ 1,3,Miss. Margaret Jane Murphy,female,18,1,0,15.5
612
+ 0,3,Mr. John Horgan,male,22,0,0,7.75
613
+ 0,3,Mr. William Alfred Brocklebank,male,35,0,0,8.05
614
+ 1,2,Miss. Alice Herman,female,24,1,2,65
615
+ 0,3,Mr. Ernst Gilbert Danbom,male,34,1,1,14.4
616
+ 0,3,Mrs. William Arthur (Cordelia K Stanlick) Lobb,female,26,1,0,16.1
617
+ 1,2,Miss. Marion Louise Becker,female,4,2,1,39
618
+ 0,2,Mr. Lawrence Gavey,male,26,0,0,10.5
619
+ 0,3,Mr. Antoni Yasbeck,male,27,1,0,14.4542
620
+ 1,1,Mr. Edwin Nelson Jr Kimball,male,42,1,0,52.5542
621
+ 1,3,Mr. Sahid Nakid,male,20,1,1,15.7417
622
+ 0,3,Mr. Henry Damsgaard Hansen,male,21,0,0,7.8542
623
+ 0,3,Mr. David John Bowen,male,21,0,0,16.1
624
+ 0,1,Mr. Frederick Sutton,male,61,0,0,32.3208
625
+ 0,2,Rev. Charles Leonard Kirkland,male,57,0,0,12.35
626
+ 1,1,Miss. Gretchen Fiske Longley,female,21,0,0,77.9583
627
+ 0,3,Mr. Guentcho Bostandyeff,male,26,0,0,7.8958
628
+ 0,3,Mr. Patrick D O'Connell,male,18,0,0,7.7333
629
+ 1,1,Mr. Algernon Henry Wilson Barkworth,male,80,0,0,30
630
+ 0,3,Mr. Johan Svensson Lundahl,male,51,0,0,7.0542
631
+ 1,1,Dr. Max Stahelin-Maeglin,male,32,0,0,30.5
632
+ 0,1,Mr. William Henry Marsh Parr,male,30,0,0,0
633
+ 0,3,Miss. Mabel Skoog,female,9,3,2,27.9
634
+ 1,2,Miss. Mary Davis,female,28,0,0,13
635
+ 0,3,Mr. Antti Gustaf Leinonen,male,32,0,0,7.925
636
+ 0,2,Mr. Harvey Collyer,male,31,1,1,26.25
637
+ 0,3,Mrs. Juha (Maria Emilia Ojala) Panula,female,41,0,5,39.6875
638
+ 0,3,Mr. Percival Thorneycroft,male,37,1,0,16.1
639
+ 0,3,Mr. Hans Peder Jensen,male,20,0,0,7.8542
640
+ 1,1,Mlle. Emma Sagesser,female,24,0,0,69.3
641
+ 0,3,Miss. Margit Elizabeth Skoog,female,2,3,2,27.9
642
+ 1,3,Mr. Choong Foo,male,32,0,0,56.4958
643
+ 1,3,Miss. Eugenie Baclini,female,0.75,2,1,19.2583
644
+ 1,1,Mr. Henry Sleeper Harper,male,48,1,0,76.7292
645
+ 0,3,Mr. Liudevit Cor,male,19,0,0,7.8958
646
+ 1,1,Col. Oberst Alfons Simonius-Blumer,male,56,0,0,35.5
647
+ 0,3,Mr. Edward Willey,male,21,0,0,7.55
648
+ 1,3,Miss. Amy Zillah Elsie Stanley,female,23,0,0,7.55
649
+ 0,3,Mr. Mito Mitkoff,male,23,0,0,7.8958
650
+ 1,2,Miss. Elsie Doling,female,18,0,1,23
651
+ 0,3,Mr. Johannes Halvorsen Kalvik,male,21,0,0,8.4333
652
+ 1,3,Miss. Hanora O'Leary,female,16,0,0,7.8292
653
+ 0,3,Miss. Hanora Hegarty,female,18,0,0,6.75
654
+ 0,2,Mr. Leonard Mark Hickman,male,24,2,0,73.5
655
+ 0,3,Mr. Alexander Radeff,male,27,0,0,7.8958
656
+ 0,3,Mrs. John (Catherine) Bourke,female,32,1,1,15.5
657
+ 0,2,Mr. George Floyd Eitemiller,male,23,0,0,13
658
