Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
# Created by zd302 at 17/07/2024 | |
from fastapi import FastAPI | |
from pydantic import BaseModel | |
# from averitec.models.AveritecModule import Wikipediaretriever, Googleretriever, veracity_prediction, justification_generation | |
import uvicorn | |
# import spaces | |
app = FastAPI() | |
# --------------------------------------------------------------------------------------------------------------------- | |
import gradio as gr | |
import os | |
import torch | |
import json | |
import numpy as np | |
import requests | |
from rank_bm25 import BM25Okapi | |
from bs4 import BeautifulSoup | |
from datetime import datetime | |
from transformers import BartTokenizer, BartForConditionalGeneration | |
from transformers import BloomTokenizerFast, BloomForCausalLM, BertTokenizer, BertForSequenceClassification | |
from transformers import RobertaTokenizer, RobertaForSequenceClassification | |
import pytorch_lightning as pl | |
from averitec.models.DualEncoderModule import DualEncoderModule | |
from averitec.models.SequenceClassificationModule import SequenceClassificationModule | |
from averitec.models.JustificationGenerationModule import JustificationGenerationModule | |
# --------------------------------------------------------------------------------------------------------------------- | |
import wikipediaapi | |
wiki_wiki = wikipediaapi.Wikipedia('AVeriTeC (zd302@cam.ac.uk)', 'en') | |
import nltk | |
nltk.download('punkt') | |
nltk.download('punkt_tab') | |
from nltk import pos_tag, word_tokenize, sent_tokenize | |
import spacy | |
os.system("python -m spacy download en_core_web_sm") | |
nlp = spacy.load("en_core_web_sm") | |
# --------------------------------------------------------------------------------------------------------------------- | |
# --------------------------------------------------------------------------- | |
# load .env | |
from utils import create_user_id | |
user_id = create_user_id() | |
from azure.storage.fileshare import ShareServiceClient | |
try: | |
from dotenv import load_dotenv | |
load_dotenv() | |
except Exception as e: | |
pass | |
account_url = os.environ["AZURE_ACCOUNT_URL"] | |
credential = { | |
"account_key": os.environ['AZURE_ACCOUNT_KEY'], | |
"account_name": os.environ['AZURE_ACCOUNT_NAME'] | |
} | |
file_share_name = "averitec" | |
azure_service = ShareServiceClient(account_url=account_url, credential=credential) | |
azure_share_client = azure_service.get_share_client(file_share_name) | |
# ---------- Setting ---------- | |
# ---------- Load Veracity and Justification prediction model ---------- | |
LABEL = [ | |
"Supported", | |
"Refuted", | |
"Not Enough Evidence", | |
"Conflicting Evidence/Cherrypicking", | |
] | |
# Veracity | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
veracity_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") | |
bert_model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=4, problem_type="single_label_classification") | |
veracity_checkpoint_path = os.getcwd() + "/averitec/pretrained_models/bert_veracity.ckpt" | |
# veracity_model = SequenceClassificationModule.load_from_checkpoint(veracity_checkpoint_path,tokenizer=veracity_tokenizer, model=bert_model).to('cuda') | |
veracity_model = SequenceClassificationModule.load_from_checkpoint(veracity_checkpoint_path,tokenizer=veracity_tokenizer, model=bert_model).to(device) | |
# Justification | |
justification_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large', add_prefix_space=True) | |
bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large") | |
best_checkpoint = os.getcwd() + '/averitec/pretrained_models/bart_justifications_verdict-epoch=13-val_loss=2.03-val_meteor=0.28.ckpt' | |
