zhengr commited on
Commit
85dc71f
1 Parent(s): 7f67b4b
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +0 -35
  2. Docker/damo.sha256 +0 -3
  3. Docker/download.py +0 -5
  4. Docker/download.sh +0 -11
  5. Docker/links.sha256 +0 -12
  6. Docker/links.txt +0 -34
  7. Dockerfile +5 -40
  8. GPT_SoVITS/.DS_Store +0 -0
  9. GPT_SoVITS/AR/__init__.py +0 -0
  10. GPT_SoVITS/AR/data/__init__.py +0 -0
  11. GPT_SoVITS/AR/data/bucket_sampler.py +0 -163
  12. GPT_SoVITS/AR/data/data_module.py +0 -76
  13. GPT_SoVITS/AR/data/dataset.py +0 -323
  14. GPT_SoVITS/AR/models/__init__.py +0 -0
  15. GPT_SoVITS/AR/models/t2s_lightning_module.py +0 -141
  16. GPT_SoVITS/AR/models/t2s_lightning_module_onnx.py +0 -107
  17. GPT_SoVITS/AR/models/t2s_model.py +0 -900
  18. GPT_SoVITS/AR/models/t2s_model_onnx.py +0 -338
  19. GPT_SoVITS/AR/models/utils.py +0 -229
  20. GPT_SoVITS/AR/modules/__init__.py +0 -0
  21. GPT_SoVITS/AR/modules/activation.py +0 -428
  22. GPT_SoVITS/AR/modules/activation_onnx.py +0 -178
  23. GPT_SoVITS/AR/modules/embedding.py +0 -81
  24. GPT_SoVITS/AR/modules/embedding_onnx.py +0 -63
  25. GPT_SoVITS/AR/modules/lr_schedulers.py +0 -83
  26. GPT_SoVITS/AR/modules/optim.py +0 -622
  27. GPT_SoVITS/AR/modules/patched_mha_with_cache.py +0 -465
  28. GPT_SoVITS/AR/modules/patched_mha_with_cache_onnx.py +0 -92
  29. GPT_SoVITS/AR/modules/scaling.py +0 -335
  30. GPT_SoVITS/AR/modules/transformer.py +0 -378
  31. GPT_SoVITS/AR/modules/transformer_onnx.py +0 -292
  32. GPT_SoVITS/AR/text_processing/__init__.py +0 -0
  33. GPT_SoVITS/AR/text_processing/phonemizer.py +0 -79
  34. GPT_SoVITS/AR/text_processing/symbols.py +0 -10
  35. GPT_SoVITS/AR/utils/__init__.py +0 -37
  36. GPT_SoVITS/AR/utils/initialize.py +0 -38
  37. GPT_SoVITS/AR/utils/io.py +0 -34
  38. GPT_SoVITS/TTS_infer_pack/TTS.py +0 -1034
  39. GPT_SoVITS/TTS_infer_pack/TextPreprocessor.py +0 -244
  40. GPT_SoVITS/TTS_infer_pack/__init__.py +0 -1
  41. GPT_SoVITS/TTS_infer_pack/text_segmentation_method.py +0 -173
  42. GPT_SoVITS/configs/.gitignore +0 -1
  43. GPT_SoVITS/configs/s2.json +0 -90
  44. GPT_SoVITS/download.py +0 -5
  45. GPT_SoVITS/feature_extractor/__init__.py +0 -6
  46. GPT_SoVITS/feature_extractor/cnhubert.py +0 -111
  47. GPT_SoVITS/feature_extractor/whisper_enc.py +0 -25
  48. GPT_SoVITS/inference_cli.py +0 -55
  49. GPT_SoVITS/inference_gui.py +0 -310
  50. GPT_SoVITS/inference_webui.py +0 -772
.gitattributes DELETED
@@ -1,35 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Docker/damo.sha256 DELETED
@@ -1,3 +0,0 @@
1
- 5bba782a5e9196166233b9ab12ba04cadff9ef9212b4ff6153ed9290ff679025 /workspace/tools/damo_asr/models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/model.pb
2
- b3be75be477f0780277f3bae0fe489f48718f585f3a6e45d7dd1fbb1a4255fc5 /workspace/tools/damo_asr/models/speech_fsmn_vad_zh-cn-16k-common-pytorch/model.pb
3
- a5818bb9d933805a916eebe41eb41648f7f9caad30b4bd59d56f3ca135421916 /workspace/tools/damo_asr/models/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/model.pb
 
 
 
 
Docker/download.py DELETED
@@ -1,5 +0,0 @@
1
- # Download moda ASR related models
2
- from modelscope import snapshot_download
3
- model_dir = snapshot_download('damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',revision="v2.0.4")
4
- model_dir = snapshot_download('damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',revision="v2.0.4")
5
- model_dir = snapshot_download('damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',revision="v2.0.4")
 
 
 
 
 
 
Docker/download.sh DELETED
@@ -1,11 +0,0 @@
1
- #!/usr/bin/env bash
2
-
3
- set -Eeuo pipefail
4
-
5
- echo "Downloading models..."
6
-
7
- aria2c --disable-ipv6 --input-file /workspace/Docker/links.txt --dir /workspace --continue
8
-
9
- echo "Checking SHA256..."
10
-
11
- parallel --will-cite -a /workspace/Docker/links.sha256 "echo -n {} | sha256sum -c"
 
 
 
 
 
 
 
 
 
 
 
 
Docker/links.sha256 DELETED
@@ -1,12 +0,0 @@
1
- b1c1e17e9c99547a89388f72048cd6e1b41b5a18b170e86a46dfde0324d63eb1 /workspace/GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
2
- fc579c1db3c1e21b721001cf99d7a584214280df19b002e200b630a34fa06eb8 /workspace/GPT_SoVITS/pretrained_models/s2D488k.pth
3
- 020a014e1e01e550e510f2f61fae5e5f5b6aab40f15c22f1f12f724df507e835 /workspace/GPT_SoVITS/pretrained_models/s2G488k.pth
4
- 24164f129c66499d1346e2aa55f183250c223161ec2770c0da3d3b08cf432d3c /workspace/GPT_SoVITS/pretrained_models/chinese-hubert-base/pytorch_model.bin
5
- e53a693acc59ace251d143d068096ae0d7b79e4b1b503fa84c9dcf576448c1d8 /workspace/GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large/pytorch_model.bin
6
- 39796caa5db18d7f9382d8ac997ac967bfd85f7761014bb807d2543cc844ef05 /workspace/tools/uvr5/uvr5_weights/HP2_all_vocals.pth
7
- 45e6b65199e781b4a6542002699be9f19cd3d1cb7d1558bc2bfbcd84674dfe28 /workspace/tools/uvr5/uvr5_weights/HP3_all_vocals.pth
8
- 5908891829634926119720241e8573d97cbeb8277110a7512bdb0bd7563258ee /workspace/tools/uvr5/uvr5_weights/HP5_only_main_vocal.pth
9
- 8c8fd1582f9aabc363e47af62ddb88df6cae7e064cae75bbf041a067a5e0aee2 /workspace/tools/uvr5/uvr5_weights/VR-DeEchoAggressive.pth
10
- 01376dd2a571bf3cb9cced680732726d2d732609d09216a610b0d110f133febe /workspace/tools/uvr5/uvr5_weights/VR-DeEchoDeReverb.pth
11
- 56aba59db3bcdd14a14464e62f3129698ecdea62eee0f003b9360923eb3ac79e /workspace/tools/uvr5/uvr5_weights/VR-DeEchoNormal.pth
12
- 233bb5c6aaa365e568659a0a81211746fa881f8f47f82d9e864fce1f7692db80 /workspace/tools/uvr5/uvr5_weights/onnx_dereverb_By_FoxJoy/vocals.onnx
 
 
 
 
 
 
 
 
 
 
 
 
 
Docker/links.txt DELETED
@@ -1,34 +0,0 @@
1
- # GPT-SoVITS models
2
- https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/s1bert25hz-2kh-longer-epoch%3D68e-step%3D50232.ckpt
3
- out=GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
4
- https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/s2D488k.pth
5
- out=GPT_SoVITS/pretrained_models/s2D488k.pth
6
- https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/s2G488k.pth
7
- out=GPT_SoVITS/pretrained_models/s2G488k.pth
8
- https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/chinese-hubert-base/config.json
9
- out=GPT_SoVITS/pretrained_models/chinese-hubert-base/config.json
10
- https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/chinese-hubert-base/preprocessor_config.json
11
- out=GPT_SoVITS/pretrained_models/chinese-hubert-base/preprocessor_config.json
12
- https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/chinese-hubert-base/pytorch_model.bin
13
- out=GPT_SoVITS/pretrained_models/chinese-hubert-base/pytorch_model.bin
14
- https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/chinese-roberta-wwm-ext-large/config.json
15
- out=GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large/config.json
16
- https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/chinese-roberta-wwm-ext-large/pytorch_model.bin
17
- out=GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large/pytorch_model.bin
18
- https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/chinese-roberta-wwm-ext-large/tokenizer.json
19
- out=GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large/tokenizer.json
20
- # UVR5
21
- https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP2_all_vocals.pth
22
- out=tools/uvr5/uvr5_weights/HP2_all_vocals.pth
23
- https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP3_all_vocals.pth
24
- out=tools/uvr5/uvr5_weights/HP3_all_vocals.pth
25
- https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP5_only_main_vocal.pth
26
- out=tools/uvr5/uvr5_weights/HP5_only_main_vocal.pth
27
- https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/VR-DeEchoAggressive.pth
28
- out=tools/uvr5/uvr5_weights/VR-DeEchoAggressive.pth
29
- https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/VR-DeEchoDeReverb.pth
30
- out=tools/uvr5/uvr5_weights/VR-DeEchoDeReverb.pth
31
- https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/VR-DeEchoNormal.pth
32
- out=tools/uvr5/uvr5_weights/VR-DeEchoNormal.pth
33
- https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/onnx_dereverb_By_FoxJoy/vocals.onnx
34
- out=tools/uvr5/uvr5_weights/onnx_dereverb_By_FoxJoy/vocals.onnx
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dockerfile CHANGED
@@ -1,43 +1,8 @@
1
- # Base CUDA image
2
- FROM cnstark/pytorch:2.0.1-py3.9.17-cuda11.8.0-ubuntu20.04
3
 
4
- LABEL maintainer="breakstring@hotmail.com"
5
- LABEL version="dev-20240209"
6
- LABEL description="Docker image for GPT-SoVITS"
7
-
8
-
9
- # Install 3rd party apps
10
- ENV DEBIAN_FRONTEND=noninteractive
11
- ENV TZ=Etc/UTC
12
- RUN apt-get update && \
13
- apt-get install -y --no-install-recommends tzdata ffmpeg libsox-dev parallel aria2 git git-lfs && \
14
- git lfs install && \
15
- rm -rf /var/lib/apt/lists/*
16
-
17
- # Copy only requirements.txt initially to leverage Docker cache
18
  WORKDIR /workspace
19
- COPY requirements.txt /workspace/
20
- RUN pip install --no-cache-dir -r requirements.txt
21
-
22
- # Define a build-time argument for image type
23
- ARG IMAGE_TYPE=full
24
-
25
- # Conditional logic based on the IMAGE_TYPE argument
26
- # Always copy the Docker directory, but only use it if IMAGE_TYPE is not "elite"
27
- COPY ./Docker /workspace/Docker
28
- # elite 类型的镜像里面不包含额外的模型
29
- RUN if [ "$IMAGE_TYPE" != "elite" ]; then \
30
- chmod +x /workspace/Docker/download.sh && \
31
- /workspace/Docker/download.sh && \
32
- python /workspace/Docker/download.py && \
33
- python -m nltk.downloader averaged_perceptron_tagger cmudict; \
34
- fi
35
-
36
-
37
- # Copy the rest of the application
38
- COPY . /workspace
39
-
40
- EXPOSE 9871 9872 9873 9874 9880
41
 
42
- # CMD ["python", "webui.py"]
43
- CMD ["python", "api.py", "-dr", "123.wav", "-dt", "一二三。", "-dl", "zh"]
 
1
+ # Use the provided base image
2
+ FROM breakstring/gpt-sovits:latest
3
 
4
+ # Set the working directory to /app
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  WORKDIR /workspace
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
+ # Expose the necessary port
8
+ EXPOSE 9880/tcp
GPT_SoVITS/.DS_Store DELETED
Binary file (6.15 kB)
 
