|
from fastapi import ( |
|
FastAPI, |
|
Depends, |
|
HTTPException, |
|
status, |
|
UploadFile, |
|
File, |
|
Form, |
|
) |
|
from fastapi.middleware.cors import CORSMiddleware |
|
import os, shutil, logging, re |
|
|
|
from pathlib import Path |
|
from typing import List |
|
|
|
from chromadb.utils.batch_utils import create_batches |
|
|
|
from langchain_community.document_loaders import ( |
|
WebBaseLoader, |
|
TextLoader, |
|
PyPDFLoader, |
|
CSVLoader, |
|
BSHTMLLoader, |
|
Docx2txtLoader, |
|
UnstructuredEPubLoader, |
|
UnstructuredWordDocumentLoader, |
|
UnstructuredMarkdownLoader, |
|
UnstructuredXMLLoader, |
|
UnstructuredRSTLoader, |
|
UnstructuredExcelLoader, |
|
UnstructuredPowerPointLoader, |
|
YoutubeLoader, |
|
) |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
|
|
import validators |
|
import urllib.parse |
|
import socket |
|
|
|
|
|
from pydantic import BaseModel |
|
from typing import Optional |
|
import mimetypes |
|
import uuid |
|
import json |
|
|
|
import sentence_transformers |
|
|
|
from apps.web.models.documents import ( |
|
Documents, |
|
DocumentForm, |
|
DocumentResponse, |
|
) |
|
|
|
from apps.rag.utils import ( |
|
get_model_path, |
|
get_embedding_function, |
|
query_doc, |
|
query_doc_with_hybrid_search, |
|
query_collection, |
|
query_collection_with_hybrid_search, |
|
) |
|
|
|
from utils.misc import ( |
|
calculate_sha256, |
|
calculate_sha256_string, |
|
sanitize_filename, |
|
extract_folders_after_data_docs, |
|
) |
|
from utils.utils import get_current_user, get_admin_user |
|
|
|
from config import ( |
|
ENV, |
|
SRC_LOG_LEVELS, |
|
UPLOAD_DIR, |
|
DOCS_DIR, |
|
RAG_TOP_K, |
|
RAG_RELEVANCE_THRESHOLD, |
|
RAG_EMBEDDING_ENGINE, |
|
RAG_EMBEDDING_MODEL, |
|
RAG_EMBEDDING_MODEL_AUTO_UPDATE, |
|
RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE, |
|
ENABLE_RAG_HYBRID_SEARCH, |
|
ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, |
|
RAG_RERANKING_MODEL, |
|
PDF_EXTRACT_IMAGES, |
|
RAG_RERANKING_MODEL_AUTO_UPDATE, |
|
RAG_RERANKING_MODEL_TRUST_REMOTE_CODE, |
|
RAG_OPENAI_API_BASE_URL, |
|
RAG_OPENAI_API_KEY, |
|
DEVICE_TYPE, |
|
CHROMA_CLIENT, |
|
CHUNK_SIZE, |
|
CHUNK_OVERLAP, |
|
RAG_TEMPLATE, |
|
ENABLE_RAG_LOCAL_WEB_FETCH, |
|
YOUTUBE_LOADER_LANGUAGE, |
|
AppConfig, |
|
) |
|
|
|
from constants import ERROR_MESSAGES |
|
|
|
log = logging.getLogger(__name__) |
|
log.setLevel(SRC_LOG_LEVELS["RAG"]) |
|
|
|
app = FastAPI() |
|
|
|
app.state.config = AppConfig() |
|
|
|
app.state.config.TOP_K = RAG_TOP_K |
|
app.state.config.RELEVANCE_THRESHOLD = RAG_RELEVANCE_THRESHOLD |
|
|
|
app.state.config.ENABLE_RAG_HYBRID_SEARCH = ENABLE_RAG_HYBRID_SEARCH |
|
app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = ( |
|
ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION |
|
) |
|
|
|
app.state.config.CHUNK_SIZE = CHUNK_SIZE |
|
app.state.config.CHUNK_OVERLAP = CHUNK_OVERLAP |
|
|
|
app.state.config.RAG_EMBEDDING_ENGINE = RAG_EMBEDDING_ENGINE |
|
app.state.config.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL |
|
app.state.config.RAG_RERANKING_MODEL = RAG_RERANKING_MODEL |
|
app.state.config.RAG_TEMPLATE = RAG_TEMPLATE |
|
|
|
|
|
app.state.config.OPENAI_API_BASE_URL = RAG_OPENAI_API_BASE_URL |
|
app.state.config.OPENAI_API_KEY = RAG_OPENAI_API_KEY |
|
|
|
app.state.config.PDF_EXTRACT_IMAGES = PDF_EXTRACT_IMAGES |