+ 0,1,Mr. Arthur Webster Newell,male,58,0,2,113.275
659
+ 1,1,Dr. Henry William Frauenthal,male,50,2,0,133.65
660
+ 0,3,Mr. Mohamed Badt,male,40,0,0,7.225
661
+ 0,1,Mr. Edward Pomeroy Colley,male,47,0,0,25.5875
662
+ 0,3,Mr. Peju Coleff,male,36,0,0,7.4958
663
+ 1,3,Mr. Eino William Lindqvist,male,20,1,0,7.925
664
+ 0,2,Mr. Lewis Hickman,male,32,2,0,73.5
665
+ 0,2,Mr. Reginald Fenton Butler,male,25,0,0,13
666
+ 0,3,Mr. Knud Paust Rommetvedt,male,49,0,0,7.775
667
+ 0,3,Mr. Jacob Cook,male,43,0,0,8.05
668
+ 1,1,Mrs. Elmer Zebley (Juliet Cummins Wright) Taylor,female,48,1,0,52
669
+ 1,2,Mrs. Thomas William Solomon (Elizabeth Catherine Ford) Brown,female,40,1,1,39
670
+ 0,1,Mr. Thornton Davidson,male,31,1,0,52
671
+ 0,2,Mr. Henry Michael Mitchell,male,70,0,0,10.5
672
+ 1,2,Mr. Charles Wilhelms,male,31,0,0,13
673
+ 0,2,Mr. Ennis Hastings Watson,male,19,0,0,0
674
+ 0,3,Mr. Gustaf Hjalmar Edvardsson,male,18,0,0,7.775
675
+ 0,3,Mr. Frederick Charles Sawyer,male,24.5,0,0,8.05
676
+ 1,3,Miss. Anna Sofia Turja,female,18,0,0,9.8417
677
+ 0,3,Mrs. Frederick (Augusta Tyler) Goodwin,female,43,1,6,46.9
678
+ 1,1,Mr. Thomas Drake Martinez Cardeza,male,36,0,1,512.3292
679
+ 0,3,Miss. Katie Peters,female,28,0,0,8.1375
680
+ 1,1,Mr. Hammad Hassab,male,27,0,0,76.7292
681
+ 0,3,Mr. Thor Anderson Olsvigen,male,20,0,0,9.225
682
+ 0,3,Mr. Charles Edward Goodwin,male,14,5,2,46.9
683
+ 0,2,Mr. Thomas William Solomon Brown,male,60,1,1,39
684
+ 0,2,Mr. Joseph Philippe Lemercier Laroche,male,25,1,2,41.5792
685
+ 0,3,Mr. Jaako Arnold Panula,male,14,4,1,39.6875
686
+ 0,3,Mr. Branko Dakic,male,19,0,0,10.1708
687
+ 0,3,Mr. Eberhard Thelander Fischer,male,18,0,0,7.7958
688
+ 1,1,Miss. Georgette Alexandra Madill,female,15,0,1,211.3375
689
+ 1,1,Mr. Albert Adrian Dick,male,31,1,0,57
690
+ 1,3,Miss. Manca Karun,female,4,0,1,13.4167
691
+ 1,3,Mr. Ali Lam,male,37,0,0,56.4958
692
+ 0,3,Mr. Khalil Saad,male,25,0,0,7.225
693
+ 0,1,Col. John Weir,male,60,0,0,26.55
694
+ 0,2,Mr. Charles Henry Chapman,male,52,0,0,13.5
695
+ 0,3,Mr. James Kelly,male,44,0,0,8.05
696
+ 1,3,Miss. Katherine Mullens,female,19,0,0,7.7333
697
+ 0,1,Mr. John Borland Thayer,male,49,1,1,110.8833
698
+ 0,3,Mr. Adolf Mathias Nicolai Olsen Humblen,male,42,0,0,7.65
699
+ 1,1,Mrs. John Jacob (Madeleine Talmadge Force) Astor,female,18,1,0,227.525
700
+ 1,1,Mr. Spencer Victor Silverthorne,male,35,0,0,26.2875
701
+ 0,3,Miss. Saiide Barbara,female,18,0,1,14.4542
702
+ 0,3,Mr. Martin Gallagher,male,25,0,0,7.7417
703
+ 0,3,Mr. Henrik Juul Hansen,male,26,1,0,7.8542