GPT_SoVITS/AR/__init__.py DELETED
File without changes
GPT_SoVITS/AR/data/__init__.py DELETED
File without changes
GPT_SoVITS/AR/data/bucket_sampler.py DELETED
@@ -1,163 +0,0 @@
1
- # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/bucket_sampler.py
2
- # reference: https://github.com/lifeiteng/vall-e
3
- import itertools
4
- import math
5
- import random
6
- from random import shuffle
7
- from typing import Iterator
8
- from typing import Optional
9
- from typing import TypeVar
10
-
11
- import torch
12
- import torch.distributed as dist
13
- from torch.utils.data import Dataset
14
- from torch.utils.data import Sampler
15
-
16
- __all__ = [
17
- "DistributedBucketSampler",
18
- ]
19
-
20
- T_co = TypeVar("T_co", covariant=True)
21
-
22
-
23
- class DistributedBucketSampler(Sampler[T_co]):
24
- r"""
25
- sort the dataset wrt. input length
26
- divide samples into buckets
27
- sort within buckets
28
- divide buckets into batches
29
- sort batches
30
- """
31
-
32
- def __init__(
33
- self,
34
- dataset: Dataset,
35
- num_replicas: Optional[int] = None,
36
- rank: Optional[int] = None,
37
- shuffle: bool = True,
38
- seed: int = 0,
39
- drop_last: bool = False,
40
- batch_size: int = 32,
41
- ) -> None:
42
- if num_replicas is None:
43
- if not dist.is_available():
44
- raise RuntimeError("Requires distributed package to be available")
45
- num_replicas = dist.get_world_size() if torch.cuda.is_available() else 1
46
- if rank is None:
47
- if not dist.is_available():
48
- raise RuntimeError("Requires distributed package to be available")
49
- rank = dist.get_rank() if torch.cuda.is_available() else 0
50
- if torch.cuda.is_available():
51
- torch.cuda.set_device(rank)
52
- if rank >= num_replicas or rank < 0:
53
- raise ValueError(
54
- "Invalid rank {}, rank should be in the interval"
55
- " [0, {}]".format(rank, num_replicas - 1)
56
- )
57
- self.dataset = dataset
58
- self.num_replicas = num_replicas
59
- self.rank = rank
60
- self.epoch = 0
61
- self.drop_last = drop_last
62
- # If the dataset length is evenly divisible by # of replicas, then there
63
- # is no need to drop any data, since the dataset will be split equally.
64
- if (
65
- self.drop_last and len(self.dataset) % self.num_replicas != 0
66
- ): # type: ignore[arg-type]
67
- # Split to nearest available length that is evenly divisible.
68
- # This is to ensure each rank receives the same amount of data when
69
- # using this Sampler.
70
- self.num_samples = math.ceil(
71
- (len(self.dataset) - self.num_replicas)
72
- / self.num_replicas # type: ignore[arg-type]
73
- )
74
- else:
75
- self.num_samples = math.ceil(
76
- len(self.dataset) / self.num_replicas
77
- ) # type: ignore[arg-type]
78
- self.total_size = self.num_samples * self.num_replicas
79
- self.shuffle = shuffle
80
- self.seed = seed
81
- self.batch_size = batch_size
82
- self.id_with_length = self._get_sample_lengths()
83
- self.id_buckets = self.make_buckets(bucket_width=2.0)
84
-
85
- def _get_sample_lengths(self):
86
- id_with_lengths = []
87
- for i in range(len(self.dataset)):
88
- id_with_lengths.append((i, self.dataset.get_sample_length(i)))
89
- id_with_lengths.sort(key=lambda x: x[1])
90
- return id_with_lengths
91
-
92
- def make_buckets(self, bucket_width: float = 2.0):
93
- buckets = []
94
- cur = []
95
- max_sec = bucket_width
96
- for id, sec in self.id_with_length:
97
- if sec < max_sec:
98
- cur.append(id)
99
- else:
100
- buckets.append(cur)
101
- cur = [id]
102
- max_sec += bucket_width
103
- if len(cur) > 0:
104
- buckets.append(cur)
105
- return buckets
106
-
107
- def __iter__(self) -> Iterator[T_co]:
108
- if self.shuffle:
109
- # deterministically shuffle based on epoch and seed
110
- g = torch.Generator()
111
- g.manual_seed(self.seed + self.epoch)
112
- random.seed(self.epoch + self.seed)
113
- shuffled_bucket = []
114
- for buc in self.id_buckets:
115
- buc_copy = buc.copy()
116
- shuffle(buc_copy)
117
- shuffled_bucket.append(buc_copy)
118
- grouped_batch_size = self.batch_size * self.num_replicas
119
- shuffled_bucket = list(itertools.chain(*shuffled_bucket))
120
- n_batch = int(math.ceil(len(shuffled_bucket) / grouped_batch_size))
121
- batches = [
122
- shuffled_bucket[b * grouped_batch_size : (b + 1) * grouped_batch_size]
123
- for b in range(n_batch)
124
- ]
125
- shuffle(batches)
126
- indices = list(itertools.chain(*batches))
127
- else:
128
- # type: ignore[arg-type]
129
- indices = list(range(len(self.dataset)))
130
-
131
- if not self.drop_last:
132
- # add extra samples to make it evenly divisible
133
- padding_size = self.total_size - len(indices)
134
- if padding_size <= len(indices):
135
- indices += indices[:padding_size]
136
- else:
137
- indices += (indices * math.ceil(padding_size / len(indices)))[
138
- :padding_size
139
- ]
140
- else:
141
- # remove tail of data to make it evenly divisible.
142
- indices = indices[: self.total_size]
143
- assert len(indices) == self.total_size
144
-
145
- # subsample
146
- indices = indices[self.rank : self.total_size : self.num_replicas]
147
- assert len(indices) == self.num_samples
148
-
149
- return iter(indices)
150
-
151
- def __len__(self) -> int:
152
- return self.num_samples
153
-
154
- def set_epoch(self, epoch: int) -> None:
155
- r"""
156
- Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas
157
- use a different random ordering for each epoch. Otherwise, the next iteration of this
158
- sampler will yield the same ordering.
159
-
160
- Args:
161
- epoch (int): Epoch number.
162
- """
163
- self.epoch = epoch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/data/data_module.py DELETED
@@ -1,76 +0,0 @@
1
- # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/data_module.py
2
- # reference: https://github.com/lifeiteng/vall-e
3
- from pytorch_lightning import LightningDataModule
4
- from AR.data.bucket_sampler import DistributedBucketSampler
5
- from AR.data.dataset import Text2SemanticDataset
6
- from torch.utils.data import DataLoader
7
-
8
-
9
- class Text2SemanticDataModule(LightningDataModule):
10
- def __init__(
11
- self,
12
- config,
13
- train_semantic_path,
14
- train_phoneme_path,
15
- dev_semantic_path=None,
16
- dev_phoneme_path=None,
17
- ):
18
- super().__init__()
19
- self.config = config
20
- self.train_semantic_path = train_semantic_path
21
- self.train_phoneme_path = train_phoneme_path
22
- self.dev_semantic_path = dev_semantic_path
23
- self.dev_phoneme_path = dev_phoneme_path
24
- self.num_workers = self.config["data"]["num_workers"]
25
-
26
- def prepare_data(self):
27
- pass
28
-
29
- def setup(self, stage=None, output_logs=False):
30
- self._train_dataset = Text2SemanticDataset(
31
- phoneme_path=self.train_phoneme_path,
32
- semantic_path=self.train_semantic_path,
33
- max_sec=self.config["data"]["max_sec"],
34
- pad_val=self.config["data"]["pad_val"],
35
- )
36
- self._dev_dataset = self._train_dataset
37
- # self._dev_dataset = Text2SemanticDataset(
38
- # phoneme_path=self.dev_phoneme_path,
39
- # semantic_path=self.dev_semantic_path,
40
- # max_sample=self.config['data']['max_eval_sample'],
41
- # max_sec=self.config['data']['max_sec'],
42
- # pad_val=self.config['data']['pad_val'])
43
-
44
- def train_dataloader(self):
45
- batch_size=self.config["train"]["batch_size"]//2 if self.config["train"].get("if_dpo",False)==True else self.config["train"]["batch_size"]
46
- batch_size = max(min(batch_size,len(self._train_dataset)//4),1)#防止不保存
47
- sampler = DistributedBucketSampler(self._train_dataset, batch_size=batch_size)
48
- return DataLoader(
49
- self._train_dataset,
50
- batch_size=batch_size,
51
- sampler=sampler,
52
- collate_fn=self._train_dataset.collate,
53
- num_workers=self.num_workers,
54
- persistent_workers=True,
55
- prefetch_factor=16,
56
- )
57
-
58
- def val_dataloader(self):
59
- return DataLoader(
60
- self._dev_dataset,
61
- batch_size=1,
62
- shuffle=False,
63
- collate_fn=self._train_dataset.collate,
64
- num_workers=max(self.num_workers, 12),
65
- persistent_workers=True,
66
- prefetch_factor=16,
67
- )
68
-
69
- # 这个会使用到嘛?
70
- def test_dataloader(self):
71
- return DataLoader(
72
- self._dev_dataset,
73
- batch_size=1,
74
- shuffle=False,
75
- collate_fn=self._train_dataset.collate,
76
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/data/dataset.py DELETED
@@ -1,323 +0,0 @@
1
- # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/dataset.py
2
- # reference: https://github.com/lifeiteng/vall-e
3
- import pdb
4
- import sys
5
-
6
- # sys.path.append("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert")
7
- import traceback, os
8
- from typing import Dict
9
- from typing import List
10
-
11
- import numpy as np
12
- import pandas as pd
13
- import torch, json
14
- from torch.utils.data import DataLoader
15
- from torch.utils.data import Dataset
16
- from transformers import AutoTokenizer
17
-
18
- version = os.environ.get('version',None)
19
-
20
- from text import cleaned_text_to_sequence
21
-
22
- # from config import exp_dir
23
-
24
-
25
- def batch_sequences(sequences: List[np.array], axis: int = 0, pad_value: int = 0):
26
- seq = sequences[0]
27
- ndim = seq.ndim
28
- if axis < 0:
29
- axis += ndim
30
- dtype = seq.dtype
31
- pad_value = dtype.type(pad_value)
32
- seq_lengths = [seq.shape[axis] for seq in sequences]
33
- max_length = np.max(seq_lengths)
34
-
35
- padded_sequences = []
36
- for seq, length in zip(sequences, seq_lengths):
37
- padding = (
38
- [(0, 0)] * axis + [(0, max_length - length)] + [(0, 0)] * (ndim - axis - 1)
39
- )
40
- padded_seq = np.pad(seq, padding, mode="constant", constant_values=pad_value)
41
- padded_sequences.append(padded_seq)
42
- batch = np.stack(padded_sequences)
43
- return batch
44
-
45
-
46
- class Text2SemanticDataset(Dataset):
47
- """dataset class for text tokens to semantic model training."""
48
-
49
- def __init__(
50
- self,
51
- phoneme_path: str,
52
- semantic_path: str,
53
- max_sample: int = None,
54
- max_sec: int = 100,
55
- pad_val: int = 1024,
56
- # min value of phoneme/sec
57
- min_ps_ratio: int = 3,
58
- # max value of phoneme/sec
59
- max_ps_ratio: int = 25,
60
- ) -> None:
61
- super().__init__()
62
-
63
- self.semantic_data = pd.read_csv(
64
- semantic_path, delimiter="\t", encoding="utf-8"
65
- )
66
- # get dict
67
- self.path2 = phoneme_path # "%s/2-name2text.txt"%exp_dir#phoneme_path
68
- self.path3 = "%s/3-bert" % (
69
- os.path.dirname(phoneme_path)
70
- ) # "%s/3-bert"%exp_dir#bert_dir
71
- self.path6 = semantic_path # "%s/6-name2semantic.tsv"%exp_dir#semantic_path
72
- assert os.path.exists(self.path2)
73
- assert os.path.exists(self.path6)
74
- self.phoneme_data = {}
75
- with open(self.path2, "r", encoding="utf8") as f:
76
- lines = f.read().strip("\n").split("\n")
77
-
78
- for line in lines:
79
- tmp = line.split("\t")
80
- if len(tmp) != 4:
81
- continue
82
- self.phoneme_data[tmp[0]] = [tmp[1], tmp[2], tmp[3]]
83
-
84
- # self.phoneme_data = np.load(phoneme_path, allow_pickle=True).item()
85
- # pad for semantic tokens
86
- self.PAD: int = pad_val
87
- # self.hz = 25
88
- # with open("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert/configs/s2.json", "r") as f:data = f.read()
89
- # data=json.loads(data)["model"]["semantic_frame_rate"]#50hz
90
- # self.hz=int(data[:-2])#
91
- self.hz = int(os.environ.get("hz", "25hz")[:-2])
92
-
93
- # max seconds of semantic token
94
- self.max_sec = max_sec
95
- self.min_ps_ratio = min_ps_ratio
96
- self.max_ps_ratio = max_ps_ratio
97
-
98
- if max_sample is not None:
99
- self.semantic_data = self.semantic_data[:max_sample]
100
-
101
- # {idx: (semantic, phoneme)}
102
- # semantic list, phoneme list
103
- self.semantic_phoneme = []
104
- self.item_names = []
105
-
106
- self.inited = False
107
-
108
- if not self.inited:
109
- # 调用初始化函数
110
- self.init_batch()
111
- self.inited = True
112
- del self.semantic_data
113
- del self.phoneme_data
114
- # self.tokenizer = AutoTokenizer.from_pretrained("hfl/chinese-roberta-wwm-ext-large")
115
- # self.tokenizer = AutoTokenizer.from_pretrained("/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large")
116
-
117
- def init_batch(self):
118
- semantic_data_len = len(self.semantic_data)
119
- phoneme_data_len = len(self.phoneme_data.keys())
120
- print("semantic_data_len:", semantic_data_len)
121
- print("phoneme_data_len:", phoneme_data_len)
122
- print(self.semantic_data)
123
- idx = 0
124
- num_not_in = 0
125
- num_deleted_bigger = 0
126
- num_deleted_ps = 0
127
- for i in range(semantic_data_len):
128
- # 先依次遍历
129
- # get str
130
- item_name = self.semantic_data.iloc[i,0]
131
- # print(self.phoneme_data)
132
- try:
133
- phoneme, word2ph, text = self.phoneme_data[item_name]
134
- except Exception:
135
- traceback.print_exc()
136
- # print(f"{item_name} not in self.phoneme_data !")
137
- num_not_in += 1
138
- continue
139
-
140
- semantic_str = self.semantic_data.iloc[i,1]
141
- # get token list
142
- semantic_ids = [int(idx) for idx in semantic_str.split(" ")]
143
- # (T), 是否需要变成 (1, T) -> 不需要,因为需要求 len
144
- # 过滤掉太长的样本
145
- if (
146
- len(semantic_ids) > self.max_sec * self.hz
147
- ): #########1###根据token个数推测总时长过滤时长60s(config里)#40*25=1k
148
- num_deleted_bigger += 1
149
- continue
150
- # (T, ), 这个速度不会很慢,所以可以在一开始就处理,无需在 __getitem__ 里面单个处理####
151
- phoneme = phoneme.split(" ")
152
-
153
- try:
154
- phoneme_ids = cleaned_text_to_sequence(phoneme, version)
155
- except:
156
- traceback.print_exc()
157
- # print(f"{item_name} not in self.phoneme_data !")
158
- num_not_in += 1
159
- continue
160
- # if len(phoneme_ids) >400:###########2:改为恒定限制为semantic/2.5就行
161
- if (
162
- len(phoneme_ids) > self.max_sec * self.hz / 2.5
163
- ): ###########2:改为恒定限制为semantic/2.5就行
164
- num_deleted_ps += 1
165
- continue
166
- # if len(semantic_ids) > 1000:###########3
167
- # num_deleted_bigger += 1
168
- # continue
169
-
170
- ps_ratio = len(phoneme_ids) / (len(semantic_ids) / self.hz)
171
-
172
- if (
173
- ps_ratio > self.max_ps_ratio or ps_ratio < self.min_ps_ratio
174
- ): ##########4#3~25#每秒多少个phone
175
- num_deleted_ps += 1
176
- # print(item_name)
177
- continue
178
-
179
- self.semantic_phoneme.append((semantic_ids, phoneme_ids))
180
- idx += 1
181
- self.item_names.append(item_name)
182
-
183
- min_num = 100 # 20直接不补#30补了也不存ckpt
184
- leng = len(self.semantic_phoneme)
185
- if leng < min_num:
186
- tmp1 = self.semantic_phoneme
187
- tmp2 = self.item_names
188
- self.semantic_phoneme = []
189
- self.item_names = []
190
- for _ in range(max(2, int(min_num / leng))):
191
- self.semantic_phoneme += tmp1
192
- self.item_names += tmp2
193
- if num_not_in > 0:
194
- print(f"there are {num_not_in} semantic datas not in phoneme datas")
195
- if num_deleted_bigger > 0:
196
- print(
197
- f"deleted {num_deleted_bigger} audios who's duration are bigger than {self.max_sec} seconds"
198
- )
199
- if num_deleted_ps > 0:
200
- # 4702 for LibriTTS, LirbriTTS 是标注数据, 是否需要筛?=> 需要,有值为 100 的极端值
201
- print(
202
- f"deleted {num_deleted_ps} audios who's phoneme/sec are bigger than {self.max_ps_ratio} or smaller than {self.min_ps_ratio}"
203
- )
204
- """
205
- there are 31 semantic datas not in phoneme datas
206
- deleted 34 audios who's duration are bigger than 54 seconds
207
- deleted 3190 audios who's phoneme/sec are bigger than 25 or smaller than 3
208
- dataset.__len__(): 366463
209
-
210
- """
211
- # 345410 for LibriTTS
212
- print("dataset.__len__():", self.__len__())
213
-
214
- def __get_item_names__(self) -> List[str]:
215
- return self.item_names
216
-
217
- def __len__(self) -> int:
218
- return len(self.semantic_phoneme)
219
-
220
- def __getitem__(self, idx: int) -> Dict:
221
- semantic_ids, phoneme_ids = self.semantic_phoneme[idx]
222
- item_name = self.item_names[idx]
223
- phoneme_ids_len = len(phoneme_ids)
224
- # semantic tokens target
225
- semantic_ids_len = len(semantic_ids)
226
-
227
- flag = 0
228
- path_bert = "%s/%s.pt" % (self.path3, item_name)
229
- if os.path.exists(path_bert) == True:
230
- bert_feature = torch.load(path_bert, map_location="cpu")
231
- else:
232
- flag = 1
233
- if flag == 1:
234
- # bert_feature=torch.zeros_like(phoneme_ids,dtype=torch.float32)
235
- bert_feature = None
236
- else:
237
- assert bert_feature.shape[-1] == len(phoneme_ids)
238
- return {
239
- "idx": idx,
240
- "phoneme_ids": phoneme_ids,
241
- "phoneme_ids_len": phoneme_ids_len,
242
- "semantic_ids": semantic_ids,
243
- "semantic_ids_len": semantic_ids_len,
244
- "bert_feature": bert_feature,
245
- }
246
-
247
- def get_sample_length(self, idx: int):
248
- semantic_ids = self.semantic_phoneme[idx][0]
249
- sec = 1.0 * len(semantic_ids) / self.hz
250
- return sec
251
-
252
- def collate(self, examples: List[Dict]) -> Dict:
253
- sample_index: List[int] = []
254
- phoneme_ids: List[torch.Tensor] = []
255
- phoneme_ids_lens: List[int] = []
256
- semantic_ids: List[torch.Tensor] = []
257
- semantic_ids_lens: List[int] = []
258
- # return
259
-
260
- for item in examples:
261
- sample_index.append(item["idx"])
262
- phoneme_ids.append(np.array(item["phoneme_ids"], dtype=np.int64))
263
- semantic_ids.append(np.array(item["semantic_ids"], dtype=np.int64))
264
- phoneme_ids_lens.append(item["phoneme_ids_len"])
265
- semantic_ids_lens.append(item["semantic_ids_len"])
266
-
267
- # pad 0
268
- phoneme_ids = batch_sequences(phoneme_ids)
269
- semantic_ids = batch_sequences(semantic_ids, pad_value=self.PAD)
270
-
271
- # # convert each batch to torch.tensor
272
- phoneme_ids = torch.tensor(phoneme_ids)
273
- semantic_ids = torch.tensor(semantic_ids)
274
- phoneme_ids_lens = torch.tensor(phoneme_ids_lens)
275
- semantic_ids_lens = torch.tensor(semantic_ids_lens)
276
- bert_padded = torch.FloatTensor(len(examples), 1024, max(phoneme_ids_lens))
277
- bert_padded.zero_()
278
-
279
- for idx, item in enumerate(examples):
280
- bert = item["bert_feature"]
281
- if bert != None:
282
- bert_padded[idx, :, : bert.shape[-1]] = bert
283
-
284
- return {
285
- # List[int]
286
- "ids": sample_index,
287
- # torch.Tensor (B, max_phoneme_length)
288
- "phoneme_ids": phoneme_ids,
289
- # torch.Tensor (B)
290
- "phoneme_ids_len": phoneme_ids_lens,
291
- # torch.Tensor (B, max_semantic_ids_length)
292
- "semantic_ids": semantic_ids,
293
- # torch.Tensor (B)
294
- "semantic_ids_len": semantic_ids_lens,
295
- # torch.Tensor (B, 1024, max_phoneme_length)
296
- "bert_feature": bert_padded,
297
- }
298
-
299
-
300
- if __name__ == "__main__":
301
- root_dir = "/data/docker/liujing04/gpt-vits/prepare/dump_mix/"
302
- dataset = Text2SemanticDataset(
303
- phoneme_path=root_dir + "phoneme_train.npy",
304
- semantic_path=root_dir + "semantic_train.tsv",
305
- )
306
-
307
- batch_size = 12
308
- dataloader = DataLoader(
309
- dataset, batch_size=batch_size, collate_fn=dataset.collate, shuffle=False
310
- )
311
- for i, batch in enumerate(dataloader):
312
- if i % 1000 == 0:
313
- print(i)
314
- # if i == 0:
315
- # print('batch["ids"]:', batch["ids"])
316
- # print('batch["phoneme_ids"]:', batch["phoneme_ids"],
317
- # batch["phoneme_ids"].shape)
318
- # print('batch["phoneme_ids_len"]:', batch["phoneme_ids_len"],
319
- # batch["phoneme_ids_len"].shape)
320
- # print('batch["semantic_ids"]:', batch["semantic_ids"],
321
- # batch["semantic_ids"].shape)
322
- # print('batch["semantic_ids_len"]:', batch["semantic_ids_len"],
323
- # batch["semantic_ids_len"].shape)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/models/__init__.py DELETED
File without changes
GPT_SoVITS/AR/models/t2s_lightning_module.py DELETED
@@ -1,141 +0,0 @@
1
- # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_lightning_module.py
2
- # reference: https://github.com/lifeiteng/vall-e
3
- import os, sys
4
-
5
- now_dir = os.getcwd()
6
- sys.path.append(now_dir)
7
- from typing import Dict
8
-
9
- import torch
10
- from pytorch_lightning import LightningModule
11
- from AR.models.t2s_model import Text2SemanticDecoder
12
- from AR.modules.lr_schedulers import WarmupCosineLRSchedule
13
- from AR.modules.optim import ScaledAdam
14
-
15
- class Text2SemanticLightningModule(LightningModule):
16
- def __init__(self, config, output_dir, is_train=True):
17
- super().__init__()
18
- self.config = config
19
- self.top_k = 3
20
- self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
21
- pretrained_s1 = config.get("pretrained_s1")
22
- if pretrained_s1 and is_train:
23
- # print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
24
- print(
25
- self.load_state_dict(
26
- torch.load(pretrained_s1, map_location="cpu")["weight"]
27
- )
28
- )
29
- if is_train:
30
- self.automatic_optimization = False
31
- self.save_hyperparameters()
32
- self.eval_dir = output_dir / "eval"
33
- self.eval_dir.mkdir(parents=True, exist_ok=True)
34
-
35
- def training_step(self, batch: Dict, batch_idx: int):
36
- opt = self.optimizers()
37
- scheduler = self.lr_schedulers()
38
- forward=self.model.forward if self.config["train"].get("if_dpo",False)==True else self.model.forward_old
39
- loss, acc = forward(
40
- batch["phoneme_ids"],
41
- batch["phoneme_ids_len"],
42
- batch["semantic_ids"],
43
- batch["semantic_ids_len"],
44
- batch["bert_feature"],
45
- )
46
- self.manual_backward(loss)
47
- if batch_idx > 0 and batch_idx % 4 == 0:
48
- opt.step()
49
- opt.zero_grad()
50
- scheduler.step()
51
-
52
- self.log(
53
- "total_loss",
54
- loss,
55
- on_step=True,
56
- on_epoch=True,
57
- prog_bar=True,
58
- sync_dist=True,
59
- )
60
- self.log(
61
- "lr",
62
- scheduler.get_last_lr()[0],
63
- on_epoch=True,
64
- prog_bar=True,
65
- sync_dist=True,
66
- )
67
- self.log(
68
- f"top_{self.top_k}_acc",
69
- acc,
70
- on_step=True,
71
- on_epoch=True,
72
- prog_bar=True,
73
- sync_dist=True,
74
- )
75
-
76
- def validation_step(self, batch: Dict, batch_idx: int):
77
- return
78
-
79
- # # get loss
80
- # loss, acc = self.model.forward(
81
- # batch['phoneme_ids'], batch['phoneme_ids_len'],
82
- # batch['semantic_ids'], batch['semantic_ids_len'],
83
- # batch['bert_feature']
84
- # )
85
- #
86
- # self.log(
87
- # "val_total_loss",
88
- # loss,
89
- # on_step=True,
90
- # on_epoch=True,
91
- # prog_bar=True,
92
- # sync_dist=True)
93
- # self.log(
94
- # f"val_top_{self.top_k}_acc",
95
- # acc,
96
- # on_step=True,
97
- # on_epoch=True,
98
- # prog_bar=True,
99
- # sync_dist=True)
100
- #
101
- # # get infer output
102
- # semantic_len = batch['semantic_ids'].size(1)
103
- # prompt_len = min(int(semantic_len * 0.5), 150)
104
- # prompt = batch['semantic_ids'][:, :prompt_len]
105
- # pred_semantic = self.model.infer(batch['phoneme_ids'],
106
- # batch['phoneme_ids_len'], prompt,
107
- # batch['bert_feature']
108
- # )
109
- # save_name = f'semantic_toks_{batch_idx}.pt'
110
- # save_path = os.path.join(self.eval_dir, save_name)
111
- # torch.save(pred_semantic.detach().cpu(), save_path)
112
-
113
- def configure_optimizers(self):
114
- model_parameters = self.model.parameters()
115
- parameters_names = []
116
- parameters_names.append(
117
- [name_param_pair[0] for name_param_pair in self.model.named_parameters()]
118
- )
119
- lm_opt = ScaledAdam(
120
- model_parameters,
121
- lr=0.01,
122
- betas=(0.9, 0.95),
123
- clipping_scale=2.0,
124
- parameters_names=parameters_names,
125
- show_dominant_parameters=False,
126
- clipping_update_period=1000,
127
- )
128
-
129
- return {