|
|
|
|
|
app.state.config.YOUTUBE_LOADER_LANGUAGE = YOUTUBE_LOADER_LANGUAGE |
|
app.state.YOUTUBE_LOADER_TRANSLATION = None |
|
|
|
|
|
def update_embedding_model( |
|
embedding_model: str, |
|
update_model: bool = False, |
|
): |
|
if embedding_model and app.state.config.RAG_EMBEDDING_ENGINE == "": |
|
app.state.sentence_transformer_ef = sentence_transformers.SentenceTransformer( |
|
get_model_path(embedding_model, update_model), |
|
device=DEVICE_TYPE, |
|
trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE, |
|
) |
|
else: |
|
app.state.sentence_transformer_ef = None |
|
|
|
|
|
def update_reranking_model( |
|
reranking_model: str, |
|
update_model: bool = False, |
|
): |
|
if reranking_model: |
|
app.state.sentence_transformer_rf = sentence_transformers.CrossEncoder( |
|
get_model_path(reranking_model, update_model), |
|
device=DEVICE_TYPE, |
|
trust_remote_code=RAG_RERANKING_MODEL_TRUST_REMOTE_CODE, |
|
) |
|
else: |
|
app.state.sentence_transformer_rf = None |
|
|
|
|
|
update_embedding_model( |
|
app.state.config.RAG_EMBEDDING_MODEL, |
|
RAG_EMBEDDING_MODEL_AUTO_UPDATE, |
|
) |
|
|
|
update_reranking_model( |
|
app.state.config.RAG_RERANKING_MODEL, |
|
RAG_RERANKING_MODEL_AUTO_UPDATE, |
|
) |
|
|
|
|
|
app.state.EMBEDDING_FUNCTION = get_embedding_function( |
|
app.state.config.RAG_EMBEDDING_ENGINE, |
|
app.state.config.RAG_EMBEDDING_MODEL, |
|
app.state.sentence_transformer_ef, |
|
app.state.config.OPENAI_API_KEY, |
|
app.state.config.OPENAI_API_BASE_URL, |
|
) |
|
|
|
origins = ["*"] |
|
|
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=origins, |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
|
|
class CollectionNameForm(BaseModel): |
|
collection_name: Optional[str] = "test" |
|
|
|
|
|
class UrlForm(CollectionNameForm): |
|
url: str |
|
|
|
|
|
@app.get("/") |
|
async def get_status(): |
|
return { |
|
"status": True, |
|
"chunk_size": app.state.config.CHUNK_SIZE, |
|
"chunk_overlap": app.state.config.CHUNK_OVERLAP, |
|
"template": app.state.config.RAG_TEMPLATE, |
|
"embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE, |
|
"embedding_model": app.state.config.RAG_EMBEDDING_MODEL, |
|
"reranking_model": app.state.config.RAG_RERANKING_MODEL, |
|
} |
|
|
|
|
|
@app.get("/embedding") |
|
async def get_embedding_config(user=Depends(get_admin_user)): |
|
return { |
|
"status": True, |
|
"embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE, |
|
"embedding_model": app.state.config.RAG_EMBEDDING_MODEL, |
|
"openai_config": { |
|
"url": app.state.config.OPENAI_API_BASE_URL, |
|
"key": app.state.config.OPENAI_API_KEY, |
|
}, |
|
} |
|
|
|
|
|
@app.get("/reranking") |
|
async def get_reraanking_config(user=Depends(get_admin_user)): |
|
return { |
|
"status": True, |
|
"reranking_model": app.state.config.RAG_RERANKING_MODEL, |
|
} |
|
|
|
|
|
class OpenAIConfigForm(BaseModel): |
|
url: str |
|
key: str |
|
|
|
|
|
class EmbeddingModelUpdateForm(BaseModel): |
|
openai_config: Optional[OpenAIConfigForm] = None |
|
embedding_engine: str |
|
embedding_model: str |
|
|
|
|
|
@app.post("/embedding/update") |
|
async def update_embedding_config( |
|
form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user) |
|
): |
|
log.info( |
|
f"Updating embedding model: {app.state.config.RAG_EMBEDDING_MODEL} to {form_data.embedding_model}" |
