mm-commerce / mm_commerce.py
zhangzhe45
add
50d1ff1
import os
import warnings
from PIL import Image
from torchvision import transforms
from torchvision.transforms import InterpolationMode
warnings.filterwarnings("ignore")
from models.vit import VisionTransformer, interpolate_pos_embed
from models.med import BertConfig, BertModel, BertLMHeadModel
from transformers import BertTokenizer, CLIPConfig
from models.modeling_clip import CLIPModel, CLIPVisionModel, CLIPVisionConfig
import torch
from torch import nn
import torch.nn.functional as F
class BLIP_Decoder(nn.Module):
def __init__(self,
med_config='configs/med_config.json',
image_size=384,
vit='base',
vit_grad_ckpt=False,
vit_ckpt_layer=0,
prompt='[DEC]',
):
super().__init__()
self.visual_encoder, vision_width = create_vit(vit, image_size, vit_grad_ckpt, vit_ckpt_layer, 0)
self.tokenizer = init_tokenizer()
med_config = BertConfig.from_json_file(med_config)
med_config.encoder_width = vision_width
self.text_decoder = BertLMHeadModel(config=med_config)
self.prompt = prompt
self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1
def forward(self, image, caption):
image_embeds = self.visual_encoder(image)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
text = self.tokenizer(caption, padding='longest', truncation=True, max_length=40, return_tensors="pt").to(image.device)
text.input_ids[:, 0] = self.tokenizer.bos_token_id
decoder_targets = text.input_ids.masked_fill(text.input_ids == self.tokenizer.pad_token_id, -100)
decoder_targets[:, :self.prompt_length] = -100
decoder_output = self.text_decoder(text.input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
labels=decoder_targets,
return_dict=True,
)
loss_lm = decoder_output.loss
return loss_lm
def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0):
image_embeds = self.visual_encoder(image)
if not sample:
image_embeds = image_embeds.repeat_interleave(num_beams, dim=0)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
model_kwargs = {"encoder_hidden_states": image_embeds, "encoder_attention_mask": image_atts}
prompt = [self.prompt] * image.size(0)
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device)
input_ids[:, 0] = self.tokenizer.bos_token_id
input_ids = input_ids[:, :-1]
if sample:
# nucleus sampling
outputs = self.text_decoder.generate(input_ids=input_ids,
max_length=max_length,
min_length=min_length,
do_sample=True,
top_p=top_p,
num_return_sequences=1,
eos_token_id=self.tokenizer.sep_token_id,
pad_token_id=self.tokenizer.pad_token_id,
repetition_penalty=1.1,
**model_kwargs)
else:
# beam search
outputs = self.text_decoder.generate(input_ids=input_ids,
max_length=max_length,
min_length=min_length,
num_beams=num_beams,
eos_token_id=self.tokenizer.sep_token_id,
pad_token_id=self.tokenizer.pad_token_id,
repetition_penalty=repetition_penalty,
**model_kwargs)
captions = []
for output in outputs:
caption = self.tokenizer.decode(output, skip_special_tokens=False)
captions.append(caption[len(self.prompt):])
return captions
def init_tokenizer():
tokenizer = BertTokenizer.from_pretrained('resources/bert-large-chinese', do_lower_case=True)
tokenizer.add_special_tokens({'bos_token': '[DEC]'})
tokenizer.add_special_tokens({'additional_special_tokens': ['[ENC]']})
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
return tokenizer
def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0):
assert vit in ['base', 'large', 'large_v2'], "vit parameter must be base or large"
if vit == 'base':
vision_width = 768
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12,
num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
drop_path_rate=0 or drop_path_rate
)
elif vit == 'large':
vision_width = 1024
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24,
num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
drop_path_rate=0.1 or drop_path_rate
)
elif vit == 'large_v2':
vision_width = 1024
clip_config = CLIPConfig.from_pretrained('resources/clip_vit_large_patch14')
visual_encoder = CLIPVisionModel(clip_config)
return visual_encoder, vision_width
def load_image(image, image_size, device):
raw_image = Image.open(str(image)).convert('RGB')
w, h = raw_image.size
transform = transforms.Compose([
transforms.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
image = transform(raw_image).unsqueeze(0).to(device)
return image