# justification_model = JustificationGenerationModule.load_from_checkpoint(best_checkpoint, tokenizer=justification_tokenizer, model=bart_model).to('cuda') | |
justification_model = JustificationGenerationModule.load_from_checkpoint(best_checkpoint, tokenizer=justification_tokenizer, model=bart_model).to(device) | |
# --------------------------------------------------------------------------- | |
# ---------------------------------------------------------------------------- | |
class Docs: | |
def __init__(self, metadata=dict(), page_content=""): | |
self.metadata = metadata | |
self.page_content = page_content | |
# ------------------------------ Googleretriever ----------------------------- | |
def Googleretriever(): | |
return 0 | |
# ------------------------------ Googleretriever ----------------------------- | |
# ------------------------------ Wikipediaretriever -------------------------- | |
def search_entity_wikipeida(entity): | |
find_evidence = [] | |
page_py = wiki_wiki.page(entity) | |
if page_py.exists(): | |
introduction = page_py.summary | |
find_evidence.append([str(entity), introduction]) | |
return find_evidence | |
def clean_str(p): | |
return p.encode().decode("unicode-escape").encode("latin1").decode("utf-8") | |
def find_similar_wikipedia(entity, relevant_wikipages): | |
# If the relevant wikipeida page of the entity is less than 5, find similar wikipedia pages. | |
ent_ = entity.replace(" ", "+") | |
search_url = f"https://en.wikipedia.org/w/index.php?search={ent_}&title=Special:Search&profile=advanced&fulltext=1&ns0=1" | |
response_text = requests.get(search_url).text | |
soup = BeautifulSoup(response_text, features="html.parser") | |
result_divs = soup.find_all("div", {"class": "mw-search-result-heading"}) | |
if result_divs: | |
result_titles = [clean_str(div.get_text().strip()) for div in result_divs] | |
similar_titles = result_titles[:5] | |
saved_titles = [ent[0] for ent in relevant_wikipages] if relevant_wikipages else relevant_wikipages | |
for _t in similar_titles: | |
if _t not in saved_titles and len(relevant_wikipages) < 5: | |
_evi = search_entity_wikipeida(_t) | |
# _evi = search_step(_t) | |
relevant_wikipages.extend(_evi) | |
return relevant_wikipages | |
def find_evidence_from_wikipedia(claim): | |
# | |
doc = nlp(claim) | |
# | |
wikipedia_page = [] | |
for ent in doc.ents: | |
relevant_wikipages = search_entity_wikipeida(ent) | |
if len(relevant_wikipages) < 5: | |
relevant_wikipages = find_similar_wikipedia(str(ent), relevant_wikipages) | |
wikipedia_page.extend(relevant_wikipages) | |
return wikipedia_page | |
def bm25_retriever(query, corpus, topk=3): | |
bm25 = BM25Okapi(corpus) | |
# | |
query_tokens = word_tokenize(query) | |
scores = bm25.get_scores(query_tokens) | |
top_n = np.argsort(scores)[::-1][:topk] | |
top_n_scores = [scores[i] for i in top_n] | |
return top_n, top_n_scores | |
def relevant_sentence_retrieval(query, wiki_intro, k): | |
# 1. Create corpus here | |
corpus, sentences = [], [] | |
titles = [] | |
for i, (title, intro) in enumerate(wiki_intro): | |
sents_in_intro = sent_tokenize(intro) | |
for sent in sents_in_intro: | |
corpus.append(word_tokenize(sent)) | |
sentences.append(sent) | |
titles.append(title) | |
# ----- BM25 | |
bm25_top_n, bm25_top_n_scores = bm25_retriever(query, corpus, topk=k) | |
bm25_top_n_sents = [sentences[i] for i in bm25_top_n] | |
bm25_top_n_titles = [titles[i] for i in bm25_top_n] | |
return bm25_top_n_sents, bm25_top_n_titles | |
# ------------------------------ Wikipediaretriever ----------------------------- | |
def Wikipediaretriever(claim): | |
# 1. extract relevant wikipedia pages from wikipedia dumps | |
wikipedia_page = find_evidence_from_wikipedia(claim) | |