|
) |
|
try: |
|
app.state.config.RAG_EMBEDDING_ENGINE = form_data.embedding_engine |
|
app.state.config.RAG_EMBEDDING_MODEL = form_data.embedding_model |
|
|
|
if app.state.config.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]: |
|
if form_data.openai_config != None: |
|
app.state.config.OPENAI_API_BASE_URL = form_data.openai_config.url |
|
app.state.config.OPENAI_API_KEY = form_data.openai_config.key |
|
|
|
update_embedding_model(app.state.config.RAG_EMBEDDING_MODEL) |
|
|
|
app.state.EMBEDDING_FUNCTION = get_embedding_function( |
|
app.state.config.RAG_EMBEDDING_ENGINE, |
|
app.state.config.RAG_EMBEDDING_MODEL, |
|
app.state.sentence_transformer_ef, |
|
app.state.config.OPENAI_API_KEY, |
|
app.state.config.OPENAI_API_BASE_URL, |
|
) |
|
|
|
return { |
|
"status": True, |
|
"embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE, |
|
"embedding_model": app.state.config.RAG_EMBEDDING_MODEL, |
|
"openai_config": { |
|
"url": app.state.config.OPENAI_API_BASE_URL, |
|
"key": app.state.config.OPENAI_API_KEY, |
|
}, |
|
} |
|
except Exception as e: |
|
log.exception(f"Problem updating embedding model: {e}") |
|
raise HTTPException( |
|
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, |
|
detail=ERROR_MESSAGES.DEFAULT(e), |
|
) |
|
|
|
|
|
class RerankingModelUpdateForm(BaseModel): |
|
reranking_model: str |
|
|
|
|
|
@app.post("/reranking/update") |
|
async def update_reranking_config( |
|
form_data: RerankingModelUpdateForm, user=Depends(get_admin_user) |
|
): |
|
log.info( |
|
f"Updating reranking model: {app.state.config.RAG_RERANKING_MODEL} to {form_data.reranking_model}" |
|
) |
|
try: |
|
app.state.config.RAG_RERANKING_MODEL = form_data.reranking_model |
|
|
|
update_reranking_model(app.state.config.RAG_RERANKING_MODEL), True |
|
|
|
return { |
|
"status": True, |
|
"reranking_model": app.state.config.RAG_RERANKING_MODEL, |
|
} |
|
except Exception as e: |
|
log.exception(f"Problem updating reranking model: {e}") |
|
raise HTTPException( |
|
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, |
|
detail=ERROR_MESSAGES.DEFAULT(e), |
|
) |
|
|
|
|
|
@app.get("/config") |
|
async def get_rag_config(user=Depends(get_admin_user)): |
|
return { |
|
"status": True, |
|
"pdf_extract_images": app.state.config.PDF_EXTRACT_IMAGES, |
|
"chunk": { |
|
"chunk_size": app.state.config.CHUNK_SIZE, |
|
"chunk_overlap": app.state.config.CHUNK_OVERLAP, |
|
}, |
|
"web_loader_ssl_verification": app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, |
|
"youtube": { |
|
"language": app.state.config.YOUTUBE_LOADER_LANGUAGE, |
|
"translation": app.state.YOUTUBE_LOADER_TRANSLATION, |
|
}, |
|
} |
|
|
|
|
|
class ChunkParamUpdateForm(BaseModel): |
|
chunk_size: int |
|
chunk_overlap: int |
|
|
|
|
|
class YoutubeLoaderConfig(BaseModel): |
|
language: List[str] |
|
translation: Optional[str] = None |
|
|
|
|
|
class ConfigUpdateForm(BaseModel): |
|
pdf_extract_images: Optional[bool] = None |
|
chunk: Optional[ChunkParamUpdateForm] = None |
|
web_loader_ssl_verification: Optional[bool] = None |
|
youtube: Optional[YoutubeLoaderConfig] = None |
|
|
|
|
|
@app.post("/config/update") |
|
async def update_rag_config(form_data: ConfigUpdateForm, user=Depends(get_admin_user)): |
|
app.state.config.PDF_EXTRACT_IMAGES = ( |
|
form_data.pdf_extract_images |
|
