RegBotBeta / utils /customLLM.py
Zwea Htet
fixed some bugs
3b7cf58
raw
history blame
1.05 kB
from typing import Any, List, Mapping, Optional
from langchain.llms.base import LLM
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_name = "bigscience/bloom-560m"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, config='T5Config')
pl = pipeline(
model=model,
tokenizer=tokenizer,
task="text-generation",
# device=0, # GPU device number
# max_length=512,
do_sample=True,
top_p=0.95,
top_k=50,
temperature=0.7
)
class CustomLLM(LLM):
pipeline = pl
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
prompt_length = len(prompt)
response = self.pipeline(prompt, max_new_tokens=525)[0]["generated_text"]
# only return newly generated tokens
return response[prompt_length:]
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {"name_of_model": self.model_name}
@property
def _llm_type(self) -> str:
return "custom"