# 2. extract relevant sentences from extracted wikipedia pages | |
sents, titles = relevant_sentence_retrieval(claim, wikipedia_page, k=3) | |
# | |
results = [] | |
for i, (sent, title) in enumerate(zip(sents, titles)): | |
metadata = dict() | |
metadata['name'] = claim | |
metadata['url'] = "https://en.wikipedia.org/wiki/" + "_".join(title.split()) | |
metadata['cached_source_url'] = "https://en.wikipedia.org/wiki/" + "_".join(title) | |
metadata['short_name'] = "Evidence {}".format(i + 1) | |
metadata['page_number'] = "" | |
metadata['query'] = sent | |
metadata['title'] = title | |
metadata['evidence'] = sent | |
metadata['answer'] = "" | |
metadata['page_content'] = "<b>Title</b>: " + str(metadata['title']) + "<br>" + "<b>Evidence</b>: " + metadata['evidence'] | |
page_content = f"""{metadata['page_content']}""" | |
results.append(Docs(metadata, page_content)) | |
return results | |
# ------------------------------ Veracity Prediction ------------------------------ | |
class SequenceClassificationDataLoader(pl.LightningDataModule): | |
def __init__(self, tokenizer, data_file, batch_size, add_extra_nee=False): | |
super().__init__() | |
self.tokenizer = tokenizer | |
self.data_file = data_file | |
self.batch_size = batch_size | |
self.add_extra_nee = add_extra_nee | |
def tokenize_strings( | |
self, | |
source_sentences, | |
max_length=400, | |
pad_to_max_length=False, | |
return_tensors="pt", | |
): | |
encoded_dict = self.tokenizer( | |
source_sentences, | |
max_length=max_length, | |
padding="max_length" if pad_to_max_length else "longest", | |
truncation=True, | |
return_tensors=return_tensors, | |
) | |
input_ids = encoded_dict["input_ids"] | |
attention_masks = encoded_dict["attention_mask"] | |
return input_ids, attention_masks | |
def quadruple_to_string(self, claim, question, answer, bool_explanation=""): | |
if bool_explanation is not None and len(bool_explanation) > 0: | |
bool_explanation = ", because " + bool_explanation.lower().strip() | |
else: | |
bool_explanation = "" | |
return ( | |
"[CLAIM] " | |
+ claim.strip() | |
+ " [QUESTION] " | |
+ question.strip() | |
+ " " | |
+ answer.strip() | |
+ bool_explanation | |
) | |
# @spaces.GPU | |
def veracity_prediction(claim, evidence): | |
dataLoader = SequenceClassificationDataLoader( | |
tokenizer=veracity_tokenizer, | |
data_file="this_is_discontinued", | |
batch_size=32, | |
add_extra_nee=False, | |
) | |
evidence_strings = [] | |
for evi in evidence: | |
evidence_strings.append(dataLoader.quadruple_to_string(claim, evi.metadata["query"], evi.metadata["answer"], "")) | |
if len(evidence_strings) == 0: # If we found no evidence e.g. because google returned 0 pages, just output NEI. | |
pred_label = "Not Enough Evidence" | |
return pred_label | |
tokenized_strings, attention_mask = dataLoader.tokenize_strings(evidence_strings) | |
# example_support = torch.argmax(veracity_model(tokenized_strings.to('cuda'), attention_mask=attention_mask.to('cuda')).logits, axis=1) | |
example_support = torch.argmax(veracity_model(tokenized_strings.to(device), attention_mask=attention_mask.to(device)).logits, axis=1) | |
has_unanswerable = False | |
has_true = False | |
has_false = False | |
for v in example_support: | |
if v == 0: | |
has_true = True | |
if v == 1: | |
has_false = True | |
if v in (2, 3,): # TODO another hack -- we cant have different labels for train and test so we do this | |
has_unanswerable = True | |
if has_unanswerable: | |
answer = 2 | |
elif has_true and not has_false: | |
answer = 0 | |
elif not has_true and has_false: | |
answer = 1 | |
else: | |
answer = 3 | |
pred_label = LABEL[answer] | |
return pred_label | |
# ------------------------------ Justification Generation ------------------------------ | |
def extract_claim_str(claim, evidence, verdict_label): | |