704
+ 0,2,Mr. Henry Samuel Morley,male,39,0,0,26
705
+ 1,2,Mrs. Florence Kelly,female,45,0,0,13.5
706
+ 1,1,Mr. Edward Pennington Calderhead,male,42,0,0,26.2875
707
+ 1,1,Miss. Alice Cleaver,female,22,0,0,151.55
708
+ 1,3,Master. Halim Gonios Moubarek,male,4,1,1,15.2458
709
+ 1,1,Mlle. Berthe Antonine Mayne,female,24,0,0,49.5042
710
+ 0,1,Mr. Herman Klaber,male,41,0,0,26.55
711
+ 1,1,Mr. Elmer Zebley Taylor,male,48,1,0,52
712
+ 0,3,Mr. August Viktor Larsson,male,29,0,0,9.4833
713
+ 0,2,Mr. Samuel Greenberg,male,52,0,0,13
714
+ 0,3,Mr. Peter Andreas Lauritz Andersen Soholt,male,19,0,0,7.65
715
+ 1,1,Miss. Caroline Louise Endres,female,38,0,0,227.525
716
+ 1,2,Miss. Edwina Celia Troutt,female,27,0,0,10.5
717
+ 0,3,Mr. Malkolm Joackim Johnson,male,33,0,0,7.775
718
+ 1,2,Miss. Annie Jessie Harper,female,6,0,1,33
719
+ 0,3,Mr. Svend Lauritz Jensen,male,17,1,0,7.0542
720
+ 0,2,Mr. William Henry Gillespie,male,34,0,0,13
721
+ 0,2,Mr. Henry Price Hodges,male,50,0,0,13
722
+ 1,1,Mr. Norman Campbell Chambers,male,27,1,0,53.1
723
+ 0,3,Mr. Luka Oreskovic,male,20,0,0,8.6625
724
+ 1,2,Mrs. Peter Henry (Lillian Jefferys) Renouf,female,30,3,0,21
725
+ 1,3,Miss. Margareth Mannion,female,28,0,0,7.7375
726
+ 0,2,Mr. Kurt Arnold Gottfrid Bryhl,male,25,1,0,26
727
+ 0,3,Miss. Pieta Sofia Ilmakangas,female,25,1,0,7.925
728
+ 1,1,Miss. Elisabeth Walton Allen,female,29,0,0,211.3375
729
+ 0,3,Mr. Houssein G N Hassan,male,11,0,0,18.7875
730
+ 0,2,Mr. Robert J Knight,male,41,0,0,0
731
+ 0,2,Mr. William John Berriman,male,23,0,0,13
732
+ 0,2,Mr. Moses Aaron Troupiansky,male,23,0,0,13
733
+ 0,3,Mr. Leslie Williams,male,28.5,0,0,16.1
734
+ 0,3,Mrs. Edward (Margaret Ann Watson) Ford,female,48,1,3,34.375
735
+ 1,1,Mr. Gustave J Lesurer,male,35,0,0,512.3292
736
+ 0,3,Mr. Kanio Ivanoff,male,20,0,0,7.8958
737
+ 0,3,Mr. Minko Nankoff,male,32,0,0,7.8958
738
+ 1,1,Mr. Walter James Hawksford,male,45,0,0,30
739
+ 0,1,Mr. Tyrell William Cavendish,male,36,1,0,78.85
740
+ 1,1,Miss. Susan Parker Ryerson,female,21,2,2,262.375
741
+ 0,3,Mr. Neal McNamee,male,24,1,0,16.1
742
+ 1,3,Mr. Juho Stranden,male,31,0,0,7.925
743
+ 0,1,Capt. Edward Gifford Crosby,male,70,1,1,71
744
+ 0,3,Mr. Rossmore Edward Abbott,male,16,1,1,20.25
745
+ 1,2,Miss. Anna Sinkkonen,female,30,0,0,13
746
+ 0,1,Mr. Daniel Warner Marvin,male,19,1,0,53.1
747
+ 0,3,Mr. Michael Connaghton,male,31,0,0,7.75
748
+ 1,2,Miss. Joan Wells,female,4,1,1,23
749
+ 1,3,Master. Meier Moor,male,6,0,1,12.475
750
+ 0,3,Mr. Johannes Joseph Vande Velde,male,33,0,0,9.5