130
- "optimizer": lm_opt,
131
- "lr_scheduler": {
132
- "scheduler": WarmupCosineLRSchedule(
133
- lm_opt,
134
- init_lr=self.config["optimizer"]["lr_init"],
135
- peak_lr=self.config["optimizer"]["lr"],
136
- end_lr=self.config["optimizer"]["lr_end"],
137
- warmup_steps=self.config["optimizer"]["warmup_steps"],
138
- total_steps=self.config["optimizer"]["decay_steps"],
139
- )
140
- },
141
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/models/t2s_lightning_module_onnx.py DELETED
@@ -1,107 +0,0 @@
1
- # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_lightning_module.py
2
- # reference: https://github.com/lifeiteng/vall-e
3
- import os, sys
4
-
5
- now_dir = os.getcwd()
6
- sys.path.append(now_dir)
7
- from typing import Dict
8
-
9
- import torch
10
- from pytorch_lightning import LightningModule
11
- from AR.models.t2s_model_onnx import Text2SemanticDecoder
12
- from AR.modules.lr_schedulers import WarmupCosineLRSchedule
13
- from AR.modules.optim import ScaledAdam
14
-
15
-
16
- class Text2SemanticLightningModule(LightningModule):
17
- def __init__(self, config, output_dir, is_train=True):
18
- super().__init__()
19
- self.config = config
20
- self.top_k = 3
21
- self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
22
- pretrained_s1 = config.get("pretrained_s1")
23
- if pretrained_s1 and is_train:
24
- # print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
25
- print(
26
- self.load_state_dict(
27
- torch.load(pretrained_s1, map_location="cpu")["weight"]
28
- )
29
- )
30
- if is_train:
31
- self.automatic_optimization = False
32
- self.save_hyperparameters()
33
- self.eval_dir = output_dir / "eval"
34
- self.eval_dir.mkdir(parents=True, exist_ok=True)
35
-
36
- def training_step(self, batch: Dict, batch_idx: int):
37
- opt = self.optimizers()
38
- scheduler = self.lr_schedulers()
39
- loss, acc = self.model.forward(
40
- batch["phoneme_ids"],
41
- batch["phoneme_ids_len"],
42
- batch["semantic_ids"],
43
- batch["semantic_ids_len"],
44
- batch["bert_feature"],
45
- )
46
- self.manual_backward(loss)
47
- if batch_idx > 0 and batch_idx % 4 == 0:
48
- opt.step()
49
- opt.zero_grad()
50
- scheduler.step()
51
-
52
- self.log(
53
- "total_loss",
54
- loss,
55
- on_step=True,
56
- on_epoch=True,
57
- prog_bar=True,
58
- sync_dist=True,
59
- )
60
- self.log(
61
- "lr",
62
- scheduler.get_last_lr()[0],
63
- on_epoch=True,
64
- prog_bar=True,
65
- sync_dist=True,
66
- )
67
- self.log(
68
- f"top_{self.top_k}_acc",
69
- acc,
70
- on_step=True,
71
- on_epoch=True,
72
- prog_bar=True,
73
- sync_dist=True,
74
- )
75
-
76
- def validation_step(self, batch: Dict, batch_idx: int):
77
- return
78
-
79
- def configure_optimizers(self):
80
- model_parameters = self.model.parameters()
81
- parameters_names = []
82
- parameters_names.append(
83
- [name_param_pair[0] for name_param_pair in self.model.named_parameters()]
84
- )
85
- lm_opt = ScaledAdam(
86
- model_parameters,
87
- lr=0.01,
88
- betas=(0.9, 0.95),
89
- clipping_scale=2.0,
90
- parameters_names=parameters_names,
91
- show_dominant_parameters=False,
92
- clipping_update_period=1000,
93
- )
94
-
95
- return {
96
- "optimizer": lm_opt,
97
- "lr_scheduler": {
98
- "scheduler": WarmupCosineLRSchedule(
99
- lm_opt,
100
- init_lr=self.config["optimizer"]["lr_init"],
101
- peak_lr=self.config["optimizer"]["lr"],
102
- end_lr=self.config["optimizer"]["lr_end"],
103
- warmup_steps=self.config["optimizer"]["warmup_steps"],
104
- total_steps=self.config["optimizer"]["decay_steps"],
105
- )
106
- },
107
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/models/t2s_model.py DELETED
@@ -1,900 +0,0 @@
1
- # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
2
- # reference: https://github.com/lifeiteng/vall-e
3
- import math
4
- from typing import List, Optional
5
- import torch
6
- from tqdm import tqdm
7
-
8
- from AR.models.utils import make_pad_mask
9
- from AR.models.utils import (
10
- topk_sampling,
11
- sample,
12
- logits_to_probs,
13
- multinomial_sample_one_no_sync,
14
- dpo_loss,
15
- make_reject_y,
16
- get_batch_logps
17
- )
18
- from AR.modules.embedding import SinePositionalEmbedding
19
- from AR.modules.embedding import TokenEmbedding
20
- from AR.modules.transformer import LayerNorm
21
- from AR.modules.transformer import TransformerEncoder
22
- from AR.modules.transformer import TransformerEncoderLayer
23
- from torch import nn
24
- from torch.nn import functional as F
25
- from torchmetrics.classification import MulticlassAccuracy
26
-
27
- default_config = {
28
- "embedding_dim": 512,
29
- "hidden_dim": 512,
30
- "num_head": 8,
31
- "num_layers": 12,
32
- "num_codebook": 8,
33
- "p_dropout": 0.0,
34
- "vocab_size": 1024 + 1,
35
- "phoneme_vocab_size": 512,
36
- "EOS": 1024,
37
- }
38
-
39
- # @torch.jit.script ## 使用的话首次推理会非常慢,而且推理速度不稳定
40
- # Efficient implementation equivalent to the following:
41
- def scaled_dot_product_attention(query:torch.Tensor, key:torch.Tensor, value:torch.Tensor, attn_mask:Optional[torch.Tensor]=None, scale:Optional[torch.Tensor]=None) -> torch.Tensor:
42
- B, H, L, S =query.size(0), query.size(1), query.size(-2), key.size(-2)
43
- if scale is None:
44
- scale_factor = torch.tensor(1 / math.sqrt(query.size(-1)))
45
- else:
46
- scale_factor = scale
47
- attn_bias = torch.zeros(B, H, L, S, dtype=query.dtype, device=query.device)
48
-
49
- if attn_mask is not None:
50
- if attn_mask.dtype == torch.bool:
51
- attn_bias.masked_fill_(attn_mask, float("-inf"))
52
- else:
53
- attn_bias += attn_mask
54
- attn_weight = query @ key.transpose(-2, -1) * scale_factor
55
- attn_weight += attn_bias
56
- attn_weight = torch.softmax(attn_weight, dim=-1)
57
-
58
- if attn_mask is not None:
59
- if attn_mask.dtype == torch.bool:
60
- attn_weight.masked_fill_(attn_mask, 0)
61
- else:
62
- attn_mask[attn_mask!=float("-inf")] =0
63
- attn_mask[attn_mask==float("-inf")] =1
64
- attn_weight.masked_fill_(attn_mask, 0)
65
-
66
- return attn_weight @ value
67
-
68
- @torch.jit.script
69
- class T2SMLP:
70
- def __init__(self, w1, b1, w2, b2):
71
- self.w1 = w1
72
- self.b1 = b1
73
- self.w2 = w2
74
- self.b2 = b2
75
-
76
- def forward(self, x):
77
- x = F.relu(F.linear(x, self.w1, self.b1))
78
- x = F.linear(x, self.w2, self.b2)
79
- return x
80
-
81
-
82
- @torch.jit.script
83
- class T2SBlock:
84
- def __init__(
85
- self,
86
- num_heads,
87
- hidden_dim: int,
88
- mlp: T2SMLP,
89
- qkv_w,
90
- qkv_b,
91
- out_w,
92
- out_b,
93
- norm_w1,
94
- norm_b1,
95
- norm_eps1,
96
- norm_w2,
97
- norm_b2,
98
- norm_eps2,
99
- ):
100
- self.num_heads = num_heads
101
- self.mlp = mlp
102
- self.hidden_dim: int = hidden_dim
103
- self.qkv_w = qkv_w
104
- self.qkv_b = qkv_b
105
- self.out_w = out_w
106
- self.out_b = out_b
107
- self.norm_w1 = norm_w1
108
- self.norm_b1 = norm_b1
109
- self.norm_eps1 = norm_eps1
110
- self.norm_w2 = norm_w2
111
- self.norm_b2 = norm_b2
112
- self.norm_eps2 = norm_eps2
113
-
114
- self.false = torch.tensor(False, dtype=torch.bool)
115
-
116
- @torch.jit.ignore
117
- def to_mask(self, x:torch.Tensor, padding_mask:Optional[torch.Tensor]):
118
- if padding_mask is None:
119
- return x
120
-
121
- if padding_mask.dtype == torch.bool:
122
- return x.masked_fill(padding_mask, 0)
123
- else:
124
- return x * padding_mask
125
-
126
- def process_prompt(self, x:torch.Tensor, attn_mask : torch.Tensor, padding_mask:Optional[torch.Tensor]=None, torch_sdpa:bool=True):
127
-
128
-
129
- q, k, v = F.linear(self.to_mask(x, padding_mask), self.qkv_w, self.qkv_b).chunk(3, dim=-1)
130
-
131
- batch_size = q.shape[0]
132
- q_len = q.shape[1]
133
- kv_len = k.shape[1]
134
-
135
- q = self.to_mask(q, padding_mask)
136
- k_cache = self.to_mask(k, padding_mask)
137
- v_cache = self.to_mask(v, padding_mask)
138
-
139
- q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
140
- k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
141
- v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
142
-
143
- if torch_sdpa:
144
- attn = F.scaled_dot_product_attention(q, k, v, ~attn_mask)
145
- else:
146
- attn = scaled_dot_product_attention(q, k, v, attn_mask)
147
-
148
- attn = attn.permute(2, 0, 1, 3).reshape(batch_size*q_len, self.hidden_dim)
149
- attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0)
150
- attn = F.linear(self.to_mask(attn, padding_mask), self.out_w, self.out_b)
151
-
152
- if padding_mask is not None:
153
- for i in range(batch_size):
154
- # mask = padding_mask[i,:,0]
155
- if self.false.device!= padding_mask.device:
156
- self.false = self.false.to(padding_mask.device)
157
- idx = torch.where(padding_mask[i,:,0]==self.false)[0]
158
- x_item = x[i,idx,:].unsqueeze(0)
159
- attn_item = attn[i,idx,:].unsqueeze(0)
160
- x_item = x_item + attn_item
161
- x_item = F.layer_norm(
162
- x_item, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
163
- )
164
- x_item = x_item + self.mlp.forward(x_item)
165
- x_item = F.layer_norm(
166
- x_item,
167
- [self.hidden_dim],
168
- self.norm_w2,
169
- self.norm_b2,
170
- self.norm_eps2,
171
- )
172
- x[i,idx,:] = x_item.squeeze(0)
173
- x = self.to_mask(x, padding_mask)
174
- else:
175
- x = x + attn
176
- x = F.layer_norm(
177
- x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
178
- )
179
- x = x + self.mlp.forward(x)
180
- x = F.layer_norm(
181
- x,
182
- [self.hidden_dim],
183
- self.norm_w2,
184
- self.norm_b2,
185
- self.norm_eps2,
186
- )
187
- return x, k_cache, v_cache
188
-
189
- def decode_next_token(self, x:torch.Tensor, k_cache:torch.Tensor, v_cache:torch.Tensor, attn_mask:Optional[torch.Tensor]=None, torch_sdpa:bool=True):
190
- q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1)
191
-
192
- k_cache = torch.cat([k_cache, k], dim=1)
193
- v_cache = torch.cat([v_cache, v], dim=1)
194
-
195
- batch_size = q.shape[0]
196
- q_len = q.shape[1]
197
- kv_len = k_cache.shape[1]
198
-
199
- q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
200
- k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
201
- v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
202
-
203
-
204
- if torch_sdpa:
205
- attn = F.scaled_dot_product_attention(q, k, v)
206
- else:
207
- attn = scaled_dot_product_attention(q, k, v, attn_mask)
208
-
209
- attn = attn.permute(2, 0, 1, 3).reshape(batch_size*q_len, self.hidden_dim)
210
- attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0)
211
- attn = F.linear(attn, self.out_w, self.out_b)
212
-
213
- x = x + attn
214
- x = F.layer_norm(
215
- x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1
216
- )
217
- x = x + self.mlp.forward(x)
218
- x = F.layer_norm(
219
- x,
220
- [self.hidden_dim],
221
- self.norm_w2,
222
- self.norm_b2,
223
- self.norm_eps2,
224
- )
225
- return x, k_cache, v_cache
226
-
227
-
228
- @torch.jit.script
229
- class T2STransformer:
230
- def __init__(self, num_blocks : int, blocks: List[T2SBlock]):
231
- self.num_blocks : int = num_blocks
232
- self.blocks = blocks
233
-
234
- def process_prompt(
235
- self, x:torch.Tensor, attn_mask : torch.Tensor,
236
- padding_mask : Optional[torch.Tensor]=None,
237
- torch_sdpa:bool=True
238
- ):
239
- k_cache : List[torch.Tensor] = []
240
- v_cache : List[torch.Tensor] = []
241
- for i in range(self.num_blocks):
242
- x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask, padding_mask, torch_sdpa)
243
- k_cache.append(k_cache_)
244
- v_cache.append(v_cache_)
245
- return x, k_cache, v_cache
246
-
247
- def decode_next_token(
248
- self, x:torch.Tensor,
249
- k_cache: List[torch.Tensor],
250
- v_cache: List[torch.Tensor],
251
- attn_mask : Optional[torch.Tensor]=None,
252
- torch_sdpa:bool=True
253
- ):
254
- for i in range(self.num_blocks):
255
- x, k_cache[i], v_cache[i] = self.blocks[i].decode_next_token(x, k_cache[i], v_cache[i], attn_mask, torch_sdpa)
256
- return x, k_cache, v_cache
257
-
258
-
259
- class Text2SemanticDecoder(nn.Module):
260
- def __init__(self, config, norm_first=False, top_k=3):
261
- super(Text2SemanticDecoder, self).__init__()
262
- self.model_dim = config["model"]["hidden_dim"]
263
- self.embedding_dim = config["model"]["embedding_dim"]
264
- self.num_head = config["model"]["head"]
265
- self.num_layers = config["model"]["n_layer"]
266
- self.norm_first = norm_first
267
- self.vocab_size = config["model"]["vocab_size"]
268
- self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
269
- self.p_dropout = config["model"]["dropout"]
270
- self.EOS = config["model"]["EOS"]
271
- self.norm_first = norm_first
272
- assert self.EOS == self.vocab_size - 1
273
- # should be same as num of kmeans bin
274
- # assert self.EOS == 1024
275
- self.bert_proj = nn.Linear(1024, self.embedding_dim)
276
- self.ar_text_embedding = TokenEmbedding(
277
- self.embedding_dim, self.phoneme_vocab_size, self.p_dropout
278
- )
279
- self.ar_text_position = SinePositionalEmbedding(
280
- self.embedding_dim, dropout=0.1, scale=False, alpha=True
281
- )
282
- self.ar_audio_embedding = TokenEmbedding(
283
- self.embedding_dim, self.vocab_size, self.p_dropout
284
- )
285
- self.ar_audio_position = SinePositionalEmbedding(
286
- self.embedding_dim, dropout=0.1, scale=False, alpha=True
287
- )
288
-
289
- self.h = TransformerEncoder(
290
- TransformerEncoderLayer(
291
- d_model=self.model_dim,
292
- nhead=self.num_head,
293
- dim_feedforward=self.model_dim * 4,
294
- dropout=0.1,
295
- batch_first=True,
296
- norm_first=norm_first,
297
- ),
298
- num_layers=self.num_layers,
299
- norm=LayerNorm(self.model_dim) if norm_first else None,
300
- )
301
-
302
- self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
303
- self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
304
-
305
- self.ar_accuracy_metric = MulticlassAccuracy(
306
- self.vocab_size,
307
- top_k=top_k,
308
- average="micro",
309
- multidim_average="global",
310
- ignore_index=self.EOS,
311
- )
312
-
313
- blocks = []
314
-
315
- for i in range(self.num_layers):
316
- layer = self.h.layers[i]
317
- t2smlp = T2SMLP(
318
- layer.linear1.weight,
319
- layer.linear1.bias,
320
- layer.linear2.weight,
321
- layer.linear2.bias
322
- )
323
-
324
- block = T2SBlock(
325
- self.num_head,
326
- self.model_dim,
327
- t2smlp,
328
- layer.self_attn.in_proj_weight,
329
- layer.self_attn.in_proj_bias,
330
- layer.self_attn.out_proj.weight,
331
- layer.self_attn.out_proj.bias,
332
- layer.norm1.weight,
333
- layer.norm1.bias,
334
- layer.norm1.eps,
335
- layer.norm2.weight,
336
- layer.norm2.bias,
337
- layer.norm2.eps
338
- )
339
-
340
- blocks.append(block)
341
-
342
- self.t2s_transformer = T2STransformer(self.num_layers, blocks)
343
-
344
- def make_input_data(self, x, x_lens, y, y_lens, bert_feature):
345
- x = self.ar_text_embedding(x)
346
- x = x + self.bert_proj(bert_feature.transpose(1, 2))
347
- x = self.ar_text_position(x)
348
- x_mask = make_pad_mask(x_lens)
349
-
350
- y_mask = make_pad_mask(y_lens)
351
- y_mask_int = y_mask.type(torch.int64)
352
- codes = y.type(torch.int64) * (1 - y_mask_int)
353
-
354
- # Training
355
- # AR Decoder
356
- y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
357
- x_len = x_lens.max()
358
- y_len = y_lens.max()
359
- y_emb = self.ar_audio_embedding(y)
360
- y_pos = self.ar_audio_position(y_emb)
361
-
362
- xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
363
-
364
- ar_xy_padding_mask = xy_padding_mask
365
-
366
- x_attn_mask = F.pad(
367
- torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
368
- (0, y_len),
369
- value=True,
370
- )
371
- # x_attn_mask[:, x_len]=False
372
- y_attn_mask = F.pad(
373
- torch.triu(
374
- torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
375
- diagonal=1,
376
- ),
377
- (x_len, 0),
378
- value=False,
379
- )
380
-
381
- xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
382
- bsz, src_len = x.shape[0], x_len + y_len
383
- _xy_padding_mask = (
384
- ar_xy_padding_mask.view(bsz, 1, 1, src_len)
385
- .expand(-1, self.num_head, -1, -1)
386
- .reshape(bsz * self.num_head, 1, src_len)
387
- )
388
- xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
389
- new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
390
- new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
391
- xy_attn_mask = new_attn_mask
392
- # x 和完整的 y 一次性输入模型
393
- xy_pos = torch.concat([x, y_pos], dim=1)
394
-
395
- return xy_pos, xy_attn_mask, targets
396
-
397
- def forward(self, x, x_lens, y, y_lens, bert_feature):
398
- """
399
- x: phoneme_ids
400
- y: semantic_ids
401
- """
402
-
403
- reject_y, reject_y_lens = make_reject_y(y, y_lens)
404
-
405
- xy_pos, xy_attn_mask, targets = self.make_input_data(x, x_lens, y, y_lens, bert_feature)
406
-
407
- xy_dec, _ = self.h(
408
- (xy_pos, None),
409
- mask=xy_attn_mask,
410
- )
411
- x_len = x_lens.max()
412
- logits = self.ar_predict_layer(xy_dec[:, x_len:])
413
-
414
- ###### DPO #############
415
- reject_xy_pos, reject_xy_attn_mask, reject_targets = self.make_input_data(x, x_lens, reject_y, reject_y_lens, bert_feature)
416
-
417
- reject_xy_dec, _ = self.h(
418
- (reject_xy_pos, None),
419
- mask=reject_xy_attn_mask,
420
- )
421
- x_len = x_lens.max()
422
- reject_logits = self.ar_predict_layer(reject_xy_dec[:, x_len:])
423
-
424
- # loss
425
- # from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
426
-
427
- loss_1 = F.cross_entropy(logits.permute(0, 2, 1), targets, reduction="sum")
428
- acc = self.ar_accuracy_metric(logits.permute(0, 2, 1).detach(), targets).item()
429
-
430
- A_logits, R_logits = get_batch_logps(logits, reject_logits, targets, reject_targets)
431
- loss_2, _, _ = dpo_loss(A_logits, R_logits, 0, 0, 0.2, reference_free=True)
432
-
433
- loss = loss_1 + loss_2
434
-
435
- return loss, acc
436
-
437
- def forward_old(self, x, x_lens, y, y_lens, bert_feature):
438
- """
439
- x: phoneme_ids
440
- y: semantic_ids
441
- """
442
- x = self.ar_text_embedding(x)
443
- x = x + self.bert_proj(bert_feature.transpose(1, 2))
444
- x = self.ar_text_position(x)
445
- x_mask = make_pad_mask(x_lens)
446
-
447
- y_mask = make_pad_mask(y_lens)
448
- y_mask_int = y_mask.type(torch.int64)
449
- codes = y.type(torch.int64) * (1 - y_mask_int)
450
-
451
- # Training
452
- # AR Decoder
453
- y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
454
- x_len = x_lens.max()
455
- y_len = y_lens.max()
456
- y_emb = self.ar_audio_embedding(y)
457
- y_pos = self.ar_audio_position(y_emb)
458
-
459
- xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
460
- ar_xy_padding_mask = xy_padding_mask
461
-
462
- x_attn_mask = F.pad(
463
- torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
464
- (0, y_len),
465
- value=True,
466
- )
467
- y_attn_mask = F.pad(
468
- torch.triu(
469
- torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
470
- diagonal=1,
471
- ),
472
- (x_len, 0),
473
- value=False,
474
- )
475
- xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
476
- bsz, src_len = x.shape[0], x_len + y_len
477
- _xy_padding_mask = (
478
- ar_xy_padding_mask.view(bsz, 1, 1, src_len)
479
- .expand(-1, self.num_head, -1, -1)
480
- .reshape(bsz * self.num_head, 1, src_len)
481
- )
482
- xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
483
- new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
484
- new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
485
- xy_attn_mask = new_attn_mask
486
- # x 和完整的 y 一次性输入模型
487
- xy_pos = torch.concat([x, y_pos], dim=1)
488
- xy_dec, _ = self.h(
489
- (xy_pos, None),
490
- mask=xy_attn_mask,
491
- )
492
- logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1)
493
- # loss
494
- # from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
495
- loss = F.cross_entropy(logits, targets, reduction="sum")
496
- acc = self.ar_accuracy_metric(logits.detach(), targets).item()
497
- return loss, acc
498
-
499
- # 需要看下这个函数和 forward 的区别以及没有 semantic 的时候 prompts 输入什么
500
- def infer(
501
- self,
502
- x,
503
- x_lens,
504
- prompts,
505
- bert_feature,
506
- top_k: int = -100,
507
- early_stop_num: int = -1,
508
- temperature: float = 1.0,
509
- ):
510
- x = self.ar_text_embedding(x)
511
- x = x + self.bert_proj(bert_feature.transpose(1, 2))
512
- x = self.ar_text_position(x)
513
-
514
- # AR Decoder
515
- y = prompts
516
- prefix_len = y.shape[1]
517
- x_len = x.shape[1]
518
- x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
519
- stop = False
520
- for _ in tqdm(range(1500)):
521
- y_emb = self.ar_audio_embedding(y)
522
- y_pos = self.ar_audio_position(y_emb)
523
- # x 和逐渐增长的 y 一起输入给模型
524
- xy_pos = torch.concat([x, y_pos], dim=1)
525
- y_len = y.shape[1]
526
- x_attn_mask_pad = F.pad(
527
- x_attn_mask,
528
- (0, y_len),
529
- value=True,
530
- )
531
- y_attn_mask = F.pad(
532
- torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
533
- (x_len, 0),
534
- value=False,
535
- )
536
- xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
537
- y.device
538
- )
539
-
540
- xy_dec, _ = self.h(
541
- (xy_pos, None),
542
- mask=xy_attn_mask,
543
- )
544
- logits = self.ar_predict_layer(xy_dec[:, -1])
545
- samples = topk_sampling(
546
- logits, top_k=top_k, top_p=1.0, temperature=temperature
547
- )
548
-
549
- if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
550
- print("use early stop num:", early_stop_num)
551
- stop = True
552
-
553
- if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
554
- # print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
555
- stop = True
556
- if stop:
557
- if prompts.shape[1] == y.shape[1]:
558
- y = torch.concat([y, torch.zeros_like(samples)], dim=1)
559
- print("bad zero prediction")
560
- print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
561
- break
562
- # 本次生成的 semantic_ids 和之前的 y 构成新的 y
563
- # print(samples.shape)#[1,1]#第一个1是bs
564
- # import os
565
- # os._exit(2333)
566
- y = torch.concat([y, samples], dim=1)
567
- return y
568
-
569
- def pad_y_eos(self, y, y_mask_int, eos_id):
570
- targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad(
571
- y_mask_int, (0, 1), value=1
572
- )
573
- # 错位
574
- return targets[:, :-1], targets[:, 1:]
575
-
576
- def infer_panel_batch_infer(
577
- self,
578
- x:List[torch.LongTensor], #####全部文本token
579
- x_lens:torch.LongTensor,
580
- prompts:torch.LongTensor, ####参考音频token
581
- bert_feature:List[torch.LongTensor],
582
- top_k: int = -100,
583
- top_p: int = 100,
584
- early_stop_num: int = -1,
585
- temperature: float = 1.0,
586
- repetition_penalty: float = 1.35,
587
- **kwargs,
588
- ):
589
- if prompts is None:
590
- print("Warning: Prompt free is not supported batch_infer! switch to naive_infer")
591
- return self.infer_panel_naive_batched(x, x_lens, prompts, bert_feature, top_k=top_k, top_p=top_p, early_stop_num=early_stop_num, temperature=temperature, **kwargs)
592
-
593
-
594
- max_len = kwargs.get("max_len",x_lens.max())
595
- x_list = []
596
- for x_item, bert_item in zip(x, bert_feature):
597
- # max_len = max(max_len, x_item.shape[0], bert_item.shape[1])
598
- x_item = self.ar_text_embedding(x_item.unsqueeze(0))
599
- x_item = x_item + self.bert_proj(bert_item.transpose(0, 1).unsqueeze(0))
600
- x_item = self.ar_text_position(x_item).squeeze(0)
601
- x_item = F.pad(x_item,(0,0,0,max_len-x_item.shape[0]),value=0) if x_item.shape[0]<max_len else x_item
602
- x_list.append(x_item)
603
- x = torch.stack(x_list, dim=0)
604
-
605
-
606
- # AR Decoder
607
- y = prompts
608
-
609
- x_len = x.shape[1]
610
- x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
