Spaces:
Runtime error
Runtime error
# MIT License | |
# Copyright (c) 2022 Intelligent Systems Lab Org | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# File author: Zhenyu Li | |
import gradio as gr | |
from PIL import Image | |
import tempfile | |
import torch | |
import numpy as np | |
from zoedepth.utils.arg_utils import parse_unknown | |
import argparse | |
from zoedepth.models.builder import build_model | |
from zoedepth.utils.config import get_config_user | |
import matplotlib | |
import cv2 | |
from infer_user import regular_tile_param, random_tile_param | |
from zoedepth.models.base_models.midas import Resize | |
from torchvision.transforms import Compose | |
from PIL import Image | |
from torchvision import transforms | |
import torch.nn.functional as F | |
from zoedepth.models.base_models.midas import Resize | |
from torchvision.transforms import Compose | |
import gradio as gr | |
import numpy as np | |
import trimesh | |
from zoedepth.utils.geometry import depth_to_points, create_triangles | |
from functools import partial | |
import tempfile | |
def depth_edges_mask(depth, occ_filter_thr): | |
"""Returns a mask of edges in the depth map. | |
Args: | |
depth: 2D numpy array of shape (H, W) with dtype float32. | |
Returns: | |
mask: 2D numpy array of shape (H, W) with dtype bool. | |
""" | |
# Compute the x and y gradients of the depth map. | |
depth_dx, depth_dy = np.gradient(depth) | |
# Compute the gradient magnitude. | |
depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2) | |
# Compute the edge mask. | |
# mask = depth_grad > 0.05 # default in zoedepth | |
mask = depth_grad > occ_filter_thr # preserve more edges (?) | |
return mask | |
def load_state_dict(model, state_dict): | |
"""Load state_dict into model, handling DataParallel and DistributedDataParallel. Also checks for "model" key in state_dict. | |
DataParallel prefixes state_dict keys with 'module.' when saving. | |
If the model is not a DataParallel model but the state_dict is, then prefixes are removed. | |
If the model is a DataParallel model but the state_dict is not, then prefixes are added. | |
""" | |
state_dict = state_dict.get('model', state_dict) | |
# if model is a DataParallel model, then state_dict keys are prefixed with 'module.' | |
do_prefix = isinstance( | |
model, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel)) | |
state = {} | |
for k, v in state_dict.items(): | |
if k.startswith('module.') and not do_prefix: | |
k = k[7:] | |
if not k.startswith('module.') and do_prefix: | |
k = 'module.' + k | |
state[k] = v | |
model.load_state_dict(state, strict=True) | |
print("Loaded successfully") | |
return model | |
def load_wts(model, checkpoint_path): | |
ckpt = torch.load(checkpoint_path, map_location='cpu') | |
return load_state_dict(model, ckpt) | |
def load_ckpt(model, checkpoint): | |
model = load_wts(model, checkpoint) | |
print("Loaded weights from {0}".format(checkpoint)) | |
return model | |
def colorize(value, cmap='magma_r', vmin=None, vmax=None): | |
# normalize | |
vmin = value.min() if vmin is None else vmin | |
# vmax = value.max() if vmax is None else vmax | |
vmax = np.percentile(value, 95) if vmax is None else vmax | |
if vmin != vmax: | |
value = (value - vmin) / (vmax - vmin) # vmin..vmax | |
else: | |
value = value * 0. | |
cmapper = matplotlib.cm.get_cmap(cmap) | |
value = cmapper(value, bytes=True) # ((1)xhxwx4) | |
value = value[:, :, :3] # bgr -> rgb | |
# rgb_value = value[..., ::-1] | |
rgb_value = value | |
return rgb_value | |
def predict_depth(model, image, mode, pn, reso, ps, device=None): | |
pil_image = image | |
if device is not None: | |
image = transforms.ToTensor()(pil_image).unsqueeze(0).to(device) | |
else: | |
image = transforms.ToTensor()(pil_image).unsqueeze(0).cuda() | |
image_height, image_width = image.shape[-2], image.shape[-1] | |
if reso != '': | |
image_resolution = (int(reso.split('x')[0]), int(reso.split('x')[1])) | |
else: | |
image_resolution = (2160, 3840) | |