751
+ 0,3,Mr. Lalio Jonkoff,male,23,0,0,7.8958
752
+ 1,2,Mrs. Samuel (Jane Laver) Herman,female,48,1,2,65
753
+ 1,2,Master. Viljo Hamalainen,male,0.67,1,1,14.5
754
+ 0,3,Mr. August Sigfrid Carlsson,male,28,0,0,7.7958
755
+ 0,2,Mr. Percy Andrew Bailey,male,18,0,0,11.5
756
+ 0,3,Mr. Thomas Leonard Theobald,male,34,0,0,8.05
757
+ 1,1,the Countess. of (Lucy Noel Martha Dyer-Edwards) Rothes,female,33,0,0,86.5
758
+ 0,3,Mr. John Garfirth,male,23,0,0,14.5
759
+ 0,3,Mr. Iisakki Antino Aijo Nirva,male,41,0,0,7.125
760
+ 1,3,Mr. Hanna Assi Barah,male,20,0,0,7.2292
761
+ 1,1,Mrs. William Ernest (Lucile Polk) Carter,female,36,1,2,120
762
+ 0,3,Mr. Hans Linus Eklund,male,16,0,0,7.775
763
+ 1,1,Mrs. John C (Anna Andrews) Hogeboom,female,51,1,0,77.9583
764
+ 0,1,Dr. Arthur Jackson Brewe,male,46,0,0,39.6
765
+ 0,3,Miss. Mary Mangan,female,30.5,0,0,7.75
766
+ 0,3,Mr. Daniel J Moran,male,28,1,0,24.15
767
+ 0,3,Mr. Daniel Danielsen Gronnestad,male,32,0,0,8.3625
768
+ 0,3,Mr. Rene Aime Lievens,male,24,0,0,9.5
769
+ 0,3,Mr. Niels Peder Jensen,male,48,0,0,7.8542
770
+ 0,2,Mrs. (Mary) Mack,female,57,0,0,10.5
771
+ 0,3,Mr. Dibo Elias,male,29,0,0,7.225
772
+ 1,2,Mrs. Elizabeth (Eliza Needs) Hocking,female,54,1,3,23
773
+ 0,3,Mr. Pehr Fabian Oliver Malkolm Myhrman,male,18,0,0,7.75
774
+ 0,3,Mr. Roger Tobin,male,20,0,0,7.75
775
+ 1,3,Miss. Virginia Ethel Emanuel,female,5,0,0,12.475
776
+ 0,3,Mr. Thomas J Kilgannon,male,22,0,0,7.7375
777
+ 1,1,Mrs. Edward Scott (Elisabeth Walton McMillan) Robert,female,43,0,1,211.3375
778
+ 1,3,Miss. Banoura Ayoub,female,13,0,0,7.2292
779
+ 1,1,Mrs. Albert Adrian (Vera Gillespie) Dick,female,17,1,0,57
780
+ 0,1,Mr. Milton Clyde Long,male,29,0,0,30
781
+ 0,3,Mr. Andrew G Johnston,male,35,1,2,23.45
782
+ 0,3,Mr. William Ali,male,25,0,0,7.05
783
+ 0,3,Mr. Abraham (David Lishin) Harmer,male,25,0,0,7.25
784
+ 1,3,Miss. Anna Sofia Sjoblom,female,18,0,0,7.4958
785
+ 0,3,Master. George Hugh Rice,male,8,4,1,29.125
786
+ 1,3,Master. Bertram Vere Dean,male,1,1,2,20.575
787
+ 0,1,Mr. Benjamin Guggenheim,male,46,0,0,79.2
788
+ 0,3,Mr. Andrew Keane,male,20,0,0,7.75
789
+ 0,2,Mr. Alfred Gaskell,male,16,0,0,26
790
+ 0,3,Miss. Stella Anna Sage,female,21,8,2,69.55
791
+ 0,1,Mr. William Fisher Hoyt,male,43,0,0,30.6958
792
+ 0,3,Mr. Ristiu Dantcheff,male,25,0,0,7.8958
793
+ 0,2,Mr. Richard Otter,male,39,0,0,13
794
+ 1,1,Dr. Alice (Farnham) Leader,female,49,0,0,25.9292
795
+ 1,3,Mrs. Mara Osman,female,31,0,0,8.6833
796
+ 0,3,Mr. Yousseff Ibrahim Shawah,male,30,0,0,7.2292