611
- stop = False
612
-
613
- k_cache = None
614
- v_cache = None
615
- ################### first step ##########################
616
- if y is not None:
617
- y_emb = self.ar_audio_embedding(y)
618
- y_len = y_emb.shape[1]
619
- prefix_len = y.shape[1]
620
- y_lens = torch.LongTensor([y_emb.shape[1]]*y_emb.shape[0]).to(x.device)
621
- y_pos = self.ar_audio_position(y_emb)
622
- xy_pos = torch.concat([x, y_pos], dim=1)
623
- ref_free = False
624
- else:
625
- y_emb = None
626
- y_len = 0
627
- prefix_len = 0
628
- y_lens = torch.LongTensor([y_len]*x.shape[0]).to(x.device)
629
- y_pos = None
630
- xy_pos = x
631
- y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
632
- ref_free = True
633
-
634
-
635
- ##### create mask #####
636
- bsz = x.shape[0]
637
- src_len = x_len + y_len
638
- y_paddind_mask = make_pad_mask(y_lens, y_len)
639
- x_paddind_mask = make_pad_mask(x_lens, max_len)
640
-
641
- # (bsz, x_len + y_len)
642
- xy_padding_mask = torch.concat([x_paddind_mask, y_paddind_mask], dim=1)
643
-
644
- x_mask = F.pad(
645
- x_attn_mask,
646
- (0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
647
- value=True,
648
- )
649
- y_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
650
- torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
651
- (x_len, 0),
652
- value=False,
653
- )
654
-
655
- xy_mask = torch.concat([x_mask, y_mask], dim=0).view(1 , src_len, src_len).repeat(bsz, 1, 1).to(x.device)
656
- _xy_padding_mask = xy_padding_mask.view(bsz, 1, src_len).repeat(1, src_len, 1)
657
-
658
- for i in range(bsz):
659
- l = x_lens[i]
660
- _xy_padding_mask[i,l:max_len,:]=True
661
-
662
- xy_attn_mask = xy_mask.logical_or(_xy_padding_mask)
663
- xy_attn_mask = xy_attn_mask.unsqueeze(1).expand(-1, self.num_head, -1, -1)
664
- xy_attn_mask = xy_attn_mask.bool()
665
- xy_padding_mask = xy_padding_mask.view(bsz, src_len, 1).expand(-1, -1, self.model_dim)
666
-
667
- ###### decode #####
668
- y_list = [None]*y.shape[0]
669
- batch_idx_map = list(range(y.shape[0]))
670
- idx_list = [None]*y.shape[0]
671
- for idx in tqdm(range(1500)):
672
- if idx == 0:
673
- xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask, xy_padding_mask, False)
674
- else:
675
- xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache, xy_attn_mask, False)
676
- logits = self.ar_predict_layer(
677
- xy_dec[:, -1]
678
- )
679
-
680
- if idx == 0:
681
- xy_attn_mask = F.pad(xy_attn_mask[:,:,-1].unsqueeze(-2),(0,1),value=False)
682
- logits = logits[:, :-1]
683
- else:
684
- xy_attn_mask = F.pad(xy_attn_mask,(0,1),value=False)
685
-
686
- samples = sample(
687
- logits, y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
688
- )[0]
689
-
690
- y = torch.concat([y, samples], dim=1)
691
-
692
- ####### 移除batch中已经生成完毕的序列,进一步优化计算量
693
- tokens = torch.argmax(logits, dim=-1)
694
- reserved_idx_of_batch_for_y = None
695
- if (self.EOS in samples[:, 0]) or \
696
- (self.EOS in tokens): ###如果生成到EOS,则停止
697
- l1 = samples[:, 0]==self.EOS
698
- l2 = tokens==self.EOS
699
- l = l1.logical_or(l2)
700
- removed_idx_of_batch_for_y = torch.where(l==True)[0].tolist()
701
- reserved_idx_of_batch_for_y = torch.where(l==False)[0]
702
- # batch_indexs = torch.tensor(batch_idx_map, device=y.device)[removed_idx_of_batch_for_y]
703
- for i in removed_idx_of_batch_for_y:
704
- batch_index = batch_idx_map[i]
705
- idx_list[batch_index] = idx - 1
706
- y_list[batch_index] = y[i, :-1]
707
-
708
- batch_idx_map = [batch_idx_map[i] for i in reserved_idx_of_batch_for_y.tolist()]
709
-
710
- # 只保留batch中未生成完毕的序列
711
- if reserved_idx_of_batch_for_y is not None:
712
- # index = torch.LongTensor(batch_idx_map).to(y.device)
713
- y = torch.index_select(y, dim=0, index=reserved_idx_of_batch_for_y)
714
- xy_attn_mask = torch.index_select(xy_attn_mask, dim=0, index=reserved_idx_of_batch_for_y)
715
- if k_cache is not None :
716
- for i in range(len(k_cache)):
717
- k_cache[i] = torch.index_select(k_cache[i], dim=0, index=reserved_idx_of_batch_for_y)
718
- v_cache[i] = torch.index_select(v_cache[i], dim=0, index=reserved_idx_of_batch_for_y)
719
-
720
-
721
- if (early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num) or idx==1499:
722
- print("use early stop num:", early_stop_num)
723
- stop = True
724
- for i, batch_index in enumerate(batch_idx_map):
725
- batch_index = batch_idx_map[i]
726
- idx_list[batch_index] = idx
727
- y_list[batch_index] = y[i, :-1]
728
-
729
- if not (None in idx_list):
730
- stop = True
731
-
732
- if stop:
733
- if y.shape[1]==0:
734
- y = torch.concat([y, torch.zeros_like(samples)], dim=1)
735
- print("bad zero prediction")
736
- print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
737
- break
738
-
739
- ####################### update next step ###################################
740
- y_emb = self.ar_audio_embedding(y[:, -1:])
741
- xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to( dtype= y_emb.dtype,device=y_emb.device)
742
-
743
- if (None in idx_list):
744
- for i in range(x.shape[0]):
745
- if idx_list[i] is None:
746
- idx_list[i] = 1500-1 ###如果没有生成到EOS,就用最大长度代替
747
-
748
- if ref_free:
749
- return y_list, [0]*x.shape[0]
750
- # print(idx_list)
751
- return y_list, idx_list
752
-
753
- def infer_panel_naive_batched(self,
754
- x:List[torch.LongTensor], #####全部文本token
755
- x_lens:torch.LongTensor,
756
- prompts:torch.LongTensor, ####参考音频token
757
- bert_feature:List[torch.LongTensor],
758
- top_k: int = -100,
759
- top_p: int = 100,
760
- early_stop_num: int = -1,
761
- temperature: float = 1.0,
762
- repetition_penalty: float = 1.35,
763
- **kwargs
764
- ):
765
- y_list = []
766
- idx_list = []
767
- for i in range(len(x)):
768
- y, idx = self.infer_panel_naive(x[i].unsqueeze(0),
769
- x_lens[i],
770
- prompts[i].unsqueeze(0) if prompts is not None else None,
771
- bert_feature[i].unsqueeze(0),
772
- top_k,
773
- top_p,
774
- early_stop_num,
775
- temperature,
776
- repetition_penalty,
777
- **kwargs)
778
- y_list.append(y[0])
779
- idx_list.append(idx)
780
-
781
- return y_list, idx_list
782
-
783
- def infer_panel_naive(
784
- self,
785
- x:torch.LongTensor, #####全部文本token
786
- x_lens:torch.LongTensor,
787
- prompts:torch.LongTensor, ####参考音频token
788
- bert_feature:torch.LongTensor,
789
- top_k: int = -100,
790
- top_p: int = 100,
791
- early_stop_num: int = -1,
792
- temperature: float = 1.0,
793
- repetition_penalty: float = 1.35,
794
- **kwargs
795
- ):
796
- x = self.ar_text_embedding(x)
797
- x = x + self.bert_proj(bert_feature.transpose(1, 2))
798
- x = self.ar_text_position(x)
799
-
800
- # AR Decoder
801
- y = prompts
802
-
803
- x_len = x.shape[1]
804
- x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
805
- stop = False
806
- # print(1111111,self.num_layers)
807
-
808
- k_cache = None
809
- v_cache = None
810
- ################### first step ##########################
811
- if y is not None:
812
- y_emb = self.ar_audio_embedding(y)
813
- y_len = y_emb.shape[1]
814
- prefix_len = y.shape[1]
815
- y_pos = self.ar_audio_position(y_emb)
816
- xy_pos = torch.concat([x, y_pos], dim=1)
817
- ref_free = False
818
- else:
819
- y_emb = None
820
- y_len = 0
821
- prefix_len = 0
822
- y_pos = None
823
- xy_pos = x
824
- y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
825
- ref_free = True
826
-
827
- bsz = x.shape[0]
828
- src_len = x_len + y_len
829
- x_attn_mask_pad = F.pad(
830
- x_attn_mask,
831
- (0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
832
- value=True,
833
- )
834
- y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
835
- torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
836
- (x_len, 0),
837
- value=False,
838
- )
839
- xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)\
840
- .unsqueeze(0)\
841
- .expand(bsz*self.num_head, -1, -1)\
842
- .view(bsz, self.num_head, src_len, src_len)\
843
- .to(device=x.device, dtype=torch.bool)
844
-
845
- for idx in tqdm(range(1500)):
846
- if xy_attn_mask is not None:
847
- xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask, None)
848
- else:
849
- xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
850
-
851
- logits = self.ar_predict_layer(
852
- xy_dec[:, -1]
853
- )
854
-
855
- if idx == 0:
856
- xy_attn_mask = None
857
- logits = logits[:, :-1]
858
-
859
- samples = sample(
860
- logits, y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
861
- )[0]
862
-
863
- y = torch.concat([y, samples], dim=1)
864
-
865
- if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
866
- print("use early stop num:", early_stop_num)
867
- stop = True
868
-
869
- if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
870
- stop = True
871
- if stop:
872
- if y.shape[1] == 0:
873
- y = torch.concat([y, torch.zeros_like(samples)], dim=1)
874
- print("bad zero prediction")
875
- print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
876
- break
877
-
878
- ####################### update next step ###################################
879
- y_emb = self.ar_audio_embedding(y[:, -1:])
880
- xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to(dtype=y_emb.dtype,device=y_emb.device)
881
-
882
- if ref_free:
883
- return y[:, :-1], 0
884
- return y[:, :-1], idx - 1
885
-
886
-
887
- def infer_panel(
888
- self,
889
- x:torch.LongTensor, #####全部文本token
890
- x_lens:torch.LongTensor,
891
- prompts:torch.LongTensor, ####参考音频token
892
- bert_feature:torch.LongTensor,
893
- top_k: int = -100,
894
- top_p: int = 100,
895
- early_stop_num: int = -1,
896
- temperature: float = 1.0,
897
- repetition_penalty: float = 1.35,
898
- **kwargs
899
- ):
900
- return self.infer_panel_naive(x, x_lens, prompts, bert_feature, top_k, top_p, early_stop_num, temperature, repetition_penalty, **kwargs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/models/t2s_model_onnx.py DELETED
@@ -1,338 +0,0 @@
1
- # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
2
- # reference: https://github.com/lifeiteng/vall-e
3
- import torch
4
- from tqdm import tqdm
5
-
6
- from AR.modules.embedding_onnx import SinePositionalEmbedding
7
- from AR.modules.embedding_onnx import TokenEmbedding
8
- from AR.modules.transformer_onnx import LayerNorm
9
- from AR.modules.transformer_onnx import TransformerEncoder
10
- from AR.modules.transformer_onnx import TransformerEncoderLayer
11
- from torch import nn
12
- from torch.nn import functional as F
13
- from torchmetrics.classification import MulticlassAccuracy
14
-
15
- default_config = {
16
- "embedding_dim": 512,
17
- "hidden_dim": 512,
18
- "num_head": 8,
19
- "num_layers": 12,
20
- "num_codebook": 8,
21
- "p_dropout": 0.0,
22
- "vocab_size": 1024 + 1,
23
- "phoneme_vocab_size": 512,
24
- "EOS": 1024,
25
- }
26
-
27
- inf_tensor_value = torch.FloatTensor([-float("Inf")]).float()
28
-
29
- def logits_to_probs(
30
- logits,
31
- previous_tokens = None,
32
- temperature: float = 1.0,
33
- top_k = None,
34
- top_p = None,
35
- repetition_penalty: float = 1.0,
36
- ):
37
- previous_tokens = previous_tokens.squeeze()
38
- if previous_tokens is not None and repetition_penalty != 1.0:
39
- previous_tokens = previous_tokens.long()
40
- score = torch.gather(logits, dim=0, index=previous_tokens)
41
- score = torch.where(
42
- score < 0, score * repetition_penalty, score / repetition_penalty
43
- )
44
- logits.scatter_(dim=0, index=previous_tokens, src=score)
45
-
46
- if top_p is not None and top_p < 1.0:
47
- sorted_logits, sorted_indices = torch.sort(logits, descending=True)
48
- cum_probs = torch.cumsum(
49
- torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
50
- )
51
- sorted_indices_to_remove = cum_probs > top_p
52
- sorted_indices_to_remove[0] = False # keep at least one option
53
- indices_to_remove = sorted_indices_to_remove.scatter(
54
- dim=0, index=sorted_indices, src=sorted_indices_to_remove
55
- )
56
- logits = logits.masked_fill(indices_to_remove, -float("Inf"))
57
-
58
- logits = logits / max(temperature, 1e-5)
59
-
60
- if top_k is not None:
61
- v, _ = torch.topk(logits, top_k)
62
- pivot = v.select(-1, -1).unsqueeze(-1)
63
- logits = torch.where(logits < pivot, inf_tensor_value, logits)
64
-
65
- probs = torch.nn.functional.softmax(logits, dim=-1)
66
- return probs
67
-
68
-
69
- def multinomial_sample_one_no_sync(
70
- probs_sort
71
- ): # Does multinomial sampling without a cuda synchronization
72
- q = torch.randn_like(probs_sort)
73
- return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
74
-
75
-
76
- def sample(
77
- logits,
78
- previous_tokens,
79
- **sampling_kwargs,
80
- ):
81
- probs = logits_to_probs(
82
- logits=logits, previous_tokens=previous_tokens, **sampling_kwargs
83
- )
84
- idx_next = multinomial_sample_one_no_sync(probs)
85
- return idx_next, probs
86
-
87
-
88
- class OnnxEncoder(nn.Module):
89
- def __init__(self, ar_text_embedding, bert_proj, ar_text_position):
90
- super().__init__()
91
- self.ar_text_embedding = ar_text_embedding
92
- self.bert_proj = bert_proj
93
- self.ar_text_position = ar_text_position
94
-
95
- def forward(self, x, bert_feature):
96
- x = self.ar_text_embedding(x)
97
- x = x + self.bert_proj(bert_feature.transpose(1, 2))
98
- return self.ar_text_position(x)
99
-
100
-
101
- class T2SFirstStageDecoder(nn.Module):
102
- def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric,
103
- top_k, early_stop_num, num_layers):
104
- super().__init__()
105
- self.ar_audio_embedding = ar_audio_embedding
106
- self.ar_audio_position = ar_audio_position
107
- self.h = h
108
- self.ar_predict_layer = ar_predict_layer
109
- self.loss_fct = loss_fct
110
- self.ar_accuracy_metric = ar_accuracy_metric
111
- self.top_k = top_k
112
- self.early_stop_num = early_stop_num
113
- self.num_layers = num_layers
114
-
115
- def forward(self, x, prompt):
116
- y = prompt
117
- x_example = x[:,:,0] * 0.0
118
- #N, 1, 512
119
- cache = {
120
- "all_stage": self.num_layers,
121
- "k": None,
122
- "v": None,
123
- "y_emb": None,
124
- "first_infer": 1,
125
- "stage": 0,
126
- }
127
-
128
- y_emb = self.ar_audio_embedding(y)
129
-
130
- cache["y_emb"] = y_emb
131
- y_pos = self.ar_audio_position(y_emb)
132
-
133
- xy_pos = torch.concat([x, y_pos], dim=1)
134
-
135
- y_example = y_pos[:,:,0] * 0.0
136
- x_attn_mask = torch.matmul(x_example.transpose(0, 1) , x_example).bool()
137
- y_attn_mask = torch.ones_like(torch.matmul(y_example.transpose(0, 1), y_example), dtype=torch.int64)
138
- y_attn_mask = torch.cumsum(y_attn_mask, dim=1) - torch.cumsum(
139
- torch.ones_like(y_example.transpose(0, 1), dtype=torch.int64), dim=0
140
- )
141
- y_attn_mask = y_attn_mask > 0
142
-
143
- x_y_pad = torch.matmul(x_example.transpose(0, 1), y_example).bool()
144
- y_x_pad = torch.matmul(y_example.transpose(0, 1), x_example).bool()
145
- x_attn_mask_pad = torch.cat([x_attn_mask, torch.ones_like(x_y_pad)], dim=1)
146
- y_attn_mask = torch.cat([y_x_pad, y_attn_mask], dim=1)
147
- xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
148
- cache["k"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\
149
- .unsqueeze(1).repeat(self.num_layers, 1, 1, 1)
150
- cache["v"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\
151
- .unsqueeze(1).repeat(self.num_layers, 1, 1, 1)
152
-
153
- xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
154
- logits = self.ar_predict_layer(xy_dec[:, -1])
155
- samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
156
-
157
- y = torch.concat([y, samples], dim=1)
158
-
159
- return y, cache["k"], cache["v"], cache["y_emb"], x_example
160
-
161
-
162
- class T2SStageDecoder(nn.Module):
163
- def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric,
164
- top_k, early_stop_num, num_layers):
165
- super().__init__()
166
- self.ar_audio_embedding = ar_audio_embedding
167
- self.ar_audio_position = ar_audio_position
168
- self.h = h
169
- self.ar_predict_layer = ar_predict_layer
170
- self.loss_fct = loss_fct
171
- self.ar_accuracy_metric = ar_accuracy_metric
172
- self.top_k = top_k
173
- self.early_stop_num = early_stop_num
174
- self.num_layers = num_layers
175
-
176
- def forward(self, y, k, v, y_emb, x_example):
177
- cache = {
178
- "all_stage": self.num_layers,
179
- "k": torch.nn.functional.pad(k, (0, 0, 0, 0, 0, 1)),
180
- "v": torch.nn.functional.pad(v, (0, 0, 0, 0, 0, 1)),
181
- "y_emb": y_emb,
182
- "first_infer": 0,
183
- "stage": 0,
184
- }
185
-
186
- y_emb = torch.cat(
187
- [cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
188
- )
189
- cache["y_emb"] = y_emb
190
- y_pos = self.ar_audio_position(y_emb)
191
-
192
- xy_pos = y_pos[:, -1:]
193
-
194
- y_example = y_pos[:,:,0] * 0.0
195
-
196
- xy_attn_mask = torch.cat([x_example, y_example], dim=1)
197
- xy_attn_mask = torch.zeros_like(xy_attn_mask, dtype=torch.bool)
198
-
199
- xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
200
- logits = self.ar_predict_layer(xy_dec[:, -1])
201
- samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
202
-
203
- y = torch.concat([y, samples], dim=1)
204
-
205
- return y, cache["k"], cache["v"], cache["y_emb"], logits, samples
206
-
207
-
208
- class Text2SemanticDecoder(nn.Module):
209
- def __init__(self, config, norm_first=False, top_k=3):
210
- super(Text2SemanticDecoder, self).__init__()
211
- self.model_dim = config["model"]["hidden_dim"]
212
- self.embedding_dim = config["model"]["embedding_dim"]
213
- self.num_head = config["model"]["head"]
214
- self.num_layers = config["model"]["n_layer"]
215
- self.norm_first = norm_first
216
- self.vocab_size = config["model"]["vocab_size"]
217
- self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
218
- self.p_dropout = float(config["model"]["dropout"])
219
- self.EOS = config["model"]["EOS"]
220
- self.norm_first = norm_first
221
- assert self.EOS == self.vocab_size - 1
222
- self.bert_proj = nn.Linear(1024, self.embedding_dim)
223
- self.ar_text_embedding = TokenEmbedding(self.embedding_dim, self.phoneme_vocab_size, self.p_dropout)
224
- self.ar_text_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
225
- self.ar_audio_embedding = TokenEmbedding(self.embedding_dim, self.vocab_size, self.p_dropout)
226
- self.ar_audio_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
227
- self.h = TransformerEncoder(
228
- TransformerEncoderLayer(
229
- d_model=self.model_dim,
230
- nhead=self.num_head,
231
- dim_feedforward=self.model_dim * 4,
232
- dropout=0.1,
233
- batch_first=True,
234
- norm_first=norm_first,
235
- ),
236
- num_layers=self.num_layers,
237
- norm=LayerNorm(self.model_dim) if norm_first else None,
238
- )
239
- self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
240
- self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
241
- self.ar_accuracy_metric = MulticlassAccuracy(
242
- self.vocab_size,
243
- top_k=top_k,
244
- average="micro",
245
- multidim_average="global",
246
- ignore_index=self.EOS,
247
- )
248
- self.top_k = torch.LongTensor([1])
249
- self.early_stop_num = torch.LongTensor([-1])
250
-
251
- def init_onnx(self):
252
- self.onnx_encoder = OnnxEncoder(self.ar_text_embedding, self.bert_proj, self.ar_text_position)
253
- self.first_stage_decoder = T2SFirstStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h,
254
- self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num,
255
- self.num_layers)
256
- self.stage_decoder = T2SStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h,
257
- self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num,
258
- self.num_layers)
259
-
260
- def forward(self, x, prompts, bert_feature):
261
- early_stop_num = self.early_stop_num
262
- prefix_len = prompts.shape[1]
263
-
264
- x = self.onnx_encoder(x, bert_feature)
265
- y, k, v, y_emb, stage, x_example = self.first_stage_decoder(x, prompts)
266
-
267
- stop = False
268
- for idx in range(1, 1500):
269
- enco = self.stage_decoder(y, k, v, y_emb, stage, x_example)
270
- y, k, v, y_emb, stage, logits, samples = enco
271
- if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
272
- stop = True
273
- if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
274
- stop = True
275
- if stop:
276
- break
277
- y[0, -1] = 0
278
- return y, idx
279
-
280
- def infer(self, x, prompts, bert_feature):
281
- top_k = self.top_k
282
- early_stop_num = self.early_stop_num
283
-
284
- x = self.onnx_encoder(x, bert_feature)
285
-
286
- y = prompts
287
- prefix_len = y.shape[1]
288
- x_len = x.shape[1]
289
- x_example = x[:,:,0] * 0.0
290
- x_attn_mask = torch.matmul(x_example.transpose(0, 1), x_example)
291
- x_attn_mask = torch.zeros_like(x_attn_mask, dtype=torch.bool)
292
-
293
- stop = False
294
- cache = {
295
- "all_stage": self.num_layers,
296
- "k": [None] * self.num_layers,
297
- "v": [None] * self.num_layers,
298
- "y_emb": None,
299
- "first_infer": 1,
300
- "stage": 0,
301
- }
302
- for idx in range(1500):
303
- if cache["first_infer"] == 1:
304
- y_emb = self.ar_audio_embedding(y)
305
- else:
306
- y_emb = torch.cat(
307
- [cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1
308
- )
309
- cache["y_emb"] = y_emb
310
- y_pos = self.ar_audio_position(y_emb)
311
- if cache["first_infer"] == 1:
312
- xy_pos = torch.concat([x, y_pos], dim=1)
313
- else:
314
- xy_pos = y_pos[:, -1:]
315
- y_len = y_pos.shape[1]
316
- if cache["first_infer"] == 1:
317
- x_attn_mask_pad = F.pad(x_attn_mask, (0, y_len), value=True)
318
- y_attn_mask = F.pad(
319
- torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
320
- (x_len, 0), value=False
321
- )
322
- xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
323
- else:
324
- xy_attn_mask = torch.zeros((1, x_len + y_len), dtype=torch.bool)
325
- xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
326
- logits = self.ar_predict_layer(xy_dec[:, -1])
327
- samples = sample(logits[0], y, top_k=top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
328
- if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
329
- stop = True
330
- if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
331
- stop = True
332
- if stop:
333
- if prompts.shape[1] == y.shape[1]:
334
- y = torch.concat([y, torch.zeros_like(samples)], dim=1)
335
- break
336
- y = torch.concat([y, samples], dim=1)
337
- cache["first_infer"] = 0
338
- return y, idx
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/models/utils.py DELETED
@@ -1,229 +0,0 @@
1
- # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/utils.py
2
- # reference: https://github.com/lifeiteng/vall-e
3
- import torch
4
- import torch.nn.functional as F
5
- from typing import Tuple
6
-
7
- def sequence_mask(length, max_length=None):
8
- if max_length is None:
9
- max_length = length.max()
10
- x = torch.arange(max_length, dtype=length.dtype, device=length.device)
11
- return x.unsqueeze(0) < length.unsqueeze(1)
12
-
13
-
14
- def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
15
- """
16
- Args:
17
- lengths:
18
- A 1-D tensor containing sentence lengths.
19
- max_len:
20
- The length of masks.
21
- Returns:
22
- Return a 2-D bool tensor, where masked positions
23
- are filled with `True` and non-masked positions are
24
- filled with `False`.
25
-
26
- #>>> lengths = torch.tensor([1, 3, 2, 5])
27
- #>>> make_pad_mask(lengths)
28
- tensor([[False, True, True, True, True],
29
- [False, False, False, True, True],
30
- [False, False, True, True, True],
31
- [False, False, False, False, False]])
32
- """
33
- assert lengths.ndim == 1, lengths.ndim
34
- max_len = max(max_len, lengths.max())
