Spaces:
Sleeping
Sleeping
Zwea Htet
commited on
Commit
·
9a2650e
1
Parent(s):
38bc9e2
added file system for huggingface and object serialization
Browse files- .gitignore +2 -1
- models/bloom.py +45 -16
- requirements.txt +3 -1
.gitignore
CHANGED
@@ -3,4 +3,5 @@ data/__pycache__
|
|
3 |
models/__pycache__
|
4 |
.env
|
5 |
__pycache__
|
6 |
-
vectorStores
|
|
|
|
3 |
models/__pycache__
|
4 |
.env
|
5 |
__pycache__
|
6 |
+
vectorStores
|
7 |
+
.vscode
|
models/bloom.py
CHANGED
@@ -1,22 +1,31 @@
|
|
1 |
import os
|
|
|
2 |
from json import dumps, loads
|
3 |
|
4 |
import numpy as np
|
5 |
import openai
|
6 |
import pandas as pd
|
7 |
from dotenv import load_dotenv
|
8 |
-
from
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
12 |
|
13 |
from utils.customLLM import CustomLLM
|
14 |
|
15 |
load_dotenv()
|
16 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
|
|
17 |
|
18 |
# get model
|
19 |
-
# model_name = "bigscience/bloom-560m"
|
20 |
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
21 |
# model = AutoModelForCausalLM.from_pretrained(model_name, config='T5Config')
|
22 |
|
@@ -44,35 +53,55 @@ prompt_helper = PromptHelper(context_window, num_output, chunk_overlap_ratio)
|
|
44 |
|
45 |
# define llm
|
46 |
llm_predictor = LLMPredictor(llm=CustomLLM())
|
47 |
-
service_context = ServiceContext.from_defaults(
|
|
|
|
|
48 |
|
49 |
-
|
|
|
50 |
df = pd.read_json(file_path)
|
51 |
-
df = df.replace(to_replace="", value=np.nan).dropna(axis=0)
|
52 |
-
|
53 |
parsed = loads(df.to_json(orient="records"))
|
54 |
|
55 |
documents = []
|
56 |
for item in parsed:
|
57 |
-
document = Document(
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
62 |
documents.append(document)
|
63 |
|
64 |
return documents
|
65 |
|
|
|
66 |
def initialize_index(index_name):
|
67 |
file_path = f"./vectorStores/{index_name}"
|
68 |
if os.path.exists(file_path):
|
69 |
# rebuild storage context
|
70 |
storage_context = StorageContext.from_defaults(persist_dir=file_path)
|
71 |
-
|
|
|
72 |
index = load_index_from_storage(storage_context)
|
|
|
|
|
|
|
|
|
73 |
return index
|
74 |
else:
|
75 |
documents = prepare_data(r"./assets/regItems.json")
|
76 |
-
index = GPTVectorStoreIndex.from_documents(
|
|
|
|
|
|
|
77 |
index.storage_context.persist(file_path)
|
78 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import pickle
|
3 |
from json import dumps, loads
|
4 |
|
5 |
import numpy as np
|
6 |
import openai
|
7 |
import pandas as pd
|
8 |
from dotenv import load_dotenv
|
9 |
+
from huggingface_hub import HfFileSystem
|
10 |
+
from llama_index import (
|
11 |
+
Document,
|
12 |
+
GPTVectorStoreIndex,
|
13 |
+
LLMPredictor,
|
14 |
+
PromptHelper,
|
15 |
+
ServiceContext,
|
16 |
+
StorageContext,
|
17 |
+
load_index_from_storage,
|
18 |
+
)
|
19 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
20 |
|
21 |
from utils.customLLM import CustomLLM
|
22 |
|
23 |
load_dotenv()
|
24 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
25 |
+
fs = HfFileSystem()
|
26 |
|
27 |
# get model
|
28 |
+
# model_name = "bigscience/bloom-560m"
|
29 |
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
30 |
# model = AutoModelForCausalLM.from_pretrained(model_name, config='T5Config')
|
31 |
|
|
|
53 |
|
54 |
# define llm
|
55 |
llm_predictor = LLMPredictor(llm=CustomLLM())
|
56 |
+
service_context = ServiceContext.from_defaults(
|
57 |
+
llm_predictor=llm_predictor, prompt_helper=prompt_helper
|
58 |
+
)
|
59 |
|
60 |
+
|
61 |
+
def prepare_data(file_path: str):
|
62 |
df = pd.read_json(file_path)
|
63 |
+
df = df.replace(to_replace="", value=np.nan).dropna(axis=0) # remove null values
|
64 |
+
|
65 |
parsed = loads(df.to_json(orient="records"))
|
66 |
|
67 |
documents = []
|
68 |
for item in parsed:
|
69 |
+
document = Document(
|
70 |
+
item["paragraphText"],
|
71 |
+
item["_id"]["$oid"],
|
72 |
+
extra_info={
|
73 |
+
"chapter": item["chapter"],
|
74 |
+
"article": item["article"],
|
75 |
+
"title": item["title"],
|
76 |
+
},
|
77 |
+
)
|
78 |
documents.append(document)
|
79 |
|
80 |
return documents
|
81 |
|
82 |
+
|
83 |
def initialize_index(index_name):
|
84 |
file_path = f"./vectorStores/{index_name}"
|
85 |
if os.path.exists(file_path):
|
86 |
# rebuild storage context
|
87 |
storage_context = StorageContext.from_defaults(persist_dir=file_path)
|
88 |
+
|
89 |
+
# local load index access
|
90 |
index = load_index_from_storage(storage_context)
|
91 |
+
|
92 |
+
# huggingface repo load access
|
93 |
+
with fs.open(file_path, "r") as file:
|
94 |
+
index = pickle.loads(file.readlines())
|
95 |
return index
|
96 |
else:
|
97 |
documents = prepare_data(r"./assets/regItems.json")
|
98 |
+
index = GPTVectorStoreIndex.from_documents(
|
99 |
+
documents, service_context=service_context
|
100 |
+
)
|
101 |
+
# local write access
|
102 |
index.storage_context.persist(file_path)
|
103 |
+
|
104 |
+
# huggingface repo write access
|
105 |
+
with fs.open(file_path, "w") as file:
|
106 |
+
file.write(pickle.dumps(index))
|
107 |
+
return index
|
requirements.txt
CHANGED
@@ -8,4 +8,6 @@ openai
|
|
8 |
faiss-cpu
|
9 |
python-dotenv
|
10 |
streamlit
|
11 |
-
streamlit-chat
|
|
|
|
|
|
8 |
faiss-cpu
|
9 |
python-dotenv
|
10 |
streamlit
|
11 |
+
streamlit-chat
|
12 |
+
huggingface_hub
|
13 |
+
pickle5
|