797
+ 0,3,Mrs. Jean Baptiste (Rosalie Paula Govaert) Van Impe,female,30,1,1,24.15
798
+ 0,2,Mr. Martin Ponesell,male,34,0,0,13
799
+ 1,2,Mrs. Harvey (Charlotte Annie Tate) Collyer,female,31,1,1,26.25
800
+ 1,1,Master. William Thornton II Carter,male,11,1,2,120
801
+ 1,3,Master. Assad Alexander Thomas,male,0.42,0,1,8.5167
802
+ 1,3,Mr. Oskar Arvid Hedman,male,27,0,0,6.975
803
+ 0,3,Mr. Karl Johan Johansson,male,31,0,0,7.775
804
+ 0,1,Mr. Thomas Jr Andrews,male,39,0,0,0
805
+ 0,3,Miss. Ellen Natalia Pettersson,female,18,0,0,7.775
806
+ 0,2,Mr. August Meyer,male,39,0,0,13
807
+ 1,1,Mrs. Norman Campbell (Bertha Griggs) Chambers,female,33,1,0,53.1
808
+ 0,3,Mr. William Alexander,male,26,0,0,7.8875
809
+ 0,3,Mr. James Lester,male,39,0,0,24.15
810
+ 0,2,Mr. Richard James Slemen,male,35,0,0,10.5
811
+ 0,3,Miss. Ebba Iris Alfrida Andersson,female,6,4,2,31.275
812
+ 0,3,Mr. Ernest Portage Tomlin,male,30.5,0,0,8.05
813
+ 0,1,Mr. Richard Fry,male,39,0,0,0
814
+ 0,3,Miss. Wendla Maria Heininen,female,23,0,0,7.925
815
+ 0,2,Mr. Albert Mallet,male,31,1,1,37.0042
816
+ 0,3,Mr. John Fredrik Alexander Holm,male,43,0,0,6.45
817
+ 0,3,Master. Karl Thorsten Skoog,male,10,3,2,27.9
818
+ 1,1,Mrs. Charles Melville (Clara Jennings Gregg) Hays,female,52,1,1,93.5
819
+ 1,3,Mr. Nikola Lulic,male,27,0,0,8.6625
820
+ 0,1,Jonkheer. John George Reuchlin,male,38,0,0,0
821
+ 1,3,Mrs. (Beila) Moor,female,27,0,1,12.475
822
+ 0,3,Master. Urho Abraham Panula,male,2,4,1,39.6875
823
+ 0,3,Mr. John Flynn,male,36,0,0,6.95
824
+ 0,3,Mr. Len Lam,male,23,0,0,56.4958
825
+ 1,2,Master. Andre Mallet,male,1,0,2,37.0042
826
+ 1,3,Mr. Thomas Joseph McCormack,male,19,0,0,7.75
827
+ 1,1,Mrs. George Nelson (Martha Evelyn) Stone,female,62,0,0,80
828
+ 1,3,Mrs. Antoni (Selini Alexander) Yasbeck,female,15,1,0,14.4542
829
+ 1,2,Master. George Sibley Richards,male,0.83,1,1,18.75
830
+ 0,3,Mr. Amin Saad,male,30,0,0,7.2292
831
+ 0,3,Mr. Albert Augustsson,male,23,0,0,7.8542
832
+ 0,3,Mr. Owen George Allum,male,18,0,0,8.3
833
+ 1,1,Miss. Sara Rebecca Compton,female,39,1,1,83.1583
834
+ 0,3,Mr. Jakob Pasic,male,21,0,0,8.6625
835
+ 0,3,Mr. Maurice Sirota,male,20,0,0,8.05
836
+ 1,3,Mr. Chang Chip,male,32,0,0,56.4958
837
+ 1,1,Mr. Pierre Marechal,male,29,0,0,29.7
838
+ 0,3,Mr. Ilmari Rudolf Alhomaki,male,20,0,0,7.925
839
+ 0,2,Mr. Thomas Charles Mudd,male,16,0,0,10.5
840
+ 1,1,Miss. Augusta Serepeca,female,30,0,0,31
841
+ 0,3,Mr. Peter L Lemberopolous,male,34.5,0,0,6.4375
842
+ 0,3,Mr. Jeso Culumovic,male,17,0,0,8.6625