claim_str = "[CLAIM] " + claim + " [EVIDENCE] " | |
for evi in evidence: | |
q_text = evi.metadata['query'].strip() | |
if len(q_text) == 0: | |
continue | |
if not q_text[-1] == "?": | |
q_text += "?" | |
answer_strings = [] | |
answer_strings.append(evi.metadata['answer']) | |
claim_str += q_text | |
for a_text in answer_strings: | |
if a_text: | |
if not a_text[-1] == ".": | |
a_text += "." | |
claim_str += " " + a_text.strip() | |
claim_str += " " | |
claim_str += " [VERDICT] " + verdict_label | |
return claim_str | |
# @spaces.GPU | |
def justification_generation(claim, evidence, verdict_label): | |
# | |
claim_str = extract_claim_str(claim, evidence, verdict_label) | |
claim_str.strip() | |
# pred_justification = justification_model.generate(claim_str, device='cuda') | |
pred_justification = justification_model.generate(claim_str, device=device) | |
return pred_justification.strip() | |
# --------------------------------------------------------------------------------------------------------------------- | |
class Item(BaseModel): | |
claim: str | |
source: str | |
def greet_json(): | |
return {"Hello": "World!"} | |
def log_on_azure(file, logs, azure_share_client): | |
logs = json.dumps(logs) | |
file_client = azure_share_client.get_file_client(file) | |
file_client.upload_file(logs) | |
# @spaces.GPU | |
def fact_checking(item: Item): | |
# claim = item['claim'] | |
# source = item['source'] | |
claim = item.claim | |
source = item.source | |
# Step1: Evidence Retrieval | |
if source == "Wikipedia": | |
evidence = Wikipediaretriever(claim) | |
elif source == "Google": | |
evidence = Googleretriever(claim) | |
# Step2: Veracity Prediction and Justification Generation | |
verdict_label = veracity_prediction(claim, evidence) | |
justification_label = justification_generation(claim, evidence, verdict_label) | |
############################################################ | |
evidence_list = [] | |
for evi in evidence: | |
title_str = evi.metadata['title'] | |
evi_str = evi.metadata['evidence'] | |
url_str = evi.metadata['url'] | |
evidence_list.append([title_str, evi_str, url_str]) | |
try: | |
# Log answer on Azure Blob Storage | |
# IF AZURE_ISSAVE=TRUE, save the logs into the Azure share client. | |
if os.environ["AZURE_ISSAVE"] == "TRUE": | |
timestamp = str(datetime.now().timestamp()) | |
# timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
file = timestamp + ".json" | |
logs = { | |
"user_id": str(user_id), | |
"claim": claim, | |
"sources": source, | |
"evidence": evidence_list, | |
"answer": [verdict_label, justification_label], | |
"time": timestamp, | |
} | |
log_on_azure(file, logs, azure_share_client) | |
except Exception as e: | |
print(f"Error logging on Azure Blob Storage: {e}") | |
raise gr.Error( | |
f"AVeriTeC Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)") | |
########## | |
return {"Verdict": verdict_label, "Justification": justification_label, "Evidence": evidence_list} | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |
# if __name__ == "__main__": | |
# item = { | |
# "claim": "England won the Euro 2024.", | |
# "source": "Wikipedia", | |
# } | |
# | |
# results = fact_checking(item) | |
# | |
# print(results) | |
# # ----------------------------------------------------------------------------------------- | |
# import requests | |
# | |
# # 定义API URL | |
# api_url = "https://zhenyundeng-zd-api.hf.space/generate/" | |
# | |
# # 定义请求数据 | |
# item = { | |
# "name": "Alice" | |
# } | |
# | |
# # 发送Get请求 | |
# # response = requests.get("https://zhenyundeng-zd-api.hf.space/") | |
# # 发送POST请求 | |
# response = requests.post(api_url, json=item) | |
# | |
# # 打印响应 | |
# print(response.json()) | |