if form_data.pdf_extract_images is not None |
|
else app.state.config.PDF_EXTRACT_IMAGES |
|
) |
|
|
|
app.state.config.CHUNK_SIZE = ( |
|
form_data.chunk.chunk_size |
|
if form_data.chunk is not None |
|
else app.state.config.CHUNK_SIZE |
|
) |
|
|
|
app.state.config.CHUNK_OVERLAP = ( |
|
form_data.chunk.chunk_overlap |
|
if form_data.chunk is not None |
|
else app.state.config.CHUNK_OVERLAP |
|
) |
|
|
|
app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = ( |
|
form_data.web_loader_ssl_verification |
|
if form_data.web_loader_ssl_verification != None |
|
else app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION |
|
) |
|
|
|
app.state.config.YOUTUBE_LOADER_LANGUAGE = ( |
|
form_data.youtube.language |
|
if form_data.youtube is not None |
|
else app.state.config.YOUTUBE_LOADER_LANGUAGE |
|
) |
|
|
|
app.state.YOUTUBE_LOADER_TRANSLATION = ( |
|
form_data.youtube.translation |
|
if form_data.youtube is not None |
|
else app.state.YOUTUBE_LOADER_TRANSLATION |
|
) |
|
|
|
return { |
|
"status": True, |
|
"pdf_extract_images": app.state.config.PDF_EXTRACT_IMAGES, |
|
"chunk": { |
|
"chunk_size": app.state.config.CHUNK_SIZE, |
|
"chunk_overlap": app.state.config.CHUNK_OVERLAP, |
|
}, |
|
"web_loader_ssl_verification": app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, |
|
"youtube": { |
|
"language": app.state.config.YOUTUBE_LOADER_LANGUAGE, |
|
"translation": app.state.YOUTUBE_LOADER_TRANSLATION, |
|
}, |
|
} |
|
|
|
|
|
@app.get("/template") |
|
async def get_rag_template(user=Depends(get_current_user)): |
|
return { |
|
"status": True, |
|
"template": app.state.config.RAG_TEMPLATE, |
|
} |
|
|
|
|
|
@app.get("/query/settings") |
|
async def get_query_settings(user=Depends(get_admin_user)): |
|
return { |
|
"status": True, |
|
"template": app.state.config.RAG_TEMPLATE, |
|
"k": app.state.config.TOP_K, |
|
"r": app.state.config.RELEVANCE_THRESHOLD, |
|
"hybrid": app.state.config.ENABLE_RAG_HYBRID_SEARCH, |
|
} |
|
|
|
|
|
class QuerySettingsForm(BaseModel): |
|
k: Optional[int] = None |
|
r: Optional[float] = None |
|
template: Optional[str] = None |
|
hybrid: Optional[bool] = None |
|
|
|
|
|
@app.post("/query/settings/update") |
|
async def update_query_settings( |
|
form_data: QuerySettingsForm, user=Depends(get_admin_user) |
|
): |
|
app.state.config.RAG_TEMPLATE = ( |
|
form_data.template if form_data.template else RAG_TEMPLATE |
|
) |
|
app.state.config.TOP_K = form_data.k if form_data.k else 4 |
|
app.state.config.RELEVANCE_THRESHOLD = form_data.r if form_data.r else 0.0 |
|
app.state.config.ENABLE_RAG_HYBRID_SEARCH = ( |
|
form_data.hybrid if form_data.hybrid else False |
|
) |
|
return { |
|
"status": True, |
|
"template": app.state.config.RAG_TEMPLATE, |
|
"k": app.state.config.TOP_K, |
|
"r": app.state.config.RELEVANCE_THRESHOLD, |
|
"hybrid": app.state.config.ENABLE_RAG_HYBRID_SEARCH, |
|
} |
|
|
|
|
|
class QueryDocForm(BaseModel): |
|
collection_name: str |
|
query: str |
|
k: Optional[int] = None |
|
r: Optional[float] = None |
|
hybrid: Optional[bool] = None |
|
|
|
|
|
@app.post("/query/doc") |
|
def query_doc_handler( |
|
form_data: QueryDocForm, |
|
user=Depends(get_current_user), |
|
): |
|
try: |
|
if app.state.config.ENABLE_RAG_HYBRID_SEARCH: |
|
return query_doc_with_hybrid_search( |
|
collection_name=form_data.collection_name, |