843
+ 0,3,Mr. Anthony Abbing,male,42,0,0,7.55
844
+ 0,3,Mr. Douglas Bullen Sage,male,18,8,2,69.55
845
+ 0,3,Mr. Marin Markoff,male,35,0,0,7.8958
846
+ 0,2,Rev. John Harper,male,28,0,1,33
847
+ 1,1,Mrs. Samuel L (Edwiga Grabowska) Goldenberg,female,40,1,0,89.1042
848
+ 0,3,Master. Sigvard Harald Elias Andersson,male,4,4,2,31.275
849
+ 0,3,Mr. Johan Svensson,male,74,0,0,7.775
850
+ 0,3,Miss. Nourelain Boulos,female,9,1,1,15.2458
851
+ 1,1,Miss. Mary Conover Lines,female,16,0,1,39.4
852
+ 0,2,Mrs. Ernest Courtenay (Lilian Hughes) Carter,female,44,1,0,26
853
+ 1,3,Mrs. Sam (Leah Rosen) Aks,female,18,0,1,9.35
854
+ 1,1,Mrs. George Dennick (Mary Hitchcock) Wick,female,45,1,1,164.8667
855
+ 1,1,Mr. Peter Denis Daly,male,51,0,0,26.55
856
+ 1,3,Mrs. Solomon (Latifa Qurban) Baclini,female,24,0,3,19.2583
857
+ 0,3,Mr. Raihed Razi,male,30,0,0,7.2292
858
+ 0,3,Mr. Claus Peter Hansen,male,41,2,0,14.1083
859
+ 0,2,Mr. Frederick Edward Giles,male,21,1,0,11.5
860
+ 1,1,Mrs. Frederick Joel (Margaret Welles Barron) Swift,female,48,0,0,25.9292
861
+ 0,3,Miss. Dorothy Edith Sage,female,14,8,2,69.55
862
+ 0,2,Mr. John William Gill,male,24,0,0,13
863
+ 1,2,Mrs. (Karolina) Bystrom,female,42,0,0,13
864
+ 1,2,Miss. Asuncion Duran y More,female,27,1,0,13.8583
865
+ 0,1,Mr. Washington Augustus II Roebling,male,31,0,0,50.4958
866
+ 0,3,Mr. Philemon van Melkebeke,male,23,0,0,9.5
867
+ 1,3,Master. Harold Theodor Johnson,male,4,1,1,11.1333
868
+ 0,3,Mr. Cerin Balkic,male,26,0,0,7.8958
869
+ 1,1,Mrs. Richard Leonard (Sallie Monypeny) Beckwith,female,47,1,1,52.5542
870
+ 0,1,Mr. Frans Olof Carlsson,male,33,0,0,5
871
+ 0,3,Mr. Victor Vander Cruyssen,male,47,0,0,9
872
+ 1,2,Mrs. Samuel (Hannah Wizosky) Abelson,female,28,1,0,24
873
+ 1,3,Miss. Adele Kiamie Najib,female,15,0,0,7.225
874
+ 0,3,Mr. Alfred Ossian Gustafsson,male,20,0,0,9.8458
875
+ 0,3,Mr. Nedelio Petroff,male,19,0,0,7.8958
876
+ 0,3,Mr. Kristo Laleff,male,23,0,0,7.8958
877
+ 1,1,Mrs. Thomas Jr (Lily Alexenia Wilson) Potter,female,56,0,1,83.1583
878
+ 1,2,Mrs. William (Imanita Parrish Hall) Shelley,female,25,0,1,26
879
+ 0,3,Mr. Johann Markun,male,33,0,0,7.8958
880
+ 0,3,Miss. Gerda Ulrika Dahlberg,female,22,0,0,10.5167
881
+ 0,2,Mr. Frederick James Banfield,male,28,0,0,10.5
882
+ 0,3,Mr. Henry Jr Sutehall,male,25,0,0,7.05
883
+ 0,3,Mrs. William (Margaret Norton) Rice,female,39,0,5,29.125
884
+ 0,2,Rev. Juozas Montvila,male,27,0,0,13
885
+ 1,1,Miss. Margaret Edith Graham,female,19,0,0,30
886
+ 0,3,Miss. Catherine Helen Johnston,female,7,1,2,23.45