image_hr = F.interpolate(image, image_resolution, mode='bicubic', align_corners=True) | |
preprocess = Compose([Resize(512, 384, keep_aspect_ratio=False, ensure_multiple_of=32, resize_method="minimal")]) | |
image_lr = preprocess(image) | |
if ps != '': | |
patch_size = (int(ps.split('x')[0]), int(ps.split('x')[1])) | |
else: | |
patch_size = (int(image_resolution[0] // 4), int(image_resolution[1] // 4)) | |
avg_depth_map = regular_tile_param( | |
model, | |
image_hr, | |
offset_x=0, | |
offset_y=0, | |
img_lr=image_lr, | |
crop_size=patch_size, | |
img_resolution=image_resolution, | |
transform=preprocess, | |
blr_mask=True) | |
if mode== 'P16': | |
pass | |
elif mode== 'P49': | |
regular_tile_param( | |
model, | |
image_hr, | |
offset_x=patch_size[1]//2, | |
offset_y=0, | |
img_lr=image_lr, | |
iter_pred=avg_depth_map.average_map, | |
boundary=0, | |
update=True, | |
avg_depth_map=avg_depth_map, | |
crop_size=patch_size, | |
img_resolution=image_resolution, | |
transform=preprocess, | |
blr_mask=True) | |
regular_tile_param( | |
model, | |
image_hr, | |
offset_x=0, | |
offset_y=patch_size[0]//2, | |
img_lr=image_lr, | |
iter_pred=avg_depth_map.average_map, | |
boundary=0, | |
update=True, | |
avg_depth_map=avg_depth_map, | |
crop_size=patch_size, | |
img_resolution=image_resolution, | |
transform=preprocess, | |
blr_mask=True) | |
regular_tile_param( | |
model, | |
image_hr, | |
offset_x=patch_size[1]//2, | |
offset_y=patch_size[0]//2, | |
img_lr=image_lr, | |
iter_pred=avg_depth_map.average_map, | |
boundary=0, | |
update=True, | |
avg_depth_map=avg_depth_map, | |
crop_size=patch_size, | |
img_resolution=image_resolution, | |
transform=preprocess, | |
blr_mask=True) | |
elif mode == 'R': | |
regular_tile_param( | |
model, | |
image_hr, | |
offset_x=patch_size[1]//2, | |
offset_y=0, | |
img_lr=image_lr, | |
iter_pred=avg_depth_map.average_map, | |
boundary=0, | |
update=True, | |
avg_depth_map=avg_depth_map, | |
crop_size=patch_size, | |
img_resolution=image_resolution, | |
transform=preprocess, | |
blr_mask=True) | |
regular_tile_param( | |
model, | |
image_hr, | |
offset_x=0, | |
offset_y=patch_size[0]//2, | |
img_lr=image_lr, | |
iter_pred=avg_depth_map.average_map, | |
boundary=0, | |
update=True, | |
avg_depth_map=avg_depth_map, | |
crop_size=patch_size, | |
img_resolution=image_resolution, | |
transform=preprocess, | |
blr_mask=True) | |
regular_tile_param( | |
model, | |
image_hr, | |
offset_x=patch_size[1]//2, | |
offset_y=patch_size[0]//2, | |
img_lr=image_lr, | |
iter_pred=avg_depth_map.average_map, | |
boundary=0, | |
update=True, | |
avg_depth_map=avg_depth_map, | |
crop_size=patch_size, | |
img_resolution=image_resolution, | |
transform=preprocess, | |
blr_mask=True) | |
for i in range(int(pn)): | |
random_tile_param( | |
model, | |
image_hr, | |
img_lr=image_lr, | |
iter_pred=avg_depth_map.average_map, | |
boundary=0, | |
update=True, | |
avg_depth_map=avg_depth_map, | |
crop_size=patch_size, | |
img_resolution=image_resolution, | |
transform=preprocess, | |
blr_mask=True) | |
depth = avg_depth_map.average_map.detach().cpu() | |
depth = F.interpolate(depth.unsqueeze(dim=0).unsqueeze(dim=0), (image_height, image_width), mode='bicubic', align_corners=True).squeeze().numpy() | |
return depth | |
def create_demo(model): | |
gr.Markdown("## Depth Prediction Demo") | |
with gr.Accordion("Advanced options", open=False): | |
mode = gr.Radio(["P49", "R"], label="Tiling mode", info="We recommand using P49 for fast evaluation and R with 1024 patches for best visualization results, respectively", elem_id='mode', value='R'), | |
patch_number = gr.Slider(1, 1024, label="Please decide the number of random patches (Only useful in mode=R)", step=1, value=256) | |
resolution = gr.Textbox(label="Proccessing resolution (Default 4K. Use 'x' to split height and width.)", elem_id='mode', value='2160x3840') | |
patch_size = gr.Textbox(label="Patch size (Default 1/4 of image resolution. Use 'x' to split height and width.)", elem_id='mode', value='540x960') | |