|
query=form_data.query, |
|
embedding_function=app.state.EMBEDDING_FUNCTION, |
|
k=form_data.k if form_data.k else app.state.config.TOP_K, |
|
reranking_function=app.state.sentence_transformer_rf, |
|
r=( |
|
form_data.r if form_data.r else app.state.config.RELEVANCE_THRESHOLD |
|
), |
|
) |
|
else: |
|
return query_doc( |
|
collection_name=form_data.collection_name, |
|
query=form_data.query, |
|
embedding_function=app.state.EMBEDDING_FUNCTION, |
|
k=form_data.k if form_data.k else app.state.config.TOP_K, |
|
) |
|
except Exception as e: |
|
log.exception(e) |
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=ERROR_MESSAGES.DEFAULT(e), |
|
) |
|
|
|
|
|
class QueryCollectionsForm(BaseModel): |
|
collection_names: List[str] |
|
query: str |
|
k: Optional[int] = None |
|
r: Optional[float] = None |
|
hybrid: Optional[bool] = None |
|
|
|
|
|
@app.post("/query/collection") |
|
def query_collection_handler( |
|
form_data: QueryCollectionsForm, |
|
user=Depends(get_current_user), |
|
): |
|
try: |
|
if app.state.config.ENABLE_RAG_HYBRID_SEARCH: |
|
return query_collection_with_hybrid_search( |
|
collection_names=form_data.collection_names, |
|
query=form_data.query, |
|
embedding_function=app.state.EMBEDDING_FUNCTION, |
|
k=form_data.k if form_data.k else app.state.config.TOP_K, |
|
reranking_function=app.state.sentence_transformer_rf, |
|
r=( |
|
form_data.r if form_data.r else app.state.config.RELEVANCE_THRESHOLD |
|
), |
|
) |
|
else: |
|
return query_collection( |
|
collection_names=form_data.collection_names, |
|
query=form_data.query, |
|
embedding_function=app.state.EMBEDDING_FUNCTION, |
|
k=form_data.k if form_data.k else app.state.config.TOP_K, |
|
) |
|
|
|
except Exception as e: |
|
log.exception(e) |
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=ERROR_MESSAGES.DEFAULT(e), |
|
) |
|
|
|
|
|
@app.post("/youtube") |
|
def store_youtube_video(form_data: UrlForm, user=Depends(get_current_user)): |
|
try: |
|
loader = YoutubeLoader.from_youtube_url( |
|
form_data.url, |
|
add_video_info=True, |
|
language=app.state.config.YOUTUBE_LOADER_LANGUAGE, |
|
translation=app.state.YOUTUBE_LOADER_TRANSLATION, |
|
) |
|
data = loader.load() |
|
|
|
collection_name = form_data.collection_name |
|
if collection_name == "": |
|
collection_name = calculate_sha256_string(form_data.url)[:63] |
|
|
|
store_data_in_vector_db(data, collection_name, overwrite=True) |
|
return { |
|
"status": True, |
|
"collection_name": collection_name, |
|
"filename": form_data.url, |
|
} |
|
except Exception as e: |
|
log.exception(e) |
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=ERROR_MESSAGES.DEFAULT(e), |
|
) |
|
|
|
|
|
@app.post("/web") |
|
def store_web(form_data: UrlForm, user=Depends(get_current_user)): |
|
|
|
try: |
|
loader = get_web_loader( |
|
form_data.url, |
|
verify_ssl=app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, |
|
) |
|
data = loader.load() |
|
|
|
collection_name = form_data.collection_name |
|
if collection_name == "": |
|
collection_name = calculate_sha256_string(form_data.url)[:63] |
|
|
|
store_data_in_vector_db(data, collection_name, overwrite=True) |
|
return { |
|
"status": True, |
|
"collection_name": collection_name, |
|
"filename": form_data.url, |
|
} |
|
except Exception as e: |
|
log.exception(e) |