35
- n = lengths.size(0)
36
- seq_range = torch.arange(0, max_len, device=lengths.device)
37
- expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
38
-
39
- return expaned_lengths >= lengths.unsqueeze(-1)
40
-
41
-
42
- # https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py
43
- def top_k_top_p_filtering(
44
- logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1
45
- ):
46
- """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
47
- Args:
48
- logits: logits distribution shape (batch size, vocabulary size)
49
- if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
50
- if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
51
- Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
52
- Make sure we keep at least min_tokens_to_keep per batch example in the output
53
- From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
54
- """
55
- if top_k > 0:
56
- top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
57
- # Remove all tokens with a probability less than the last token of the top-k
58
- indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
59
- logits[indices_to_remove] = filter_value
60
-
61
- if top_p < 1.0:
62
- sorted_logits, sorted_indices = torch.sort(logits, descending=True)
63
- cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
64
-
65
- # Remove tokens with cumulative probability above the threshold (token with 0 are kept)
66
- sorted_indices_to_remove = cumulative_probs > top_p
67
- if min_tokens_to_keep > 1:
68
- # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
69
- sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
70
- # Shift the indices to the right to keep also the first token above the threshold
71
- sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
72
- sorted_indices_to_remove[..., 0] = 0
73
-
74
- # scatter sorted tensors to original indexing
75
- indices_to_remove = sorted_indices_to_remove.scatter(
76
- 1, sorted_indices, sorted_indices_to_remove
77
- )
78
- logits[indices_to_remove] = filter_value
79
- return logits
80
-
81
-
82
- def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
83
- # temperature: (`optional`) float
84
- # The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
85
- # top_k: (`optional`) int
86
- # The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
87
- # top_p: (`optional`) float
88
- # The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
89
-
90
- # Temperature (higher temperature => more likely to sample low probability tokens)
91
- if temperature != 1.0:
92
- logits = logits / temperature
93
- # Top-p/top-k filtering
94
- logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
95
- # Sample
96
- token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
97
- return token
98
-
99
-
100
- from typing import Optional, Tuple
101
-
102
-
103
- def multinomial_sample_one_no_sync(
104
- probs_sort,
105
- ): # Does multinomial sampling without a cuda synchronization
106
- q = torch.empty_like(probs_sort).exponential_(1)
107
- return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
108
-
109
-
110
- def logits_to_probs(
111
- logits,
112
- previous_tokens: Optional[torch.Tensor] = None,
113
- temperature: float = 1.0,
114
- top_k: Optional[int] = None,
115
- top_p: Optional[int] = None,
116
- repetition_penalty: float = 1.0,
117
- ):
118
- # if previous_tokens is not None:
119
- # previous_tokens = previous_tokens.squeeze()
120
- # print(logits.shape,previous_tokens.shape)
121
- # pdb.set_trace()
122
- if previous_tokens is not None and repetition_penalty != 1.0:
123
- previous_tokens = previous_tokens.long()
124
- score = torch.gather(logits, dim=1, index=previous_tokens)
125
- score = torch.where(
126
- score < 0, score * repetition_penalty, score / repetition_penalty
127
- )
128
- logits.scatter_(dim=1, index=previous_tokens, src=score)
129
-
130
- if top_p is not None and top_p < 1.0:
131
- sorted_logits, sorted_indices = torch.sort(logits, descending=True)
132
- cum_probs = torch.cumsum(
133
- torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
134
- )
135
- sorted_indices_to_remove = cum_probs > top_p
136
- sorted_indices_to_remove[:, 0] = False # keep at least one option
137
- indices_to_remove = sorted_indices_to_remove.scatter(
138
- dim=1, index=sorted_indices, src=sorted_indices_to_remove
139
- )
140
- logits = logits.masked_fill(indices_to_remove, -float("Inf"))
141
-
142
- logits = logits / max(temperature, 1e-5)
143
-
144
- if top_k is not None:
145
- v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
146
- pivot = v[: , -1].unsqueeze(-1)
147
- logits = torch.where(logits < pivot, -float("Inf"), logits)
148
-
149
- probs = torch.nn.functional.softmax(logits, dim=-1)
150
- return probs
151
-
152
-
153
- def sample(
154
- logits,
155
- previous_tokens: Optional[torch.Tensor] = None,
156
- **sampling_kwargs,
157
- ) -> Tuple[torch.Tensor, torch.Tensor]:
158
- probs = logits_to_probs(
159
- logits=logits, previous_tokens=previous_tokens, **sampling_kwargs
160
- )
161
- idx_next = multinomial_sample_one_no_sync(probs)
162
- return idx_next, probs
163
-
164
- def dpo_loss(policy_chosen_logps: torch.FloatTensor,
165
- policy_rejected_logps: torch.FloatTensor,
166
- reference_chosen_logps: torch.FloatTensor,
167
- reference_rejected_logps: torch.FloatTensor,
168
- beta: float,
169
- reference_free: bool = False) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
170
- pi_logratios = policy_chosen_logps - policy_rejected_logps
171
- ref_logratios = reference_chosen_logps - reference_rejected_logps
172
-
173
- if reference_free:
174
- ref_logratios = 0
175
-
176
- logits = pi_logratios - ref_logratios
177
-
178
- losses = -F.logsigmoid(beta * logits)
179
- chosen_rewards = beta * (policy_chosen_logps - reference_chosen_logps).detach()
180
- rejected_rewards = beta * (policy_rejected_logps - reference_rejected_logps).detach()
181
-
182
- return losses.mean(), chosen_rewards, rejected_rewards
183
-
184
- def get_batch_logps(logits_target: torch.FloatTensor, logits_reject: torch.FloatTensor, labels_target: torch.LongTensor, labels_reject: torch.LongTensor, average_log_prob: bool = False) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
185
-
186
- # dummy token; we'll ignore the losses on these tokens later
187
-
188
- per_token_logps_target = torch.gather(logits_target.log_softmax(-1), dim=2, index=labels_target.unsqueeze(2)).squeeze(2)
189
- per_token_logps_reject = torch.gather(logits_reject.log_softmax(-1), dim=2, index=labels_reject.unsqueeze(2)).squeeze(2)
190
-
191
- return per_token_logps_target.sum(-1), per_token_logps_reject.sum(-1)
192
-
193
- def make_reject_y(y_o, y_lens):
194
- def repeat_P(y):
195
- range_idx, _ = torch.randint(0, len(y), size=(2,)).sort()
196
- pre = y[:range_idx[0]]
197
- shf = y[range_idx[1]:]
198
- range_text = y[range_idx[0]:range_idx[1]]
199
- new_y = torch.cat([pre, range_text, range_text, shf])
200
- return new_y
201
- def lost_P(y):
202
- range_idx, _ = torch.randint(0, len(y), size=(2,)).sort()
203
- pre = y[:range_idx[0]]
204
- shf = y[range_idx[1]:]
205
- range_text = y[range_idx[0]:range_idx[1]]
206
- new_y = torch.cat([pre, shf])
207
- return new_y
208
- bs = len(y_lens)
209
- reject_y = []
210
- reject_y_lens = []
211
- for b in range(bs):
212
- process_item_idx = torch.randint(0, 1, size=(1, ))[0]
213
- if process_item_idx == 0:
214
- new_y = repeat_P(y_o[b])
215
- reject_y.append(new_y)
216
- reject_y_lens.append(len(new_y))
217
- elif process_item_idx==1:
218
- new_y = lost_P(y_o[b])
219
- reject_y.append(new_y)
220
- reject_y_lens.append(len(new_y))
221
- max_length = max(reject_y_lens)
222
- for b in range(bs):
223
- pad_length = max_length - reject_y_lens[b]
224
- reject_y[b] = torch.cat([reject_y[b], torch.zeros(pad_length, dtype=y_o.dtype, device=y_o.device)], dim=0)
225
-
226
- reject_y = torch.stack(reject_y, dim = 0)
227
- reject_y_lens = torch.tensor(reject_y_lens, device=y_lens.device)
228
-
229
- return reject_y, reject_y_lens
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/modules/__init__.py DELETED
File without changes
GPT_SoVITS/AR/modules/activation.py DELETED
@@ -1,428 +0,0 @@
1
- # modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py
2
- from typing import Optional
3
- from typing import Tuple
4
- import torch
5
- from torch import Tensor
6
- from torch.nn import Linear
7
- from torch.nn import Module
8
- from torch.nn.init import constant_
9
- from torch.nn.init import xavier_normal_
10
- from torch.nn.init import xavier_uniform_
11
- from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
12
- from torch.nn.parameter import Parameter
13
-
14
- from torch.nn import functional as F
15
- from AR.modules.patched_mha_with_cache import multi_head_attention_forward_patched
16
-
17
- F.multi_head_attention_forward = multi_head_attention_forward_patched
18
-
19
-
20
- class MultiheadAttention(Module):
21
- r"""Allows the model to jointly attend to information
22
- from different representation subspaces as described in the paper:
23
- `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
24
-
25
- Multi-Head Attention is defined as:
26
-
27
- .. math::
28
- \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
29
-
30
- where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
31
-
32
- ``forward()`` will use a special optimized implementation if all of the following
33
- conditions are met:
34
-
35
- - self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor. This
36
- restriction will be loosened in the future.)
37
- - Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad``
38
- - training is disabled (using ``.eval()``)
39
- - dropout is 0
40
- - ``add_bias_kv`` is ``False``
41
- - ``add_zero_attn`` is ``False``
42
- - ``batch_first`` is ``True`` and the input is batched
43
- - ``kdim`` and ``vdim`` are equal to ``embed_dim``
44
- - at most one of ``key_padding_mask`` or ``attn_mask`` is passed
45
- - if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask``
46
- nor ``attn_mask`` is passed
47
-
48
- If the optimized implementation is in use, a
49
- `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for
50
- ``query``/``key``/``value`` to represent padding more efficiently than using a
51
- padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_
52
- will be returned, and an additional speedup proportional to the fraction of the input
53
- that is padding can be expected.
54
-
55
- Args:
56
- embed_dim: Total dimension of the model.
57
- num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
58
- across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
59
- dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
60
- bias: If specified, adds bias to input / output projection layers. Default: ``True``.
61
- add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
62
- add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
63
- Default: ``False``.
64
- kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
65
- vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
66
- batch_first: If ``True``, then the input and output tensors are provided
67
- as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
68
-
69
- Examples::
70
-
71
- >>> # xdoctest: +SKIP
72
- >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
73
- >>> attn_output, attn_output_weights = multihead_attn(query, key, value)
74
-
75
- """
76
- __constants__ = ["batch_first"]
77
- bias_k: Optional[torch.Tensor]
78
- bias_v: Optional[torch.Tensor]
79
-
80
- def __init__(
81
- self,
82
- embed_dim,
83
- num_heads,
84
- dropout=0.0,
85
- bias=True,
86
- add_bias_kv=False,
87
- add_zero_attn=False,
88
- kdim=None,
89
- vdim=None,
90
- batch_first=False,
91
- linear1_cls=Linear,
92
- linear2_cls=Linear,
93
- device=None,
94
- dtype=None,
95
- ) -> None:
96
- factory_kwargs = {"device": device, "dtype": dtype}
97
- super(MultiheadAttention, self).__init__()
98
- self.embed_dim = embed_dim
99
- self.kdim = kdim if kdim is not None else embed_dim
100
- self.vdim = vdim if vdim is not None else embed_dim
101
- self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
102
-
103
- self.num_heads = num_heads
104
- self.dropout = dropout
105
- self.batch_first = batch_first
106
- self.head_dim = embed_dim // num_heads
107
- assert (
108
- self.head_dim * num_heads == self.embed_dim
109
- ), "embed_dim must be divisible by num_heads"
110
-
111
- if add_bias_kv:
112
- self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
113
- self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
114
- else:
115
- self.bias_k = self.bias_v = None
116
-
117
- if linear1_cls == Linear:
118
- if not self._qkv_same_embed_dim:
119
- self.q_proj_weight = Parameter(
120
- torch.empty((embed_dim, embed_dim), **factory_kwargs)
121
- )
122
- self.k_proj_weight = Parameter(
123
- torch.empty((embed_dim, self.kdim), **factory_kwargs)
124
- )
125
- self.v_proj_weight = Parameter(
126
- torch.empty((embed_dim, self.vdim), **factory_kwargs)
127
- )
128
- self.register_parameter("in_proj_weight", None)
129
- else:
130
- self.in_proj_weight = Parameter(
131
- torch.empty((3 * embed_dim, embed_dim), **factory_kwargs)
132
- )
133
- self.register_parameter("q_proj_weight", None)
134
- self.register_parameter("k_proj_weight", None)
135
- self.register_parameter("v_proj_weight", None)
136
-
137
- if bias:
138
- self.in_proj_bias = Parameter(
139
- torch.empty(3 * embed_dim, **factory_kwargs)
140
- )
141
- else:
142
- self.register_parameter("in_proj_bias", None)
143
- self.out_proj = NonDynamicallyQuantizableLinear(
144
- embed_dim, embed_dim, bias=bias, **factory_kwargs
145
- )
146
-
147
- self._reset_parameters()
148
- else:
149
- if not self._qkv_same_embed_dim:
150
- raise NotImplementedError
151
- else:
152
- self.in_proj_linear = linear1_cls(
153
- embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs
154
- )
155
- self.in_proj_weight = self.in_proj_linear.weight
156
-
157
- self.register_parameter("q_proj_weight", None)
158
- self.register_parameter("k_proj_weight", None)
159
- self.register_parameter("v_proj_weight", None)
160
-
161
- if bias:
162
- self.in_proj_bias = self.in_proj_linear.bias
163
- else:
164
- self.register_parameter("in_proj_bias", None)
165
-
166
- self.out_proj = linear2_cls(
167
- embed_dim, embed_dim, bias=bias, **factory_kwargs
168
- )
169
-
170
- if self.bias_k is not None:
171
- xavier_normal_(self.bias_k)
172
- if self.bias_v is not None:
173
- xavier_normal_(self.bias_v)
174
-
175
- self.add_zero_attn = add_zero_attn
176
-
177
- def _reset_parameters(self):
178
- if self._qkv_same_embed_dim:
179
- xavier_uniform_(self.in_proj_weight)
180
- else:
181
- xavier_uniform_(self.q_proj_weight)
182
- xavier_uniform_(self.k_proj_weight)
183
- xavier_uniform_(self.v_proj_weight)
184
-
185
- if self.in_proj_bias is not None:
186
- constant_(self.in_proj_bias, 0.0)
187
- constant_(self.out_proj.bias, 0.0)
188
-
189
- if self.bias_k is not None:
190
- xavier_normal_(self.bias_k)
191
- if self.bias_v is not None:
192
- xavier_normal_(self.bias_v)
193
-
194
- def __setstate__(self, state):
195
- # Support loading old MultiheadAttention checkpoints generated by v1.1.0
196
- if "_qkv_same_embed_dim" not in state:
197
- state["_qkv_same_embed_dim"] = True
198
-
199
- super(MultiheadAttention, self).__setstate__(state)
200
-
201
- def forward(
202
- self,
203
- query: Tensor,
204
- key: Tensor,
205
- value: Tensor,
206
- key_padding_mask: Optional[Tensor] = None,
207
- need_weights: bool = True,
208
- attn_mask: Optional[Tensor] = None,
209
- average_attn_weights: bool = True,
210
- cache=None,
211
- ) -> Tuple[Tensor, Optional[Tensor]]:
212
- r"""
213
- Args:
214
- query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False``
215
- or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length,
216
- :math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``.
217
- Queries are compared against key-value pairs to produce the output.
218
- See "Attention Is All You Need" for more details.
219
- key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False``
220
- or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length,
221
- :math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``.
222
- See "Attention Is All You Need" for more details.
223
- value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when
224
- ``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source
225
- sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``.
226
- See "Attention Is All You Need" for more details.
227
- key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
228
- to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`.
229
- Binary and byte masks are supported.
230
- For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
231
- the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value.
232
- need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
233
- Default: ``True``.
234
- attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
235
- :math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
236
- :math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
237
- broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
238
- Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the
239
- corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the
240
- corresponding position is not allowed to attend. For a float mask, the mask values will be added to
241
- the attention weight.
242
- average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
243
- heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
244
- effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads)
245
-
246
- Outputs:
247
- - **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched,
248
- :math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``,
249
- where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the
250
- embedding dimension ``embed_dim``.
251
- - **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``,
252
- returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
253
- :math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
254
- :math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
255
- head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`.
256
-
257
- .. note::
258
- `batch_first` argument is ignored for unbatched inputs.
259
- """
260
- is_batched = query.dim() == 3
261
- if key_padding_mask is not None:
262
- _kpm_dtype = key_padding_mask.dtype
263
- if _kpm_dtype != torch.bool and not torch.is_floating_point(
264
- key_padding_mask
265
- ):
266
- raise AssertionError(
267
- "only bool and floating types of key_padding_mask are supported"
268
- )
269
- why_not_fast_path = ""
270
- if not is_batched:
271
- why_not_fast_path = (
272
- f"input not batched; expected query.dim() of 3 but got {query.dim()}"
273
- )
274
- elif query is not key or key is not value:
275
- # When lifting this restriction, don't forget to either
276
- # enforce that the dtypes all match or test cases where
277
- # they don't!
278
- why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
279
- elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
280
- why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
281
- elif (
282
- self.in_proj_weight is not None and query.dtype != self.in_proj_weight.dtype
283
- ):
284
- # this case will fail anyway, but at least they'll get a useful error message.
285
- why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
286
- elif self.training:
287
- why_not_fast_path = "training is enabled"
288
- elif not self.batch_first:
289
- why_not_fast_path = "batch_first was not True"
290
- elif self.bias_k is not None:
291
- why_not_fast_path = "self.bias_k was not None"
292
- elif self.bias_v is not None:
293
- why_not_fast_path = "self.bias_v was not None"
294
- elif self.dropout:
295
- why_not_fast_path = f"dropout was {self.dropout}, required zero"
296
- elif self.add_zero_attn:
297
- why_not_fast_path = "add_zero_attn was enabled"
298
- elif not self._qkv_same_embed_dim:
299
- why_not_fast_path = "_qkv_same_embed_dim was not True"
300
- elif attn_mask is not None:
301
- why_not_fast_path = "attn_mask was not None"
302
- elif query.is_nested and key_padding_mask is not None:
303
- why_not_fast_path = (
304
- "key_padding_mask is not supported with NestedTensor input"
305
- )
306
- elif self.num_heads % 2 == 1:
307
- why_not_fast_path = "num_heads is odd"
308
- elif torch.is_autocast_enabled():
309
- why_not_fast_path = "autocast is enabled"
310
-
311
- if not why_not_fast_path:
312
- tensor_args = (
313
- query,
314
- key,
315
- value,
316
- self.in_proj_weight,
317
- self.in_proj_bias,
318
- self.out_proj.weight,
319
- self.out_proj.bias,
320
- )
321
- # We have to use list comprehensions below because TorchScript does not support
322
- # generator expressions.
323
- if torch.overrides.has_torch_function(tensor_args):
324
- why_not_fast_path = "some Tensor argument has_torch_function"
325
- elif not all(
326
- [
327
- (x is None or x.is_cuda or "cpu" in str(x.device))
328
- for x in tensor_args
329
- ]
330
- ):
331
- why_not_fast_path = "some Tensor argument is neither CUDA nor CPU"
332
- elif torch.is_grad_enabled() and any(
333
- [x is not None and x.requires_grad for x in tensor_args]
334
- ):
335
- why_not_fast_path = (
336
- "grad is enabled and at least one of query or the "
337
- "input/output projection weights or biases requires_grad"
338
- )
339
- if not why_not_fast_path:
340
- return torch._native_multi_head_attention(
341
- query,
342
- key,
343
- value,
344
- self.embed_dim,
345
- self.num_heads,
346
- self.in_proj_weight,
347
- self.in_proj_bias,
348
- self.out_proj.weight,
349
- self.out_proj.bias,
350
- key_padding_mask if key_padding_mask is not None else attn_mask,
351
- need_weights,
352
- average_attn_weights,
353
- 1
354
- if key_padding_mask is not None
355
- else 0
356
- if attn_mask is not None
357
- else None,
358
- )
359
-
360
- any_nested = query.is_nested or key.is_nested or value.is_nested
361
- assert not any_nested, (
362
- "MultiheadAttention does not support NestedTensor outside of its fast path. "
363
- + f"The fast path was not hit because {why_not_fast_path}"
364
- )
365
-
366
- if self.batch_first and is_batched:
367
- # make sure that the transpose op does not affect the "is" property
368
- if key is value:
369
- if query is key:
370
- query = key = value = query.transpose(1, 0)
371
- else:
372
- query, key = [x.transpose(1, 0) for x in (query, key)]
373
- value = key
374
- else:
375
- query, key, value = [x.transpose(1, 0) for x in (query, key, value)]
376
-
377
- if not self._qkv_same_embed_dim:
378
- attn_output, attn_output_weights = F.multi_head_attention_forward(
379
- query,
380
- key,
381
- value,
382
- self.embed_dim,
383
- self.num_heads,
384
- self.in_proj_weight,
385
- self.in_proj_bias,
386
- self.bias_k,
387
- self.bias_v,
388
- self.add_zero_attn,
389
- self.dropout,
390
- self.out_proj.weight,
391
- self.out_proj.bias,
392
- training=self.training,
393
- key_padding_mask=key_padding_mask,
394
- need_weights=need_weights,
395
- attn_mask=attn_mask,
396
- use_separate_proj_weight=True,
397
- q_proj_weight=self.q_proj_weight,
398
- k_proj_weight=self.k_proj_weight,
399
- v_proj_weight=self.v_proj_weight,
400
- average_attn_weights=average_attn_weights,