887
+ 1,1,Mr. Karl Howell Behr,male,26,0,0,30
888
+ 0,3,Mr. Patrick Dooley,male,32,0,0,7.75
src/evaluation/results_codellama_prompt3.xlsx ADDED
Binary file (18.3 kB). View file
 
src/evaluation/results_deepseek_prompt1.xlsx ADDED
Binary file (20.4 kB). View file
 
src/evaluation/results_deepseek_prompt2.xlsx ADDED
Binary file (17.1 kB). View file
 
src/evaluation/results_deepseek_prompt3.xlsx ADDED
Binary file (16.7 kB). View file
 
src/evaluation/results_mistral_prompt1.xlsx ADDED
Binary file (16.1 kB). View file
 
src/evaluation/results_mistral_prompt3.xlsx ADDED
Binary file (18.7 kB). View file
 
src/model.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
2
+ from dotenv import load_dotenv
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM
4
+ import torch
5
+
6
+ load_dotenv()
7
+
8
+
9
+ model = {
10
+ "tokenizer": AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5"),
11
+ "model": AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5")
12
+ }
13
+
14
+
15
+ device = "cuda" if torch.cuda.is_available() else "cpu"
16
+
17
+
18
+ def generate_response(prompt):
19
+ try:
20
+ coder_model_prompt = [
21
+ {"role": "user", "content": prompt}
22
+ ]
23
+ encodeds = model["tokenizer"].apply_chat_template(coder_model_prompt, return_tensors="pt")
24
+
25
+ model_inputs = encodeds.to(device)
26
+ model['model'].to(device)
27
+
28
+ generated_ids = model['model'].generate(model_inputs, max_new_tokens=500, do_sample=False,temperature=0.1,repetition_penalty=1)
29
+ decoded = model["tokenizer"].batch_decode(generated_ids)
30
+ return decoded[0].split('[/INST]')[-1].split('</s>')[0]
31
+ except Exception as e:
32
+ raise Exception("Error generating: ",e) from e
33
+
34
+
35
+
36
+
src/model_server.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
2
+ from dotenv import load_dotenv
3
+ from flask import Flask, request, jsonify
4
+ from transformers import AutoTokenizer, AutoModelForCausalLM
5
+ import torch
6
+ load_dotenv()
7
+
8
+
9
+
10
+ app = Flask(__name__)
11
+
12
+
13
+ model = {
14
+ "tokenizer": AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5"),
15
+ "model": AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-7b-instruct-v1.5")
16
+ }
17
+
18
+
19
+ device = "cuda" if torch.cuda.is_available() else "cpu"
20
+
21
+
22
+
23
+
24
+ def generate_response(prompt):
25
+ try:
26
+ coder_model_prompt = [
27
+ {"role": "user", "content": prompt}
28
+ ]
29
+ encodeds = model["tokenizer"].apply_chat_template(coder_model_prompt, return_tensors="pt")