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=ERROR_MESSAGES.DEFAULT(e), |
|
) |
|
|
|
|
|
def get_web_loader(url: str, verify_ssl: bool = True): |
|
|
|
if isinstance(validators.url(url), validators.ValidationError): |
|
raise ValueError(ERROR_MESSAGES.INVALID_URL) |
|
if not ENABLE_RAG_LOCAL_WEB_FETCH: |
|
|
|
parsed_url = urllib.parse.urlparse(url) |
|
|
|
ipv4_addresses, ipv6_addresses = resolve_hostname(parsed_url.hostname) |
|
|
|
|
|
for ip in ipv4_addresses: |
|
if validators.ipv4(ip, private=True): |
|
raise ValueError(ERROR_MESSAGES.INVALID_URL) |
|
for ip in ipv6_addresses: |
|
if validators.ipv6(ip, private=True): |
|
raise ValueError(ERROR_MESSAGES.INVALID_URL) |
|
return WebBaseLoader(url, verify_ssl=verify_ssl) |
|
|
|
|
|
def resolve_hostname(hostname): |
|
|
|
addr_info = socket.getaddrinfo(hostname, None) |
|
|
|
|
|
ipv4_addresses = [info[4][0] for info in addr_info if info[0] == socket.AF_INET] |
|
ipv6_addresses = [info[4][0] for info in addr_info if info[0] == socket.AF_INET6] |
|
|
|
return ipv4_addresses, ipv6_addresses |
|
|
|
|
|
def store_data_in_vector_db(data, collection_name, overwrite: bool = False) -> bool: |
|
|
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=app.state.config.CHUNK_SIZE, |
|
chunk_overlap=app.state.config.CHUNK_OVERLAP, |
|
add_start_index=True, |
|
) |
|
|
|
docs = text_splitter.split_documents(data) |
|
|
|
if len(docs) > 0: |
|
log.info(f"store_data_in_vector_db {docs}") |
|
return store_docs_in_vector_db(docs, collection_name, overwrite), None |
|
else: |
|
raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT) |
|
|
|
|
|
def store_text_in_vector_db( |
|
text, metadata, collection_name, overwrite: bool = False |
|
) -> bool: |
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=app.state.config.CHUNK_SIZE, |
|
chunk_overlap=app.state.config.CHUNK_OVERLAP, |
|
add_start_index=True, |
|
) |
|
docs = text_splitter.create_documents([text], metadatas=[metadata]) |
|
return store_docs_in_vector_db(docs, collection_name, overwrite) |
|
|
|
|
|
def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> bool: |
|
log.info(f"store_docs_in_vector_db {docs} {collection_name}") |
|
|
|
texts = [doc.page_content for doc in docs] |
|
metadatas = [doc.metadata for doc in docs] |
|
|
|
try: |
|
if overwrite: |
|
for collection in CHROMA_CLIENT.list_collections(): |
|
if collection_name == collection.name: |
|
log.info(f"deleting existing collection {collection_name}") |
|
CHROMA_CLIENT.delete_collection(name=collection_name) |
|
|
|
collection = CHROMA_CLIENT.create_collection(name=collection_name) |
|
|
|
embedding_func = get_embedding_function( |
|
app.state.config.RAG_EMBEDDING_ENGINE, |
|
app.state.config.RAG_EMBEDDING_MODEL, |
|
app.state.sentence_transformer_ef, |
|
app.state.config.OPENAI_API_KEY, |
|
app.state.config.OPENAI_API_BASE_URL, |
|
) |
|
|
|
embedding_texts = list(map(lambda x: x.replace("\n", " "), texts)) |
|
embeddings = embedding_func(embedding_texts) |
|
|
|
for batch in create_batches( |
|
api=CHROMA_CLIENT, |
|
ids=[str(uuid.uuid4()) for _ in texts], |
|
metadatas=metadatas, |
|
embeddings=embeddings, |
|
documents=texts, |
|
): |
|
collection.add(*batch) |
|
|
|
return True |
|
except Exception as e: |
|
log.exception(e) |
|
if e.__class__.__name__ == "UniqueConstraintError": |
|
return True |
|
|