with gr.Row(): | |
input_image = gr.Image(label="Input Image", type='pil', elem_id='img-display-input') | |
depth_image = gr.Image(label="Depth Map", elem_id='img-display-output') | |
raw_file = gr.File(label="16-bit raw depth, multiplier:256") | |
submit = gr.Button("Submit") | |
def on_submit(image, mode, pn, reso, ps): | |
depth = predict_depth(model, image, mode, pn, reso, ps) | |
colored_depth = colorize(depth, cmap='gray_r') | |
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False) | |
raw_depth = Image.fromarray((depth*256).astype('uint16')) | |
raw_depth.save(tmp.name) | |
return [colored_depth, tmp.name] | |
submit.click(on_submit, inputs=[input_image, mode[0], patch_number, resolution, patch_size], outputs=[depth_image, raw_file]) | |
examples = gr.Examples(examples=["examples/example_1.jpeg", "examples/example_2.jpeg", "examples/example_3.jpeg"], inputs=[input_image]) | |
def get_mesh(model, image, mode, pn, reso, ps, keep_edges, occ_filter_thr, fov): | |
depth = predict_depth(model, image, mode, pn, reso, ps) | |
image.thumbnail((1024,1024)) # limit the size of the input image | |
depth = F.interpolate(torch.from_numpy(depth).unsqueeze(dim=0).unsqueeze(dim=0), (image.height, image.width), mode='bicubic', align_corners=True).squeeze().numpy() | |
pts3d = depth_to_points(depth[None], fov=float(fov)) | |
pts3d = pts3d.reshape(-1, 3) | |
# Create a trimesh mesh from the points | |
# Each pixel is connected to its 4 neighbors | |
# colors are the RGB values of the image | |
verts = pts3d.reshape(-1, 3) | |
image = np.array(image) | |
if keep_edges: | |
triangles = create_triangles(image.shape[0], image.shape[1]) | |
else: | |
triangles = create_triangles(image.shape[0], image.shape[1], mask=~depth_edges_mask(depth, occ_filter_thr=float(occ_filter_thr))) | |
colors = image.reshape(-1, 3) | |
mesh = trimesh.Trimesh(vertices=verts, faces=triangles, vertex_colors=colors) | |
# Save as glb | |
glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False) | |
glb_path = glb_file.name | |
mesh.export(glb_path) | |
return glb_path | |
def create_demo_3d(model): | |
gr.Markdown("### Image to 3D Mesh") | |
gr.Markdown("Convert a single 2D image to a 3D mesh") | |
with gr.Accordion("Advanced options", open=False): | |
mode = gr.Radio(["P49", "R"], label="Tiling mode", info="We recommand using P49 for fast evaluation and R with 1024 patches for best visualization results, respectively", elem_id='mode', value='R'), | |
patch_number = gr.Slider(1, 1024, label="Please decide the number of random patches (Only useful in mode=R)", step=1, value=256) | |
resolution = gr.Textbox(label="Proccessing resolution (Default 4K. Use 'x' to split height and width)", value='2160x3840') | |
patch_size = gr.Textbox(label="Patch size (Default 1/4 of image resolution. Use 'x' to split height and width)", value='540x960') | |
checkbox = gr.Checkbox(label="Keep occlusion edges", value=False) | |
# occ_filter_thr = gr.Textbox(label="Occlusion filter threshold", info="Larger value will reserve more edges (Only useful when NOT keeping occlusion edges)", value='0.5') | |
# fov = gr.Textbox(label="FOV for inv-projection", value='55') | |
occ_filter_thr = gr.Slider(0.01, 5, label="Occlusion edge filter threshold", info="Larger value will reserve more occlusion edges (Only useful when NOT keeping occlusion edges)", step=0.01, value=0.2) | |
fov = gr.Slider(5, 180, label="FOV for inv-projection", step=1, value=55) | |
with gr.Row(): | |
input_image = gr.Image(label="Input Image", type='pil') | |
result = gr.Model3D(label="3d mesh reconstruction", clear_color=[1.0, 1.0, 1.0, 1.0]) | |
submit = gr.Button("Submit") | |
submit.click(partial(get_mesh, model), inputs=[input_image, mode[0], patch_number, resolution, patch_size, checkbox, occ_filter_thr, fov], outputs=[result]) | |
examples = gr.Examples(examples=["examples/example_1.jpeg", "examples/example_4.jpeg", "examples/example_3.jpeg"], inputs=[input_image]) | |