401
- cache=cache,
402
- )
403
- else:
404
- attn_output, attn_output_weights = F.multi_head_attention_forward(
405
- query,
406
- key,
407
- value,
408
- self.embed_dim,
409
- self.num_heads,
410
- self.in_proj_weight,
411
- self.in_proj_bias,
412
- self.bias_k,
413
- self.bias_v,
414
- self.add_zero_attn,
415
- self.dropout,
416
- self.out_proj.weight,
417
- self.out_proj.bias,
418
- training=self.training,
419
- key_padding_mask=key_padding_mask,
420
- need_weights=need_weights,
421
- attn_mask=attn_mask,
422
- average_attn_weights=average_attn_weights,
423
- cache=cache,
424
- )
425
- if self.batch_first and is_batched:
426
- return attn_output.transpose(1, 0), attn_output_weights
427
- else:
428
- return attn_output, attn_output_weights
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/modules/activation_onnx.py DELETED
@@ -1,178 +0,0 @@
1
- # modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py
2
- from typing import Optional
3
- from typing import Tuple
4
- import torch
5
- from torch import Tensor
6
- from torch.nn import Linear
7
- from torch.nn import Module
8
- from torch.nn.init import constant_
9
- from torch.nn.init import xavier_normal_
10
- from torch.nn.init import xavier_uniform_
11
- from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
12
- from torch.nn.parameter import Parameter
13
-
14
- from torch.nn import functional as F
15
- from AR.modules.patched_mha_with_cache_onnx import multi_head_attention_forward_patched
16
-
17
-
18
- class MultiheadAttention(Module):
19
- __constants__ = ["batch_first"]
20
- bias_k: Optional[torch.Tensor]
21
- bias_v: Optional[torch.Tensor]
22
-
23
- def __init__(
24
- self,
25
- embed_dim,
26
- num_heads,
27
- dropout=0.0,
28
- bias=True,
29
- add_bias_kv=False,
30
- add_zero_attn=False,
31
- kdim=None,
32
- vdim=None,
33
- batch_first=False,
34
- linear1_cls=Linear,
35
- linear2_cls=Linear,
36
- device=None,
37
- dtype=None,
38
- ) -> None:
39
- factory_kwargs = {"device": device, "dtype": dtype}
40
- super(MultiheadAttention, self).__init__()
41
- self.embed_dim = embed_dim
42
- self.kdim = kdim if kdim is not None else embed_dim
43
- self.vdim = vdim if vdim is not None else embed_dim
44
- self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
45
-
46
- self.num_heads = num_heads
47
- self.dropout = dropout
48
- self.batch_first = batch_first
49
- self.head_dim = embed_dim // num_heads
50
- assert (
51
- self.head_dim * num_heads == self.embed_dim
52
- ), "embed_dim must be divisible by num_heads"
53
-
54
- if add_bias_kv:
55
- self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
56
- self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
57
- else:
58
- self.bias_k = self.bias_v = None
59
-
60
- if linear1_cls == Linear:
61
- if not self._qkv_same_embed_dim:
62
- self.q_proj_weight = Parameter(
63
- torch.empty((embed_dim, embed_dim), **factory_kwargs)
64
- )
65
- self.k_proj_weight = Parameter(
66
- torch.empty((embed_dim, self.kdim), **factory_kwargs)
67
- )
68
- self.v_proj_weight = Parameter(
69
- torch.empty((embed_dim, self.vdim), **factory_kwargs)
70
- )
71
- self.register_parameter("in_proj_weight", None)
72
- else:
73
- self.in_proj_weight = Parameter(
74
- torch.empty((3 * embed_dim, embed_dim), **factory_kwargs)
75
- )
76
- self.register_parameter("q_proj_weight", None)
77
- self.register_parameter("k_proj_weight", None)
78
- self.register_parameter("v_proj_weight", None)
79
-
80
- if bias:
81
- self.in_proj_bias = Parameter(
82
- torch.empty(3 * embed_dim, **factory_kwargs)
83
- )
84
- else:
85
- self.register_parameter("in_proj_bias", None)
86
- self.out_proj = NonDynamicallyQuantizableLinear(
87
- embed_dim, embed_dim, bias=bias, **factory_kwargs
88
- )
89
-
90
- self._reset_parameters()
91
- else:
92
- if not self._qkv_same_embed_dim:
93
- raise NotImplementedError
94
- else:
95
- self.in_proj_linear = linear1_cls(
96
- embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs
97
- )
98
- self.in_proj_weight = self.in_proj_linear.weight
99
-
100
- self.register_parameter("q_proj_weight", None)
101
- self.register_parameter("k_proj_weight", None)
102
- self.register_parameter("v_proj_weight", None)
103
-
104
- if bias:
105
- self.in_proj_bias = self.in_proj_linear.bias
106
- else:
107
- self.register_parameter("in_proj_bias", None)
108
-
109
- self.out_proj = linear2_cls(
110
- embed_dim, embed_dim, bias=bias, **factory_kwargs
111
- )
112
-
113
- if self.bias_k is not None:
114
- xavier_normal_(self.bias_k)
115
- if self.bias_v is not None:
116
- xavier_normal_(self.bias_v)
117
-
118
- self.add_zero_attn = add_zero_attn
119
-
120
- def _reset_parameters(self):
121
- if self._qkv_same_embed_dim:
122
- xavier_uniform_(self.in_proj_weight)
123
- else:
124
- xavier_uniform_(self.q_proj_weight)
125
- xavier_uniform_(self.k_proj_weight)
126
- xavier_uniform_(self.v_proj_weight)
127
-
128
- if self.in_proj_bias is not None:
129
- constant_(self.in_proj_bias, 0.0)
130
- constant_(self.out_proj.bias, 0.0)
131
-
132
- if self.bias_k is not None:
133
- xavier_normal_(self.bias_k)
134
- if self.bias_v is not None:
135
- xavier_normal_(self.bias_v)
136
-
137
- def __setstate__(self, state):
138
- # Support loading old MultiheadAttention checkpoints generated by v1.1.0
139
- if "_qkv_same_embed_dim" not in state:
140
- state["_qkv_same_embed_dim"] = True
141
-
142
- super(MultiheadAttention, self).__setstate__(state)
143
-
144
- def forward(
145
- self,
146
- query: Tensor,
147
- key: Tensor,
148
- value: Tensor,
149
- key_padding_mask: Optional[Tensor] = None,
150
- need_weights: bool = True,
151
- attn_mask: Optional[Tensor] = None,
152
- average_attn_weights: bool = True,
153
- cache=None,
154
- ) -> Tuple[Tensor, Optional[Tensor]]:
155
- any_nested = query.is_nested or key.is_nested or value.is_nested
156
- query = key = value = query.transpose(1, 0)
157
- attn_output = multi_head_attention_forward_patched(
158
- query,
159
- key,
160
- value,
161
- self.embed_dim,
162
- self.num_heads,
163
- self.in_proj_weight,
164
- self.in_proj_bias,
165
- self.bias_k,
166
- self.bias_v,
167
- self.add_zero_attn,
168
- self.dropout,
169
- self.out_proj.weight,
170
- self.out_proj.bias,
171
- training=self.training,
172
- key_padding_mask=key_padding_mask,
173
- need_weights=need_weights,
174
- attn_mask=attn_mask,
175
- average_attn_weights=average_attn_weights,
176
- cache=cache,
177
- )
178
- return attn_output.transpose(1, 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/modules/embedding.py DELETED
@@ -1,81 +0,0 @@
1
- # modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
2
- import math
3
-
4
- import torch
5
- from torch import nn
6
-
7
-
8
- class TokenEmbedding(nn.Module):
9
- def __init__(
10
- self,
11
- embedding_dim: int,
12
- vocab_size: int,
13
- dropout: float = 0.0,
14
- ):
15
- super().__init__()
16
-
17
- self.vocab_size = vocab_size
18
- self.embedding_dim = embedding_dim
19
-
20
- self.dropout = torch.nn.Dropout(p=dropout)
21
- self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
22
-
23
- @property
24
- def weight(self) -> torch.Tensor:
25
- return self.word_embeddings.weight
26
-
27
- def embedding(self, index: int) -> torch.Tensor:
28
- return self.word_embeddings.weight[index : index + 1]
29
-
30
- def forward(self, x: torch.Tensor):
31
- x = self.word_embeddings(x)
32
- x = self.dropout(x)
33
- return x
34
-
35
-
36
- class SinePositionalEmbedding(nn.Module):
37
- def __init__(
38
- self,
39
- embedding_dim: int,
40
- dropout: float = 0.0,
41
- scale: bool = False,
42
- alpha: bool = False,
43
- ):
44
- super().__init__()
45
- self.embedding_dim = embedding_dim
46
- self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
47
- self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
48
- self.dropout = torch.nn.Dropout(p=dropout)
49
-
50
- self.reverse = False
51
- self.pe = None
52
- self.extend_pe(torch.tensor(0.0).expand(1, 4000))
53
-
54
- def extend_pe(self, x):
55
- """Reset the positional encodings."""
56
- if self.pe is not None:
57
- if self.pe.size(1) >= x.size(1):
58
- if self.pe.dtype != x.dtype or self.pe.device != x.device:
59
- self.pe = self.pe.to(dtype=x.dtype, device=x.device)
60
- return
61
- pe = torch.zeros(x.size(1), self.embedding_dim)
62
- if self.reverse:
63
- position = torch.arange(
64
- x.size(1) - 1, -1, -1.0, dtype=torch.float32
65
- ).unsqueeze(1)
66
- else:
67
- position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
68
- div_term = torch.exp(
69
- torch.arange(0, self.embedding_dim, 2, dtype=torch.float32)
70
- * -(math.log(10000.0) / self.embedding_dim)
71
- )
72
- pe[:, 0::2] = torch.sin(position * div_term)
73
- pe[:, 1::2] = torch.cos(position * div_term)
74
- pe = pe.unsqueeze(0)
75
- self.pe = pe.to(device=x.device, dtype=x.dtype).detach()
76
-
77
- def forward(self, x: torch.Tensor) -> torch.Tensor:
78
- self.extend_pe(x)
79
- output = x.unsqueeze(-1) if x.ndim == 2 else x
80
- output = output * self.x_scale + self.alpha * self.pe[:, : x.size(1)]
81
- return self.dropout(output)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/modules/embedding_onnx.py DELETED
@@ -1,63 +0,0 @@
1
- # modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
2
- import math
3
-
4
- import torch
5
- from torch import nn
6
-
7
-
8
- class TokenEmbedding(nn.Module):
9
- def __init__(
10
- self,
11
- embedding_dim: int,
12
- vocab_size: int,
13
- dropout: float = 0.0,
14
- ):
15
- super().__init__()
16
-
17
- self.vocab_size = vocab_size
18
- self.embedding_dim = embedding_dim
19
-
20
- self.dropout = torch.nn.Dropout(p=dropout)
21
- self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
22
-
23
- @property
24
- def weight(self) -> torch.Tensor:
25
- return self.word_embeddings.weight
26
-
27
- def embedding(self, index: int) -> torch.Tensor:
28
- return self.word_embeddings.weight[index : index + 1]
29
-
30
- def forward(self, x: torch.Tensor):
31
- x = self.word_embeddings(x)
32
- x = self.dropout(x)
33
- return x
34
-
35
-
36
- class SinePositionalEmbedding(nn.Module):
37
- def __init__(
38
- self,
39
- embedding_dim: int,
40
- dropout: float = 0.0,
41
- scale: bool = False,
42
- alpha: bool = False,
43
- ):
44
- super().__init__()
45
- self.embedding_dim = embedding_dim
46
- self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
47
- self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
48
- self.dropout = torch.nn.Dropout(p=dropout)
49
- self.reverse = False
50
- self.div_term = torch.exp(torch.arange(0, self.embedding_dim, 2) * -(math.log(10000.0) / self.embedding_dim))
51
-
52
- def extend_pe(self, x):
53
- position = torch.cumsum(torch.ones_like(x[:,:,0]), dim=1).transpose(0, 1)
54
- scpe = (position * self.div_term).unsqueeze(0)
55
- pe = torch.cat([torch.sin(scpe), torch.cos(scpe)]).permute(1, 2, 0)
56
- pe = pe.contiguous().view(1, -1, self.embedding_dim)
57
- return pe
58
-
59
- def forward(self, x: torch.Tensor) -> torch.Tensor:
60
- pe = self.extend_pe(x)
61
- output = x.unsqueeze(-1) if x.ndim == 2 else x
62
- output = output * self.x_scale + self.alpha * pe
63
- return self.dropout(output)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/modules/lr_schedulers.py DELETED
@@ -1,83 +0,0 @@
1
- # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/modules/lr_schedulers.py
2
- # reference: https://github.com/lifeiteng/vall-e
3
- import math
4
-
5
- import torch
6
- from matplotlib import pyplot as plt
7
- from torch import nn
8
- from torch.optim import Adam
9
-
10
-
11
- class WarmupCosineLRSchedule(torch.optim.lr_scheduler._LRScheduler):
12
- """
13
- Implements Warmup learning rate schedule until 'warmup_steps', going from 'init_lr' to 'peak_lr' for multiple optimizers.
14
- """
15
-
16
- def __init__(
17
- self,
18
- optimizer,
19
- init_lr,
20
- peak_lr,
21
- end_lr,
22
- warmup_steps=10000,
23
- total_steps=400000,
24
- current_step=0,
25
- ):
26
- self.init_lr = init_lr
27
- self.peak_lr = peak_lr
28
- self.end_lr = end_lr
29
- self.optimizer = optimizer
30
- self._warmup_rate = (peak_lr - init_lr) / warmup_steps
31
- self._decay_rate = (end_lr - peak_lr) / (total_steps - warmup_steps)
32
- self._current_step = current_step
33
- self.lr = init_lr
34
- self.warmup_steps = warmup_steps
35
- self.total_steps = total_steps
36
- self._last_lr = [self.lr]
37
-
38
- def set_lr(self, lr):
39
- self._last_lr = [g["lr"] for g in self.optimizer.param_groups]
40
- for g in self.optimizer.param_groups:
41
- # g['lr'] = lr
42
- g["lr"] = self.end_lr ###锁定用线性
43
-
44
- def step(self):
45
- if self._current_step < self.warmup_steps:
46
- lr = self.init_lr + self._warmup_rate * self._current_step
47
-
48
- elif self._current_step > self.total_steps:
49
- lr = self.end_lr
50
-
51
- else:
52
- decay_ratio = (self._current_step - self.warmup_steps) / (
53
- self.total_steps - self.warmup_steps
54
- )
55
- if decay_ratio < 0.0 or decay_ratio > 1.0:
56
- raise RuntimeError(
57
- "Decay ratio must be in [0.0, 1.0]. Fix LR scheduler settings."
58
- )
59
- coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
60
- lr = self.end_lr + coeff * (self.peak_lr - self.end_lr)
61
-
62
- self.lr = lr = self.end_lr = 0.002 ###锁定用线性###不听话,直接锁定!
63
- self.set_lr(lr)
64
- self.lr = lr
65
- self._current_step += 1
66
- return self.lr
67
-
68
-
69
- if __name__ == "__main__":
70
- m = nn.Linear(10, 10)
71
- opt = Adam(m.parameters(), lr=1e-4)
72
- s = WarmupCosineLRSchedule(
73
- opt, 1e-6, 2e-4, 1e-6, warmup_steps=2000, total_steps=20000, current_step=0
74
- )
75
- lrs = []
76
- for i in range(25000):
77
- s.step()
78
- lrs.append(s.lr)
79
- print(s.lr)
80
-
81
- plt.plot(lrs)
82
- plt.plot(range(0, 25000), lrs)
83
- plt.show()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/modules/optim.py DELETED
@@ -1,622 +0,0 @@
1
- # Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
2
- #
3
- # See ../LICENSE for clarification regarding multiple authors
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
- # limitations under the License.
16
- import contextlib
17
- import logging
18
- from collections import defaultdict
19
- from typing import List
20
- from typing import Tuple
21
-
22
- import torch
23
- from torch import Tensor
24
- from torch.optim import Optimizer
25
-
26
-
27
- class BatchedOptimizer(Optimizer):
28
- """
29
- This class adds to class Optimizer the capability to optimize parameters in batches:
30
- it will stack the parameters and their grads for you so the optimizer can work
31
- on tensors with an extra leading dimension. This is intended for speed with GPUs,
32
- as it reduces the number of kernels launched in the optimizer.
33
-
34
- Args:
35
- params:
36
- """
37
-
38
- def __init__(self, params, defaults):
39
- super(BatchedOptimizer, self).__init__(params, defaults)
40
-
41
- @contextlib.contextmanager
42
- def batched_params(self, param_group, group_params_names):
43
- """
44
- This function returns (technically, yields) a list of
45
- of tuples (p, state), where
46
- p is a `fake` parameter that is stacked (over axis 0) from real parameters
47
- that share the same shape, and its gradient is also stacked;
48
- `state` is the state corresponding to this batch of parameters
49
- (it will be physically located in the "state" for one of the real
50
- parameters, the last one that has any particular shape and dtype).
51
-
52
- This function is decorated as a context manager so that it can
53
- write parameters back to their "real" locations.
54
-
55
- The idea is, instead of doing:
56
- <code>
57
- for p in group["params"]:
58
- state = self.state[p]
59
- ...
60
- </code>
61
- you can do:
62
- <code>
63
- with self.batched_params(group["params"]) as batches:
64
- for p, state, p_names in batches:
65
- ...
66
- </code>
67
-
68
- Args:
69
- group: a parameter group, which is a list of parameters; should be
70
- one of self.param_groups.
71
- group_params_names: name for each parameter in group,
72
- which is List[str].
73
- """
74
- batches = defaultdict(
75
- list
76
- ) # `batches` maps from tuple (dtype_as_str,*shape) to list of nn.Parameter
77
- batches_names = defaultdict(
78
- list
79
- ) # `batches` maps from tuple (dtype_as_str,*shape) to list of str
80
-
81
- assert len(param_group) == len(group_params_names)
82
- for p, named_p in zip(param_group, group_params_names):
83
- key = (str(p.dtype), *p.shape)
84
- batches[key].append(p)
85
- batches_names[key].append(named_p)
86
-
87
- batches_names_keys = list(batches_names.keys())
88
- sorted_idx = sorted(
89
- range(len(batches_names)), key=lambda i: batches_names_keys[i])
90
- batches_names = [
91
- batches_names[batches_names_keys[idx]] for idx in sorted_idx
92
- ]
93
- batches = [batches[batches_names_keys[idx]] for idx in sorted_idx]
94
-
95
- stacked_params_dict = dict()
96
-
97
- # turn batches into a list, in deterministic order.
98
- # tuples will contain tuples of (stacked_param, state, stacked_params_names),
99
- # one for each batch in `batches`.
100
- tuples = []
101
-
102
- for batch, batch_names in zip(batches, batches_names):
103
- p = batch[0]
104
- # we arbitrarily store the state in the
105
- # state corresponding to the 1st parameter in the
106
- # group. class Optimizer will take care of saving/loading state.
107
- state = self.state[p]
108
- p_stacked = torch.stack(batch)
109
- grad = torch.stack([
110
- torch.zeros_like(p) if p.grad is None else p.grad for p in batch
111
- ])
112
- p_stacked.grad = grad
113
- stacked_params_dict[key] = p_stacked
114
- tuples.append((p_stacked, state, batch_names))
115
-
116
- yield tuples # <-- calling code will do the actual optimization here!
117
-
118
- for ((stacked_params, _state, _names), batch) in zip(tuples, batches):
119
- for i, p in enumerate(batch): # batch is list of Parameter
120
- p.copy_(stacked_params[i])
121
-
122
-
123
- class ScaledAdam(BatchedOptimizer):
124
- """
125
- Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update
126
- proportional to the norm of that parameter; and also learn the scale of the parameter,
127
- in log space, subject to upper and lower limits (as if we had factored each parameter as
128
- param = underlying_param * log_scale.exp())
129
-
130
-
131
- Args:
132
- params: The parameters or param_groups to optimize (like other Optimizer subclasses)
133
- lr: The learning rate. We will typically use a learning rate schedule that starts
134
- at 0.03 and decreases over time, i.e. much higher than other common
135
- optimizers.
136
- clipping_scale: (e.g. 2.0)
137
- A scale for gradient-clipping: if specified, the normalized gradients
138
- over the whole model will be clipped to have 2-norm equal to
139
- `clipping_scale` times the median 2-norm over the most recent period
140
- of `clipping_update_period` minibatches. By "normalized gradients",
141
- we mean after multiplying by the rms parameter value for this tensor
142
- [for non-scalars]; this is appropriate because our update is scaled
143
- by this quantity.
144
- betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad.
145
- Must satisfy 0 < beta <= beta2 < 1.
146
- scalar_lr_scale: A scaling factor on the learning rate, that we use to update the
147
- scale of each parameter tensor and scalar parameters of the mode..
148
- If each parameter were decomposed
149
- as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale
150
- would be a the scaling factor on the learning rate of p_scale.
151
- eps: A general-purpose epsilon to prevent division by zero
152
- param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of
153
- learning the scale on the parameters (we'll constrain the rms of each non-scalar
154
- parameter tensor to be >= this value)
155
- param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of
156
- learning the scale on the parameters (we'll constrain the rms of each non-scalar
157
- parameter tensor to be <= this value)
158
- scalar_max: Maximum absolute value for scalar parameters (applicable if your
159
- model has any parameters with numel() == 1).
160
- size_update_period: The periodicity, in steps, with which we update the size (scale)
161
- of the parameter tensor. This is provided to save a little time
162
- in the update.
163
- clipping_update_period: if clipping_scale is specified, this is the period
164
- """
165
-
166
- def __init__(
167
- self,
168
- params,
169
- lr=3e-02,
170
- clipping_scale=None,
171
- betas=(0.9, 0.98),
172
- scalar_lr_scale=0.1,
173
- eps=1.0e-08,
174
- param_min_rms=1.0e-05,
175
- param_max_rms=3.0,
176
- scalar_max=10.0,
177
- size_update_period=4,
178
- clipping_update_period=100,
179
- parameters_names=None,
180
- show_dominant_parameters=True, ):
181
-
182
- assert parameters_names is not None, (
183
- "Please prepare parameters_names,"
184
- "which is a List[List[str]]. Each List[str] is for a group"
185
- "and each str is for a parameter")
186
- defaults = dict(
187
- lr=lr,
188
- clipping_scale=clipping_scale,
189
- betas=betas,
190
- scalar_lr_scale=scalar_lr_scale,
191
- eps=eps,
192
- param_min_rms=param_min_rms,
193
- param_max_rms=param_max_rms,
194
- scalar_max=scalar_max,
195
- size_update_period=size_update_period,
196
- clipping_update_period=clipping_update_period, )
197
-
198
- super(ScaledAdam, self).__init__(params, defaults)
199
- assert len(self.param_groups) == len(parameters_names)
200
- self.parameters_names = parameters_names
201
- self.show_dominant_parameters = show_dominant_parameters
202
-
203
- def __setstate__(self, state):
204
- super(ScaledAdam, self).__setstate__(state)
205
-
206
- @torch.no_grad()
207
- def step(self, closure=None):
208
- """Performs a single optimization step.
209
-
210
- Arguments:
211
- closure (callable, optional): A closure that reevaluates the model
212
- and returns the loss.
213
- """
214
- loss = None
215
- if closure is not None:
216
- with torch.enable_grad():
217
- loss = closure()
218
-
219
- batch = True
220
-
221
- for group, group_params_names in zip(self.param_groups,
222
- self.parameters_names):
223
-
224
- with self.batched_params(group["params"],
225
- group_params_names) as batches:
226
-
227
- # batches is list of pairs (stacked_param, state). stacked_param is like
228
- # a regular parameter, and will have a .grad, but the 1st dim corresponds to
229
- # a stacking dim, it is not a real dim.
230
-
231
- if (len(batches[0][1]) ==
232
- 0): # if len(first state) == 0: not yet initialized
233
- clipping_scale = 1
234
- else:
235
- clipping_scale = self._get_clipping_scale(group, batches)
236
-
237
- for p, state, _ in batches:
238
- # Perform optimization step.
239
- # grad is not going to be None, we handled that when creating the batches.
240
- grad = p.grad
241
- if grad.is_sparse:
242
- raise RuntimeError(
243
- "ScaledAdam optimizer does not support sparse gradients"
244
- )
245
- # State initialization
246
- if len(state) == 0:
247
- self._init_state(group, p, state)
248
-
249
- self._step_one_batch(group, p, state, clipping_scale)
250
-
251
- return loss
252
-
253
- def _init_state(self, group: dict, p: Tensor, state: dict):
254
- """
255
- Initializes state dict for parameter 'p'. Assumes that dim 0 of tensor p
256
- is actually the batch dimension, corresponding to batched-together
257
- parameters of a given shape.
258
-
259
-
260
- Args:
261
- group: Dict to look up configuration values.
262