|
return False |
|
|
|
|
|
def get_loader(filename: str, file_content_type: str, file_path: str): |
|
file_ext = filename.split(".")[-1].lower() |
|
known_type = True |
|
|
|
known_source_ext = [ |
|
"go", |
|
"py", |
|
"java", |
|
"sh", |
|
"bat", |
|
"ps1", |
|
"cmd", |
|
"js", |
|
"ts", |
|
"css", |
|
"cpp", |
|
"hpp", |
|
"h", |
|
"c", |
|
"cs", |
|
"sql", |
|
"log", |
|
"ini", |
|
"pl", |
|
"pm", |
|
"r", |
|
"dart", |
|
"dockerfile", |
|
"env", |
|
"php", |
|
"hs", |
|
"hsc", |
|
"lua", |
|
"nginxconf", |
|
"conf", |
|
"m", |
|
"mm", |
|
"plsql", |
|
"perl", |
|
"rb", |
|
"rs", |
|
"db2", |
|
"scala", |
|
"bash", |
|
"swift", |
|
"vue", |
|
"svelte", |
|
] |
|
|
|
if file_ext == "pdf": |
|
loader = PyPDFLoader( |
|
file_path, extract_images=app.state.config.PDF_EXTRACT_IMAGES |
|
) |
|
elif file_ext == "csv": |
|
loader = CSVLoader(file_path) |
|
elif file_ext == "rst": |
|
loader = UnstructuredRSTLoader(file_path, mode="elements") |
|
elif file_ext == "xml": |
|
loader = UnstructuredXMLLoader(file_path) |
|
elif file_ext in ["htm", "html"]: |
|
loader = BSHTMLLoader(file_path, open_encoding="unicode_escape") |
|
elif file_ext == "md": |
|
loader = UnstructuredMarkdownLoader(file_path) |
|
elif file_content_type == "application/epub+zip": |
|
loader = UnstructuredEPubLoader(file_path) |
|
elif ( |
|
file_content_type |
|
== "application/vnd.openxmlformats-officedocument.wordprocessingml.document" |
|
or file_ext in ["doc", "docx"] |
|
): |
|
loader = Docx2txtLoader(file_path) |
|
elif file_content_type in [ |
|
"application/vnd.ms-excel", |
|
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", |
|
] or file_ext in ["xls", "xlsx"]: |
|
loader = UnstructuredExcelLoader(file_path) |
|
elif file_content_type in [ |
|
"application/vnd.ms-powerpoint", |
|
"application/vnd.openxmlformats-officedocument.presentationml.presentation", |
|
] or file_ext in ["ppt", "pptx"]: |
|
loader = UnstructuredPowerPointLoader(file_path) |
|
elif file_ext in known_source_ext or ( |
|
file_content_type and file_content_type.find("text/") >= 0 |
|
): |
|
loader = TextLoader(file_path, autodetect_encoding=True) |
|
else: |
|
loader = TextLoader(file_path, autodetect_encoding=True) |
|
known_type = False |
|
|
|
return loader, known_type |
|
|
|
|
|
@app.post("/doc") |
|
def store_doc( |
|
collection_name: Optional[str] = Form(None), |
|
file: UploadFile = File(...), |
|
user=Depends(get_current_user), |
|
): |
|
|
|
|
|
log.info(f"file.content_type: {file.content_type}") |
|
try: |
|
unsanitized_filename = file.filename |
|
filename = os.path.basename(unsanitized_filename) |
|
|
|
file_path = f"{UPLOAD_DIR}/{filename}" |
|
|
|
contents = file.file.read() |
|
with open(file_path, "wb") as f: |
|
f.write(contents) |
|
f.close() |
|
|
|
f = open(file_path, "rb") |
|
if collection_name == None: |
|
collection_name = calculate_sha256(f)[:63] |
|
f.close() |
|
|
|
loader, known_type = get_loader(filename, file.content_type, file_path) |
|
data = loader.load() |
|
|
|
try: |
|
result = store_data_in_vector_db(data, collection_name) |
|
|
|
if result: |
|
return { |
|
"status": True, |
|
"collection_name": collection_name, |
|
"filename": filename, |
|
"known_type": known_type, |
|
} |
|
except Exception as e: |
|
raise HTTPException( |
|
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, |