30
+
31
+ model_inputs = encodeds.to(device)
32
+ model['model'].to(device)
33
+
34
+ generated_ids = model['model'].generate(model_inputs, max_new_tokens=500, do_sample=False,temperature=0.1,repetition_penalty=1)
35
+ decoded = model["tokenizer"].batch_decode(generated_ids)
36
+ return decoded[0].split('[/INST]')[-1].split('</s>')[0]
37
+ except Exception as e:
38
+ raise Exception("Error generating: ",e) from e
39
+
40
+
41
+ @app.route('/generate', methods=['POST'])
42
+ def handle_request():
43
+ try:
44
+ data = request.json # Get JSON data from request
45
+ prompt = data.get('prompt')
46
+ if not prompt:
47
+ return jsonify({'error': 'No prompt provided'}), 400
48
+ response = generate_response(prompt)
49
+ return jsonify({'response': response})
50
+ except Exception as e:
51
+ raise Exception("Error generating: ",e) from e
52
+
53
+
54
+ # Run the app
55
+ if __name__ == '__main__':
56
+ app.run(debug=False, port=5000)
57
+
58
+
59
+
src/notebook.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
src/prompt_templates.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ prompt_template_textual = """df is a dataframe that {description}. df has these columns: {columns}. Write a python code block that answers this question: {question}. Just write code and print results, no explanation should be given.
2
+ """
3
+
4
+ # prompt_template_visual = """df is a dataframe that {description}. df has these columns: {columns}. Write a python code block that answers this question: {question}. Just plot and save the results, no explanation should be given.
5
+ # """
6
+
7
+ prompt_template_visual = """df is a dataframe about {description} df has these columns: {columns}. In short, Write python code block that answers this question: {question}. Save the plot. Your response should include only a python code block.
8
+ """
9
+
10
+ description_template = """This is an example row of a given dataset titled {filename}.\n {example_row}. Complete this sentence with a maximum of 50 words: df is a dataframe about"""
11
+
12
+ suggestion_template = """This is an example row of a given dataset titled {filename}.\n {example_row}. Write 5 simple printing/visualizing questions about the dataset so I can solve it using code."""
13
+
14
+ libraries = """
15
+ import pandas as pd
16
+ import matplotlib.pyplot as plt
17
+ import seaborn as sns
18
+ import numpy as np
19
+ import seaborn as sns
20
+ from scipy import stats
21
+ """
survived_age_correlation.png ADDED