- p: The parameter that we are initializing the state for
263
- state: Dict from string to whatever state we are initializing
264
- """
265
- size_update_period = group["size_update_period"]
266
-
267
- state["step"] = 0
268
-
269
- kwargs = {"device": p.device, "dtype": p.dtype}
270
-
271
- # 'delta' implements conventional momentum. There are
272
- # several different kinds of update going on, so rather than
273
- # compute "exp_avg" like in Adam, we store and decay a
274
- # parameter-change "delta", which combines all forms of
275
- # update. this is equivalent to how it's done in Adam,
276
- # except for the first few steps.
277
- state["delta"] = torch.zeros_like(
278
- p, memory_format=torch.preserve_format)
279
-
280
- batch_size = p.shape[0]
281
- numel = p.numel() // batch_size
282
- numel = p.numel()
283
-
284
- if numel > 1:
285
- # "param_rms" just periodically records the scalar root-mean-square value of
286
- # the parameter tensor.
287
- # it has a shape like (batch_size, 1, 1, 1, 1)
288
- param_rms = (
289
- (p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt())
290
- state["param_rms"] = param_rms
291
-
292
- state["scale_exp_avg_sq"] = torch.zeros_like(param_rms)
293
- state["scale_grads"] = torch.zeros(size_update_period,
294
- *param_rms.shape, **kwargs)
295
-
296
- # exp_avg_sq is the weighted sum of scaled gradients. as in Adam.
297
- state["exp_avg_sq"] = torch.zeros_like(
298
- p, memory_format=torch.preserve_format)
299
-
300
- def _get_clipping_scale(self,
301
- group: dict,
302
- tuples: List[Tuple[Tensor, dict, List[str]]]
303
- ) -> float:
304
- """
305
- Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients
306
- by this amount before applying the rest of the update.
307
-
308
- Args:
309
- group: the parameter group, an item in self.param_groups
310
- tuples: a list of tuples of (param, state, param_names)
311
- where param is a batched set of parameters,
312
- with a .grad (1st dim is batch dim)
313
- and state is the state-dict where optimization parameters are kept.
314
- param_names is a List[str] while each str is name for a parameter
315
- in batched set of parameters "param".
316
- """
317
- assert len(tuples) >= 1
318
- clipping_scale = group["clipping_scale"]
319
- (first_p, first_state, _) = tuples[0]
320
- step = first_state["step"]
321
- if clipping_scale is None or step == 0:
322
- # no clipping. return early on step == 0 because the other
323
- # parameters' state won't have been initialized yet.
324
- return 1.0
325
- clipping_update_period = group["clipping_update_period"]
326
-
327
- tot_sumsq = torch.tensor(0.0, device=first_p.device)
328
- for (p, state, param_names) in tuples:
329
- grad = p.grad
330
- if grad.is_sparse:
331
- raise RuntimeError(
332
- "ScaledAdam optimizer does not support sparse gradients")
333
- if p.numel() == p.shape[0]: # a batch of scalars
334
- tot_sumsq += (grad**2).sum() # sum() to change shape [1] to []
335
- else:
336
- tot_sumsq += ((grad * state["param_rms"])**2).sum()
337
-
338
- tot_norm = tot_sumsq.sqrt()
339
- if "model_norms" not in first_state:
340
- first_state["model_norms"] = torch.zeros(
341
- clipping_update_period, device=p.device)
342
- first_state["model_norms"][step % clipping_update_period] = tot_norm
343
-
344
- if step % clipping_update_period == 0:
345
- # Print some stats.
346
- # We don't reach here if step == 0 because we would have returned
347
- # above.
348
- sorted_norms = first_state["model_norms"].sort()[0].to("cpu")
349
- quartiles = []
350
- for n in range(0, 5):
351
- index = min(
352
- clipping_update_period - 1,
353
- (clipping_update_period // 4) * n, )
354
- quartiles.append(sorted_norms[index].item())
355
-
356
- median = quartiles[2]
357
- threshold = clipping_scale * median
358
- first_state["model_norm_threshold"] = threshold
359
- percent_clipped = (first_state["num_clipped"] * 100.0 /
360
- clipping_update_period
361
- if "num_clipped" in first_state else 0.0)
362
- first_state["num_clipped"] = 0
363
- quartiles = " ".join(["%.3e" % x for x in quartiles])
364
- logging.info(
365
- f"Clipping_scale={clipping_scale}, grad-norm quartiles {quartiles}, "
366
- f"threshold={threshold:.3e}, percent-clipped={percent_clipped:.1f}"
367
- )
368
-
369
- if step < clipping_update_period:
370
- return 1.0 # We have not yet estimated a norm to clip to.
371
- else:
372
- try:
373
- model_norm_threshold = first_state["model_norm_threshold"]
374
- except KeyError:
375
- logging.info(
376
- "Warning: model_norm_threshold not in state: possibly "
377
- "you changed config when restarting, adding clipping_scale option?"
378
- )
379
- return 1.0
380
- ans = min(1.0, (model_norm_threshold / (tot_norm + 1.0e-20)).item())
381
- if ans < 1.0:
382
- first_state["num_clipped"] += 1
383
- if ans < 0.1:
384
- logging.warn(
385
- f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}"
386
- )
387
- if self.show_dominant_parameters:
388
- assert p.shape[0] == len(param_names)
389
- self._show_gradient_dominating_parameter(tuples, tot_sumsq)
390
- return ans
391
-
392
- def _show_gradient_dominating_parameter(
393
- self, tuples: List[Tuple[Tensor, dict, List[str]]],
394
- tot_sumsq: Tensor):
395
- """
396
- Show information of parameter wihch dominanting tot_sumsq.
397
-
398
- Args:
399
- tuples: a list of tuples of (param, state, param_names)
400
- where param is a batched set of parameters,
401
- with a .grad (1st dim is batch dim)
402
- and state is the state-dict where optimization parameters are kept.
403
- param_names is a List[str] while each str is name for a parameter
404
- in batched set of parameters "param".
405
- tot_sumsq: sumsq of all parameters. Though it's could be calculated
406
- from tuples, we still pass it to save some time.
407
- """
408
- all_sumsq_orig = {}
409
- for (p, state, batch_param_names) in tuples:
410
- # p is a stacked batch parameters.
411
- batch_grad = p.grad
412
- if p.numel() == p.shape[0]: # a batch of scalars
413
- batch_sumsq_orig = batch_grad**2
414
- # Dummpy values used by following `zip` statement.
415
- batch_rms_orig = torch.ones(p.shape[0])
416
- else:
417
- batch_rms_orig = state["param_rms"]
418
- batch_sumsq_orig = ((batch_grad * batch_rms_orig)**2).sum(
419
- dim=list(range(1, batch_grad.ndim)))
420
-
421
- for name, sumsq_orig, rms, grad in zip(batch_param_names,
422
- batch_sumsq_orig,
423
- batch_rms_orig, batch_grad):
424
-
425
- proportion_orig = sumsq_orig / tot_sumsq
426
- all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad)
427
-
428
- assert torch.isclose(
429
- sum([value[0] for value in all_sumsq_orig.values()]).cpu(),
430
- torch.tensor(1.0), )
431
- sorted_by_proportion = {
432
- k: v
433
- for k, v in sorted(
434
- all_sumsq_orig.items(),
435
- key=lambda item: item[1][0],
436
- reverse=True, )
437
- }
438
- dominant_param_name = next(iter(sorted_by_proportion))
439
- (dominant_proportion, dominant_sumsq, dominant_rms,
440
- dominant_grad, ) = sorted_by_proportion[dominant_param_name]
441
- logging.info(f"Parameter Dominanting tot_sumsq {dominant_param_name}"
442
- f" with proportion {dominant_proportion:.2f},"
443
- f" where dominant_sumsq=(grad_sumsq*orig_rms_sq)"
444
- f"={dominant_sumsq:.3e},"
445
- f" grad_sumsq = {(dominant_grad**2).sum():.3e},"
446
- f" orig_rms_sq={(dominant_rms**2).item():.3e}")
447
-
448
- def _step_one_batch(self,
449
- group: dict,
450
- p: Tensor,
451
- state: dict,
452
- clipping_scale: float):
453
- """
454
- Do the step for one parameter, which is actually going to be a batch of
455
- `real` parameters, with dim 0 as the batch dim.
456
- Args:
457
- group: dict to look up configuration values
458
- p: parameter to update (actually multiple parameters stacked together
459
- as a batch)
460
- state: state-dict for p, to look up the optimizer state
461
- """
462
- lr = group["lr"]
463
- size_update_period = group["size_update_period"]
464
- beta1 = group["betas"][0]
465
-
466
- grad = p.grad
467
- if clipping_scale != 1.0:
468
- grad = grad * clipping_scale
469
- step = state["step"]
470
- delta = state["delta"]
471
-
472
- delta.mul_(beta1)
473
- batch_size = p.shape[0]
474
- numel = p.numel() // batch_size
475
- if numel > 1:
476
- # Update the size/scale of p, and set param_rms
477
- scale_grads = state["scale_grads"]
478
- scale_grads[step % size_update_period] = (p * grad).sum(
479
- dim=list(range(1, p.ndim)), keepdim=True)
480
- if step % size_update_period == size_update_period - 1:
481
- param_rms = state["param_rms"] # shape: (batch_size, 1, 1, ..)
482
- param_rms.copy_((p**2)
483
- .mean(dim=list(range(1, p.ndim)), keepdim=True)
484
- .sqrt())
485
- if step > 0:
486
- # self._size_update() learns the overall scale on the
487
- # parameter, by shrinking or expanding it.
488
- self._size_update(group, scale_grads, p, state)
489
-
490
- if numel == 1:
491
- # For parameters with 1 element we just use regular Adam.
492
- # Updates delta.
493
- self._step_scalar(group, p, state)
494
- else:
495
- self._step(group, p, state)
496
-
497
- state["step"] = step + 1
498
-
499
- def _size_update(self,
500
- group: dict,
501
- scale_grads: Tensor,
502
- p: Tensor,
503
- state: dict) -> None:
504
- """
505
- Called only where p.numel() > 1, this updates the scale of the parameter.
506
- If we imagine: p = underlying_param * scale.exp(), and we are doing
507
- gradient descent on underlying param and on scale, this function does the update
508
- on `scale`.
509
-
510
- Args:
511
- group: dict to look up configuration values
512
- scale_grads: a tensor of shape (size_update_period, batch_size, 1, 1,...) containing
513
- grads w.r.t. the scales.
514
- p: The parameter to update
515
- state: The state-dict of p
516
- """
517
-
518
- param_rms = state["param_rms"]
519
- beta1, beta2 = group["betas"]
520
- size_lr = group["lr"] * group["scalar_lr_scale"]
521
- param_min_rms = group["param_min_rms"]
522
- param_max_rms = group["param_max_rms"]
523
- eps = group["eps"]
524
- step = state["step"]
525
- batch_size = p.shape[0]
526
-
527
- size_update_period = scale_grads.shape[0]
528
- # correct beta2 for the size update period: we will have
529
- # faster decay at this level.
530
- beta2_corr = beta2**size_update_period
531
-
532
- scale_exp_avg_sq = state[
533
- "scale_exp_avg_sq"] # shape: (batch_size, 1, 1, ..)
534
- scale_exp_avg_sq.mul_(beta2_corr).add_(
535
- (scale_grads**2).mean(dim=0), # mean over dim `size_update_period`
536
- alpha=1 - beta2_corr, ) # shape is (batch_size, 1, 1, ...)
537
-
538
- # The 1st time we reach here is when size_step == 1.
539
- size_step = (step + 1) // size_update_period
540
- bias_correction2 = 1 - beta2_corr**size_step
541
- # we don't bother with bias_correction1; this will help prevent divergence
542
- # at the start of training.
543
-
544
- denom = scale_exp_avg_sq.sqrt() + eps
545
-
546
- scale_step = (-size_lr * (bias_correction2**0.5) *
547
- scale_grads.sum(dim=0) / denom)
548
-
549
- is_too_small = param_rms < param_min_rms
550
- is_too_large = param_rms > param_max_rms
551
-
552
- # when the param gets too small, just don't shrink it any further.
553
- scale_step.masked_fill_(is_too_small, 0.0)
554
- # when it gets too large, stop it from getting any larger.
555
- scale_step.masked_fill_(is_too_large, -size_lr * size_update_period)
556
- delta = state["delta"]
557
- # the factor of (1-beta1) relates to momentum.
558
- delta.add_(p * scale_step, alpha=(1 - beta1))
559
-
560
- def _step(self, group: dict, p: Tensor, state: dict):
561
- """
562
- This function does the core update of self.step(), in the case where the members of
563
- the batch have more than 1 element.
564
-
565
- Args:
566
- group: A dict which will be used to look up configuration values
567
- p: The parameter to be updated
568
- grad: The grad of p
569
- state: The state-dict corresponding to parameter p
570
-
571
- This function modifies p.
572
- """
573
- grad = p.grad
574
- lr = group["lr"]
575
- beta1, beta2 = group["betas"]
576
- eps = group["eps"]
577
- param_min_rms = group["param_min_rms"]
578
- step = state["step"]
579
-
580
- exp_avg_sq = state["exp_avg_sq"]
581
- exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1 - beta2))
582
-
583
- this_step = state["step"] - (state["zero_step"]
584
- if "zero_step" in state else 0)
585
- bias_correction2 = 1 - beta2**(this_step + 1)
586
- if bias_correction2 < 0.99:
587
- # note: not in-place.
588
- exp_avg_sq = exp_avg_sq * (1.0 / bias_correction2)
589
-
590
- denom = exp_avg_sq.sqrt()
591
- denom += eps
592
- grad = grad / denom
593
-
594
- alpha = -lr * (1 - beta1) * state["param_rms"].clamp(min=param_min_rms)
595
-
596
- delta = state["delta"]
597
- delta.add_(grad * alpha)
598
- p.add_(delta)
599
-
600
- def _step_scalar(self, group: dict, p: Tensor, state: dict):
601
- """
602
- A simplified form of the core update for scalar tensors, where we cannot get a good
603
- estimate of the parameter rms.
604
- """
605
- beta1, beta2 = group["betas"]
606
- scalar_max = group["scalar_max"]
607
- eps = group["eps"]
608
- lr = group["lr"] * group["scalar_lr_scale"]
609
- grad = p.grad
610
-
611
- exp_avg_sq = state["exp_avg_sq"] # shape: (batch_size,)
612
- exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
613
-
614
- # bias_correction2 is like in Adam. Don't bother with bias_correction1;
615
- # slower update at the start will help stability anyway.
616
- bias_correction2 = 1 - beta2**(state["step"] + 1)
617
- denom = (exp_avg_sq / bias_correction2).sqrt() + eps
618
-
619
- delta = state["delta"]
620
- delta.add_(grad / denom, alpha=-lr * (1 - beta1))
621
- p.clamp_(min=-scalar_max, max=scalar_max)
622
- p.add_(delta)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/modules/patched_mha_with_cache.py DELETED
@@ -1,465 +0,0 @@
1
- from torch.nn.functional import *
2
- from torch.nn.functional import (
3
- _mha_shape_check,
4
- _canonical_mask,
5
- _none_or_dtype,
6
- _in_projection_packed,
7
- )
8
- from torch.nn import functional as F
9
- import torch
10
- # Tensor = torch.Tensor
11
- # from typing import Callable, List, Optional, Tuple, Union
12
-
13
-
14
- def multi_head_attention_forward_patched(
15
- query: Tensor,
16
- key: Tensor,
17
- value: Tensor,
18
- embed_dim_to_check: int,
19
- num_heads: int,
20
- in_proj_weight: Optional[Tensor],
21
- in_proj_bias: Optional[Tensor],
22
- bias_k: Optional[Tensor],
23
- bias_v: Optional[Tensor],
24
- add_zero_attn: bool,
25
- dropout_p: float,
26
- out_proj_weight: Tensor,
27
- out_proj_bias: Optional[Tensor],
28
- training: bool = True,
29
- key_padding_mask: Optional[Tensor] = None,
30
- need_weights: bool = True,
31
- attn_mask: Optional[Tensor] = None,
32
- use_separate_proj_weight: bool = False,
33
- q_proj_weight: Optional[Tensor] = None,
34
- k_proj_weight: Optional[Tensor] = None,
35
- v_proj_weight: Optional[Tensor] = None,
36
- static_k: Optional[Tensor] = None,
37
- static_v: Optional[Tensor] = None,
38
- average_attn_weights: bool = True,
39
- is_causal: bool = False,
40
- cache=None,
41
- ) -> Tuple[Tensor, Optional[Tensor]]:
42
- r"""
43
- Args:
44
- query, key, value: map a query and a set of key-value pairs to an output.
45
- See "Attention Is All You Need" for more details.
46
- embed_dim_to_check: total dimension of the model.
47
- num_heads: parallel attention heads.
48
- in_proj_weight, in_proj_bias: input projection weight and bias.
49
- bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
50
- add_zero_attn: add a new batch of zeros to the key and
51
- value sequences at dim=1.
52
- dropout_p: probability of an element to be zeroed.
53
- out_proj_weight, out_proj_bias: the output projection weight and bias.
54
- training: apply dropout if is ``True``.
55
- key_padding_mask: if provided, specified padding elements in the key will
56
- be ignored by the attention. This is an binary mask. When the value is True,
57
- the corresponding value on the attention layer will be filled with -inf.
58
- need_weights: output attn_output_weights.
59
- Default: `True`
60
- Note: `needs_weight` defaults to `True`, but should be set to `False`
61
- For best performance when attention weights are not nedeeded.
62
- *Setting needs_weights to `True`
63
- leads to a significant performance degradation.*
64
- attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
65
- the batches while a 3D mask allows to specify a different mask for the entries of each batch.
66
- is_causal: If specified, applies a causal mask as attention mask, and ignores
67
- attn_mask for computing scaled dot product attention.
68
- Default: ``False``.
69
- .. warning::
70
- is_causal is provides a hint that the attn_mask is the
71
- causal mask.Providing incorrect hints can result in
72
- incorrect execution, including forward and backward
73
- compatibility.
74
- use_separate_proj_weight: the function accept the proj. weights for query, key,
75
- and value in different forms. If false, in_proj_weight will be used, which is
76
- a combination of q_proj_weight, k_proj_weight, v_proj_weight.
77
- q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
78
- static_k, static_v: static key and value used for attention operators.
79
- average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads.
80
- Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect
81
- when ``need_weights=True.``. Default: True
82
-
83
-
84
- Shape:
85
- Inputs:
86
- - query: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
87
- the embedding dimension.
88
- - key: :math:`(S, E)` or :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
89
- the embedding dimension.
90
- - value: :math:`(S, E)` or :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
91
- the embedding dimension.
92
- - key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length.
93
- If a FloatTensor is provided, it will be directly added to the value.
94
- If a BoolTensor is provided, the positions with the
95
- value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
96
- - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
97
- 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
98
- S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
99
- positions. If a BoolTensor is provided, positions with ``True``
100
- are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
101
- is provided, it will be added to the attention weight.
102
- - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
103
- N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
104
- - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
105
- N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
106
-
107
- Outputs:
108
- - attn_output: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
109
- E is the embedding dimension.
110
- - attn_output_weights: Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns
111
- attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
112
- :math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
113
- :math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
114
- head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`.
115
- """
116
- tens_ops = (
117
- query,
118
- key,
119
- value,
120
- in_proj_weight,
121
- in_proj_bias,
122
- bias_k,
123
- bias_v,
124
- out_proj_weight,
125
- out_proj_bias,
126
- )
127
- if has_torch_function(tens_ops):
128
- return handle_torch_function(
129
- multi_head_attention_forward,
130
- tens_ops,
131
- query,
132
- key,
133
- value,
134
- embed_dim_to_check,
135
- num_heads,
136
- in_proj_weight,
137
- in_proj_bias,
138
- bias_k,
139
- bias_v,
140
- add_zero_attn,
141
- dropout_p,
142
- out_proj_weight,
143
- out_proj_bias,
144
- training=training,
145
- key_padding_mask=key_padding_mask,
146
- need_weights=need_weights,
147
- attn_mask=attn_mask,
148
- is_causal=is_causal,
149
- use_separate_proj_weight=use_separate_proj_weight,
150
- q_proj_weight=q_proj_weight,
151
- k_proj_weight=k_proj_weight,
152
- v_proj_weight=v_proj_weight,
153
- static_k=static_k,
154
- static_v=static_v,
155
- average_attn_weights=average_attn_weights,
156
- cache=cache,
157
- )
158
-
159
- is_batched = _mha_shape_check(
160
- query, key, value, key_padding_mask, attn_mask, num_heads
161
- )
162
-
163
- # For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
164
- # is batched, run the computation and before returning squeeze the
165
- # batch dimension so that the output doesn't carry this temporary batch dimension.
166
- if not is_batched:
167
- # unsqueeze if the input is unbatched
168
- query = query.unsqueeze(1)
169
- key = key.unsqueeze(1)
170
- value = value.unsqueeze(1)
171
- if key_padding_mask is not None:
172
- key_padding_mask = key_padding_mask.unsqueeze(0)
173
-
174
- # set up shape vars
175
- tgt_len, bsz, embed_dim = query.shape
176
- src_len, _, _ = key.shape
177
-
178
- key_padding_mask = _canonical_mask(
179
- mask=key_padding_mask,
180
- mask_name="key_padding_mask",
181
- other_type=_none_or_dtype(attn_mask),
182
- other_name="attn_mask",
183
- target_type=query.dtype,
184
- )
185
-
186
- if is_causal and attn_mask is None:
187
- raise RuntimeError(
188
- "Need attn_mask if specifying the is_causal hint. "
189
- "You may use the Transformer module method "
190
- "`generate_square_subsequent_mask` to create this mask."
191
- )
192
-
193
- if is_causal and key_padding_mask is None and not need_weights:
194
- # when we have a kpm or need weights, we need attn_mask
195
- # Otherwise, we use the is_causal hint go as is_causal
196
- # indicator to SDPA.
197
- attn_mask = None
198
- else:
199
- attn_mask = _canonical_mask(
200
- mask=attn_mask,
201
- mask_name="attn_mask",
202
- other_type=None,
203
- other_name="",
204
- target_type=query.dtype,
205
- check_other=False,
206
- )
207
-
208
- if key_padding_mask is not None:
209
- # We have the attn_mask, and use that to merge kpm into it.
210
- # Turn off use of is_causal hint, as the merged mask is no
211
- # longer causal.
212
- is_causal = False
213
-
214
- assert (
215
- embed_dim == embed_dim_to_check
216
- ), f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
217
- if isinstance(embed_dim, torch.Tensor):
218
- # embed_dim can be a tensor when JIT tracing
219
- head_dim = embed_dim.div(num_heads, rounding_mode="trunc")
220
- else:
221
- head_dim = embed_dim // num_heads
222
- assert (
223
- head_dim * num_heads == embed_dim
224
- ), f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
225
- if use_separate_proj_weight:
226
- # allow MHA to have different embedding dimensions when separate projection weights are used
227
- assert (
228
- key.shape[:2] == value.shape[:2]
229
- ), f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
230
- else:
231
- assert (
232
- key.shape == value.shape
233
- ), f"key shape {key.shape} does not match value shape {value.shape}"
234
-
235
- #
236
- # compute in-projection
237
- #
238
- if not use_separate_proj_weight:
239
- assert (
240
- in_proj_weight is not None
241
- ), "use_separate_proj_weight is False but in_proj_weight is None"
242
- q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
243
- else:
244
- assert (
245
- q_proj_weight is not None
246
- ), "use_separate_proj_weight is True but q_proj_weight is None"
247
- assert (
248
- k_proj_weight is not None
249
- ), "use_separate_proj_weight is True but k_proj_weight is None"
250