|
detail=e, |
|
) |
|
except Exception as e: |
|
log.exception(e) |
|
if "No pandoc was found" in str(e): |
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED, |
|
) |
|
else: |
|
raise HTTPException( |
|
status_code=status.HTTP_400_BAD_REQUEST, |
|
detail=ERROR_MESSAGES.DEFAULT(e), |
|
) |
|
|
|
|
|
class TextRAGForm(BaseModel): |
|
name: str |
|
content: str |
|
collection_name: Optional[str] = None |
|
|
|
|
|
@app.post("/text") |
|
def store_text( |
|
form_data: TextRAGForm, |
|
user=Depends(get_current_user), |
|
): |
|
|
|
collection_name = form_data.collection_name |
|
if collection_name == None: |
|
collection_name = calculate_sha256_string(form_data.content) |
|
|
|
result = store_text_in_vector_db( |
|
form_data.content, |
|
metadata={"name": form_data.name, "created_by": user.id}, |
|
collection_name=collection_name, |
|
) |
|
|
|
if result: |
|
return {"status": True, "collection_name": collection_name} |
|
else: |
|
raise HTTPException( |
|
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, |
|
detail=ERROR_MESSAGES.DEFAULT(), |
|
) |
|
|
|
|
|
@app.get("/scan") |
|
def scan_docs_dir(user=Depends(get_admin_user)): |
|
for path in Path(DOCS_DIR).rglob("./**/*"): |
|
try: |
|
if path.is_file() and not path.name.startswith("."): |
|
tags = extract_folders_after_data_docs(path) |
|
filename = path.name |
|
file_content_type = mimetypes.guess_type(path) |
|
|
|
f = open(path, "rb") |
|
collection_name = calculate_sha256(f)[:63] |
|
f.close() |
|
|
|
loader, known_type = get_loader( |
|
filename, file_content_type[0], str(path) |
|
) |
|
data = loader.load() |
|
|
|
try: |
|
result = store_data_in_vector_db(data, collection_name) |
|
|
|
if result: |
|
sanitized_filename = sanitize_filename(filename) |
|
doc = Documents.get_doc_by_name(sanitized_filename) |
|
|
|
if doc == None: |
|
doc = Documents.insert_new_doc( |
|
user.id, |
|
DocumentForm( |
|
**{ |
|
"name": sanitized_filename, |
|
"title": filename, |
|
"collection_name": collection_name, |
|
"filename": filename, |
|
"content": ( |
|
json.dumps( |
|
{ |
|
"tags": list( |
|
map( |
|
lambda name: {"name": name}, |
|
tags, |
|
) |
|
) |
|
} |
|
) |
|
if len(tags) |
|
else "{}" |
|
), |
|
} |
|
), |
|
) |
|
except Exception as e: |
|
log.exception(e) |
|
pass |
|
|
|
except Exception as e: |
|
log.exception(e) |
|
|
|
return True |
|
|
|
|
|
@app.get("/reset/db") |
|
def reset_vector_db(user=Depends(get_admin_user)): |
|
CHROMA_CLIENT.reset() |
|
|
|
|
|
@app.get("/reset") |
|
def reset(user=Depends(get_admin_user)) -> bool: |
|
folder = f"{UPLOAD_DIR}" |
|
for filename in os.listdir(folder): |
|
file_path = os.path.join(folder, filename) |
|
try: |
|
if os.path.isfile(file_path) or os.path.islink(file_path): |
|
os.unlink(file_path) |
|
elif os.path.isdir(file_path): |
|
shutil.rmtree(file_path) |
|
except Exception as e: |
|
log.error("Failed to delete %s. Reason: %s" % (file_path, e)) |
|
|
|
try: |
|
CHROMA_CLIENT.reset() |
|
except Exception as e: |
|
log.exception(e) |
|
|
|
return True |
|
|
|
|
|
if ENV == "dev": |
|
|
|
@app.get("/ef") |
|
async def get_embeddings(): |
|
return {"result": app.state.EMBEDDING_FUNCTION("hello world")} |
|
|
|
@app.get("/ef/{text}") |
|
async def get_embeddings_text(text: str): |
|
return {"result": app.state.EMBEDDING_FUNCTION(text)} |
|
|