- assert (
251
- v_proj_weight is not None
252
- ), "use_separate_proj_weight is True but v_proj_weight is None"
253
- if in_proj_bias is None:
254
- b_q = b_k = b_v = None
255
- else:
256
- b_q, b_k, b_v = in_proj_bias.chunk(3)
257
- q, k, v = _in_projection(
258
- query,
259
- key,
260
- value,
261
- q_proj_weight,
262
- k_proj_weight,
263
- v_proj_weight,
264
- b_q,
265
- b_k,
266
- b_v,
267
- )
268
- if cache != None:
269
- if cache["first_infer"] == 1:
270
- cache["k"][cache["stage"]] = k
271
- # print(0,cache["k"].shape)
272
- cache["v"][cache["stage"]] = v
273
- else: ###12个layer每个都要留自己的cache_kv
274
- # print(1,cache["k"].shape)
275
- cache["k"][cache["stage"]] = torch.cat(
276
- [cache["k"][cache["stage"]], k], 0
277
- ) ##本来时序是1,但是proj的时候可能transpose了所以时序到0维了
278
- cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]], v], 0)
279
- # print(2, cache["k"].shape)
280
- src_len = cache["k"][cache["stage"]].shape[0]
281
- k = cache["k"][cache["stage"]]
282
- v = cache["v"][cache["stage"]]
283
- # if attn_mask is not None:
284
- # attn_mask=attn_mask[-1:,]
285
- # print(attn_mask.shape,attn_mask)
286
- cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
287
- # print(2333,cache)
288
- # prep attention mask
289
-
290
- attn_mask = _canonical_mask(
291
- mask=attn_mask,
292
- mask_name="attn_mask",
293
- other_type=None,
294
- other_name="",
295
- target_type=q.dtype,
296
- check_other=False,
297
- )
298
-
299
- if attn_mask is not None:
300
- # ensure attn_mask's dim is 3
301
- if attn_mask.dim() == 2:
302
- correct_2d_size = (tgt_len, src_len)
303
- if attn_mask.shape != correct_2d_size:
304
- raise RuntimeError(
305
- f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}."
306
- )
307
- attn_mask = attn_mask.unsqueeze(0)
308
- elif attn_mask.dim() == 3:
309
- correct_3d_size = (bsz * num_heads, tgt_len, src_len)
310
- if attn_mask.shape != correct_3d_size:
311
- raise RuntimeError(
312
- f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}."
313
- )
314
- else:
315
- raise RuntimeError(
316
- f"attn_mask's dimension {attn_mask.dim()} is not supported"
317
- )
318
-
319
- # add bias along batch dimension (currently second)
320
- if bias_k is not None and bias_v is not None:
321
- assert static_k is None, "bias cannot be added to static key."
322
- assert static_v is None, "bias cannot be added to static value."
323
- k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
324
- v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
325
- if attn_mask is not None:
326
- attn_mask = pad(attn_mask, (0, 1))
327
- if key_padding_mask is not None:
328
- key_padding_mask = pad(key_padding_mask, (0, 1))
329
- else:
330
- assert bias_k is None
331
- assert bias_v is None
332
-
333
- #
334
- # reshape q, k, v for multihead attention and make em batch first
335
- #
336
- q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
337
- if static_k is None:
338
- k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
339
- else:
340
- # TODO finish disentangling control flow so we don't do in-projections when statics are passed
341
- assert (
342
- static_k.size(0) == bsz * num_heads
343
- ), f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
344
- assert (
345
- static_k.size(2) == head_dim
346
- ), f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
347
- k = static_k
348
- if static_v is None:
349
- v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
350
- else:
351
- # TODO finish disentangling control flow so we don't do in-projections when statics are passed
352
- assert (
353
- static_v.size(0) == bsz * num_heads
354
- ), f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
355
- assert (
356
- static_v.size(2) == head_dim
357
- ), f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
358
- v = static_v
359
-
360
- # add zero attention along batch dimension (now first)
361
- if add_zero_attn:
362
- zero_attn_shape = (bsz * num_heads, 1, head_dim)
363
- k = torch.cat(
364
- [k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1
365
- )
366
- v = torch.cat(
367
- [v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1
368
- )
369
- if attn_mask is not None:
370
- attn_mask = pad(attn_mask, (0, 1))
371
- if key_padding_mask is not None:
372
- key_padding_mask = pad(key_padding_mask, (0, 1))
373
-
374
- # update source sequence length after adjustments
375
- src_len = k.size(1)
376
-
377
- # merge key padding and attention masks
378
- if key_padding_mask is not None:
379
- assert key_padding_mask.shape == (
380
- bsz,
381
- src_len,
382
- ), f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
383
- key_padding_mask = (
384
- key_padding_mask.view(bsz, 1, 1, src_len)
385
- .expand(-1, num_heads, -1, -1)
386
- .reshape(bsz * num_heads, 1, src_len)
387
- )
388
- if attn_mask is None:
389
- attn_mask = key_padding_mask
390
- else:
391
- attn_mask = attn_mask + key_padding_mask
392
-
393
- # adjust dropout probability
394
- if not training:
395
- dropout_p = 0.0
396
-
397
- #
398
- # (deep breath) calculate attention and out projection
399
- #
400
-
401
- if need_weights:
402
- B, Nt, E = q.shape
403
- q_scaled = q / math.sqrt(E)
404
-
405
- assert not (
406
- is_causal and attn_mask is None
407
- ), "FIXME: is_causal not implemented for need_weights"
408
-
409
- if attn_mask is not None:
410
- attn_output_weights = torch.baddbmm(
411
- attn_mask, q_scaled, k.transpose(-2, -1)
412
- )
413
- else:
414
- attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
415
- attn_output_weights = softmax(attn_output_weights, dim=-1)
416
- if dropout_p > 0.0:
417
- attn_output_weights = dropout(attn_output_weights, p=dropout_p)
418
-
419
- attn_output = torch.bmm(attn_output_weights, v)
420
-
421
- attn_output = (
422
- attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
423
- )
424
- attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
425
- attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
426
-
427
- # optionally average attention weights over heads
428
- attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
429
- if average_attn_weights:
430
- attn_output_weights = attn_output_weights.mean(dim=1)
431
-
432
- if not is_batched:
433
- # squeeze the output if input was unbatched
434
- attn_output = attn_output.squeeze(1)
435
- attn_output_weights = attn_output_weights.squeeze(0)
436
- return attn_output, attn_output_weights
437
- else:
438
- # attn_mask can be either (L,S) or (N*num_heads, L, S)
439
- # if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
440
- # in order to match the input for SDPA of (N, num_heads, L, S)
441
- if attn_mask is not None:
442
- if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
443
- attn_mask = attn_mask.unsqueeze(0)
444
- else:
445
- attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
446
-
447
- q = q.view(bsz, num_heads, tgt_len, head_dim)
448
- k = k.view(bsz, num_heads, src_len, head_dim)
449
- v = v.view(bsz, num_heads, src_len, head_dim)
450
-
451
- # with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
452
- attn_output = scaled_dot_product_attention(
453
- q, k, v, attn_mask, dropout_p, is_causal
454
- )
455
-
456
- attn_output = (
457
- attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
458
- )
459
-
460
- attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
461
- attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
462
- if not is_batched:
463
- # squeeze the output if input was unbatched
464
- attn_output = attn_output.squeeze(1)
465
- return attn_output, None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/modules/patched_mha_with_cache_onnx.py DELETED
@@ -1,92 +0,0 @@
1
- from torch.nn.functional import *
2
- from torch.nn.functional import (
3
- _mha_shape_check,
4
- _canonical_mask,
5
- _none_or_dtype,
6
- _in_projection_packed,
7
- )
8
-
9
- def multi_head_attention_forward_patched(
10
- query,
11
- key,
12
- value,
13
- embed_dim_to_check: int,
14
- num_heads: int,
15
- in_proj_weight,
16
- in_proj_bias: Optional[Tensor],
17
- bias_k: Optional[Tensor],
18
- bias_v: Optional[Tensor],
19
- add_zero_attn: bool,
20
- dropout_p: float,
21
- out_proj_weight: Tensor,
22
- out_proj_bias: Optional[Tensor],
23
- training: bool = True,
24
- key_padding_mask: Optional[Tensor] = None,
25
- need_weights: bool = True,
26
- attn_mask: Optional[Tensor] = None,
27
- use_separate_proj_weight: bool = False,
28
- q_proj_weight: Optional[Tensor] = None,
29
- k_proj_weight: Optional[Tensor] = None,
30
- v_proj_weight: Optional[Tensor] = None,
31
- static_k: Optional[Tensor] = None,
32
- static_v: Optional[Tensor] = None,
33
- average_attn_weights: bool = True,
34
- is_causal: bool = False,
35
- cache=None,
36
- ) -> Tuple[Tensor, Optional[Tensor]]:
37
-
38
- # set up shape vars
39
- _, _, embed_dim = query.shape
40
- attn_mask = _canonical_mask(
41
- mask=attn_mask,
42
- mask_name="attn_mask",
43
- other_type=None,
44
- other_name="",
45
- target_type=query.dtype,
46
- check_other=False,
47
- )
48
- head_dim = embed_dim // num_heads
49
-
50
- proj_qkv = linear(query, in_proj_weight, in_proj_bias)
51
- proj_qkv = proj_qkv.unflatten(-1, (3, query.size(-1))).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
52
- q, k, v = proj_qkv[0], proj_qkv[1], proj_qkv[2]
53
-
54
- if cache["first_infer"] == 1:
55
- cache["k"][cache["stage"]] = k
56
- cache["v"][cache["stage"]] = v
57
- else:
58
- cache["k"][cache["stage"]] = torch.cat([cache["k"][cache["stage"]][:-1], k], 0)
59
- cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]][:-1], v], 0)
60
- k = cache["k"][cache["stage"]]
61
- v = cache["v"][cache["stage"]]
62
- cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
63
-
64
- attn_mask = _canonical_mask(
65
- mask=attn_mask,
66
- mask_name="attn_mask",
67
- other_type=None,
68
- other_name="",
69
- target_type=q.dtype,
70
- check_other=False,
71
- )
72
- attn_mask = attn_mask.unsqueeze(0)
73
-
74
- q = q.view(-1, num_heads, head_dim).transpose(0, 1)
75
- k = k.view(-1, num_heads, head_dim).transpose(0, 1)
76
- v = v.view(-1, num_heads, head_dim).transpose(0, 1)
77
-
78
- dropout_p = 0.0
79
- attn_mask = attn_mask.unsqueeze(0)
80
- q = q.view(num_heads, -1, head_dim).unsqueeze(0)
81
- k = k.view(num_heads, -1, head_dim).unsqueeze(0)
82
- v = v.view(num_heads, -1, head_dim).unsqueeze(0)
83
- attn_output = scaled_dot_product_attention(
84
- q, k, v, attn_mask, dropout_p, is_causal
85
- )
86
- attn_output = (
87
- attn_output.permute(2, 0, 1, 3).contiguous().view(-1, embed_dim)
88
- )
89
- attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
90
- attn_output = attn_output.view(-1, 1, attn_output.size(1))
91
-
92
- return attn_output
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/modules/scaling.py DELETED
@@ -1,335 +0,0 @@
1
- # Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
2
- #
3
- # See ../../../../LICENSE for clarification regarding multiple authors
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
- # limitations under the License.
16
- import logging
17
- import math
18
- import random
19
- from typing import Optional
20
- from typing import Tuple
21
- from typing import Union
22
-
23
- import torch
24
- import torch.nn as nn
25
- from torch import Tensor
26
-
27
-
28
- class DoubleSwishFunction(torch.autograd.Function):
29
- """
30
- double_swish(x) = x * torch.sigmoid(x-1)
31
- This is a definition, originally motivated by its close numerical
32
- similarity to swish(swish(x)), where swish(x) = x * sigmoid(x).
33
-
34
- Memory-efficient derivative computation:
35
- double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1)
36
- double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x).
37
- Now, s'(x) = s(x) * (1-s(x)).
38
- double_swish'(x) = x * s'(x) + s(x).
39
- = x * s(x) * (1-s(x)) + s(x).
40
- = double_swish(x) * (1-s(x)) + s(x)
41
- ... so we just need to remember s(x) but not x itself.
42
- """
43
-
44
- @staticmethod
45
- def forward(ctx, x: Tensor) -> Tensor:
46
- requires_grad = x.requires_grad
47
- x_dtype = x.dtype
48
- if x.dtype == torch.float16:
49
- x = x.to(torch.float32)
50
-
51
- s = torch.sigmoid(x - 1.0)
52
- y = x * s
53
-
54
- if requires_grad:
55
- deriv = y * (1 - s) + s
56
- # notes on derivative of x * sigmoid(x - 1):
57
- # https://www.wolframalpha.com/input?i=d%2Fdx+%28x+*+sigmoid%28x-1%29%29
58
- # min \simeq -0.043638. Take floor as -0.043637 so it's a lower bund
59
- # max \simeq 1.1990. Take ceil to be 1.2 so it's an upper bound.
60
- # the combination of "+ torch.rand_like(deriv)" and casting to torch.uint8 (which
61
- # floors), should be expectation-preserving.
62
- floor = -0.043637
63
- ceil = 1.2
64
- d_scaled = (deriv - floor) * (255.0 / (ceil - floor)) + torch.rand_like(
65
- deriv
66
- )
67
- if __name__ == "__main__":
68
- # for self-testing only.
69
- assert d_scaled.min() >= 0.0
70
- assert d_scaled.max() < 256.0
71
- d_int = d_scaled.to(torch.uint8)
72
- ctx.save_for_backward(d_int)
73
- if x.dtype == torch.float16 or torch.is_autocast_enabled():
74
- y = y.to(torch.float16)
75
- return y
76
-
77
- @staticmethod
78
- def backward(ctx, y_grad: Tensor) -> Tensor:
79
- (d,) = ctx.saved_tensors
80
- # the same constants as used in forward pass.
81
- floor = -0.043637
82
- ceil = 1.2
83
- d = d * ((ceil - floor) / 255.0) + floor
84
- return y_grad * d
85
-
86
-
87
- class DoubleSwish(torch.nn.Module):
88
- def forward(self, x: Tensor) -> Tensor:
89
- """Return double-swish activation function which is an approximation to Swish(Swish(x)),
90
- that we approximate closely with x * sigmoid(x-1).
91
- """
92
- if torch.jit.is_scripting() or torch.jit.is_tracing():
93
- return x * torch.sigmoid(x - 1.0)
94
- return DoubleSwishFunction.apply(x)
95
-
96
-
97
- class ActivationBalancerFunction(torch.autograd.Function):
98
- @staticmethod
99
- def forward(
100
- ctx,
101
- x: Tensor,
102
- scale_factor: Tensor,
103
- sign_factor: Optional[Tensor],
104
- channel_dim: int,
105
- ) -> Tensor:
106
- if channel_dim < 0:
107
- channel_dim += x.ndim
108
- ctx.channel_dim = channel_dim
109
- xgt0 = x > 0
110
- if sign_factor is None:
111
- ctx.save_for_backward(xgt0, scale_factor)
112
- else:
113
- ctx.save_for_backward(xgt0, scale_factor, sign_factor)
114
- return x
115
-
116
- @staticmethod
117
- def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]:
118
- if len(ctx.saved_tensors) == 3:
119
- xgt0, scale_factor, sign_factor = ctx.saved_tensors
120
- for _ in range(ctx.channel_dim, x_grad.ndim - 1):
121
- scale_factor = scale_factor.unsqueeze(-1)
122
- sign_factor = sign_factor.unsqueeze(-1)
123
- factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
124
- else:
125
- xgt0, scale_factor = ctx.saved_tensors
126
- for _ in range(ctx.channel_dim, x_grad.ndim - 1):
127
- scale_factor = scale_factor.unsqueeze(-1)
128
- factor = scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
129
- neg_delta_grad = x_grad.abs() * factor
130
- return (
131
- x_grad - neg_delta_grad,
132
- None,
133
- None,
134
- None,
135
- )
136
-
137
-
138
- def _compute_scale_factor(
139
- x: Tensor,
140
- channel_dim: int,
141
- min_abs: float,
142
- max_abs: float,
143
- gain_factor: float,
144
- max_factor: float,
145
- ) -> Tensor:
146
- if channel_dim < 0:
147
- channel_dim += x.ndim
148
- sum_dims = [d for d in range(x.ndim) if d != channel_dim]
149
- x_abs_mean = torch.mean(x.abs(), dim=sum_dims).to(torch.float32)
150
-
151
- if min_abs == 0.0:
152
- below_threshold = 0.0
153
- else:
154
- # below_threshold is 0 if x_abs_mean > min_abs, can be at most max_factor if
155
- # x_abs)_mean , min_abs.
156
- below_threshold = ((min_abs - x_abs_mean) * (gain_factor / min_abs)).clamp(
157
- min=0, max=max_factor
158
- )
159
-
160
- above_threshold = ((x_abs_mean - max_abs) * (gain_factor / max_abs)).clamp(
161
- min=0, max=max_factor
162
- )
163
-
164
- return below_threshold - above_threshold
165
-
166
-
167
- def _compute_sign_factor(
168
- x: Tensor,
169
- channel_dim: int,
170
- min_positive: float,
171
- max_positive: float,
172
- gain_factor: float,
173
- max_factor: float,
174
- ) -> Tensor:
175
- if channel_dim < 0:
176
- channel_dim += x.ndim
177
- sum_dims = [d for d in range(x.ndim) if d != channel_dim]
178
- proportion_positive = torch.mean((x > 0).to(torch.float32), dim=sum_dims)
179
- if min_positive == 0.0:
180
- factor1 = 0.0
181
- else:
182
- # 0 if proportion_positive >= min_positive, else can be
183
- # as large as max_factor.
184
- factor1 = (
185
- (min_positive - proportion_positive) * (gain_factor / min_positive)
186
- ).clamp_(min=0, max=max_factor)
187
-
188
- if max_positive == 1.0:
189
- factor2 = 0.0
190
- else:
191
- # 0 if self.proportion_positive <= max_positive, else can be
192
- # as large as -max_factor.
193
- factor2 = (
194
- (proportion_positive - max_positive) * (gain_factor / (1.0 - max_positive))
195
- ).clamp_(min=0, max=max_factor)
196
- sign_factor = factor1 - factor2
197
- # require min_positive != 0 or max_positive != 1:
198
- assert not isinstance(sign_factor, float)
199
- return sign_factor
200
-
201
-
202
- class ActivationBalancer(torch.nn.Module):
203
- """
204
- Modifies the backpropped derivatives of a function to try to encourage, for
205
- each channel, that it is positive at least a proportion `threshold` of the
206
- time. It does this by multiplying negative derivative values by up to
207
- (1+max_factor), and positive derivative values by up to (1-max_factor),
208
- interpolated from 1 at the threshold to those extremal values when none
209
- of the inputs are positive.
210
-
211
- Args:
212
- num_channels: the number of channels
213
- channel_dim: the dimension/axis corresponding to the channel, e.g.
214
- -1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
215
- min_positive: the minimum, per channel, of the proportion of the time
216
- that (x > 0), below which we start to modify the derivatives.
217
- max_positive: the maximum, per channel, of the proportion of the time
218
- that (x > 0), above which we start to modify the derivatives.
219
- max_factor: the maximum factor by which we modify the derivatives for
220
- either the sign constraint or the magnitude constraint;
221
- e.g. with max_factor=0.02, the the derivatives would be multiplied by
222
- values in the range [0.98..1.02].
223
- sign_gain_factor: determines the 'gain' with which we increase the
224
- change in gradient once the constraints on min_positive and max_positive
225
- are violated.
226
- scale_gain_factor: determines the 'gain' with which we increase the
227
- change in gradient once the constraints on min_abs and max_abs
228
- are violated.
229
- min_abs: the minimum average-absolute-value difference from the mean
230
- value per channel, which we allow, before we start to modify
231
- the derivatives to prevent this.
232
- max_abs: the maximum average-absolute-value difference from the mean
233
- value per channel, which we allow, before we start to modify
234
- the derivatives to prevent this.
235
- min_prob: determines the minimum probability with which we modify the
236
- gradients for the {min,max}_positive and {min,max}_abs constraints,
237
- on each forward(). This is done randomly to prevent all layers
238
- from doing it at the same time. Early in training we may use
239
- higher probabilities than this; it will decay to this value.
240
- """
241
-
242
- def __init__(
243
- self,
244
- num_channels: int,
245
- channel_dim: int,
246
- min_positive: float = 0.05,
247
- max_positive: float = 0.95,
248
- max_factor: float = 0.04,
249
- sign_gain_factor: float = 0.01,
250
- scale_gain_factor: float = 0.02,
251
- min_abs: float = 0.2,
252
- max_abs: float = 100.0,
253
- min_prob: float = 0.1,
254
- ):
255
- super(ActivationBalancer, self).__init__()
256
- self.num_channels = num_channels
257
- self.channel_dim = channel_dim
258
- self.min_positive = min_positive
259
- self.max_positive = max_positive
260
- self.max_factor = max_factor
261
- self.min_abs = min_abs
262
- self.max_abs = max_abs
263
- self.min_prob = min_prob
264
- self.sign_gain_factor = sign_gain_factor
265
- self.scale_gain_factor = scale_gain_factor
266
-
267
- # count measures how many times the forward() function has been called.
268
- # We occasionally sync this to a tensor called `count`, that exists to
269
- # make sure it is synced to disk when we load and save the model.
270
- self.cpu_count = 0
271
- self.register_buffer("count", torch.tensor(0, dtype=torch.int64))
272
-
273
- def forward(self, x: Tensor) -> Tensor:
274
- if torch.jit.is_scripting() or not x.requires_grad or torch.jit.is_tracing():
275
- return _no_op(x)
276
-
277
- count = self.cpu_count
278
- self.cpu_count += 1
279
-
280
- if random.random() < 0.01:
281
- # Occasionally sync self.cpu_count with self.count.
282
- # count affects the decay of 'prob'. don't do this on every iter,
283
- # because syncing with the GPU is slow.
284
- self.cpu_count = max(self.cpu_count, self.count.item())
285
- self.count.fill_(self.cpu_count)
286
-
287
- # the prob of doing some work exponentially decreases from 0.5 till it hits
288
- # a floor at min_prob (==0.1, by default)
289
- prob = max(self.min_prob, 0.5 ** (1 + (count / 4000.0)))
290
-
291
- if random.random() < prob:
292
- sign_gain_factor = 0.5
293
- if self.min_positive != 0.0 or self.max_positive != 1.0:
294
- sign_factor = _compute_sign_factor(
295
- x,
296
- self.channel_dim,
297
- self.min_positive,
298
- self.max_positive,
299
- gain_factor=self.sign_gain_factor / prob,
300
- max_factor=self.max_factor,
301
- )
302
- else:
303
- sign_factor = None
304
-
305
- scale_factor = _compute_scale_factor(
306
- x.detach(),
307
- self.channel_dim,
308
- min_abs=self.min_abs,
309
- max_abs=self.max_abs,
310
- gain_factor=self.scale_gain_factor / prob,
311
- max_factor=self.max_factor,
312
- )
313
- return ActivationBalancerFunction.apply(
314
- x,
315
- scale_factor,
316
- sign_factor,
317
- self.channel_dim,
318
- )
319
- else:
320
- return _no_op(x)
321
-
322
-
323
- def BalancedDoubleSwish(
324
- d_model, channel_dim=-1, max_abs=10.0, min_prob=0.25
325
- ) -> nn.Sequential:
326
- """
327
- ActivationBalancer -> DoubleSwish
328
- """
329
- balancer = ActivationBalancer(
330
- d_model, channel_dim=channel_dim, max_abs=max_abs, min_prob=min_prob
331
- )
332
- return nn.Sequential(
333
- balancer,
334
- DoubleSwish(),
335
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/modules/transformer.py DELETED
@@ -1,378 +0,0 @@
1
- # modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
2
- import copy
3
- import numbers
4
- from functools import partial
5
- from typing import Any
6
- from typing import Callable
7
- from typing import List
8
- from typing import Optional
9
- from typing import Tuple
10
- from typing import Union
11
-
12
- import torch
13
- from AR.modules.activation import MultiheadAttention
14
- from AR.modules.scaling import BalancedDoubleSwish
15
- from torch import nn
16
- from torch import Tensor
17
- from torch.nn import functional as F
18
-
19
- _shape_t = Union[int, List[int], torch.Size]
20
-
21
-
22
- class LayerNorm(nn.Module):
23
- __constants__ = ["normalized_shape", "eps", "elementwise_affine"]
24
- normalized_shape: Tuple[int, ...]
25
- eps: float
26
- elementwise_affine: bool
27
-
28
- def __init__(
29
- self,
30
- normalized_shape: _shape_t,
31
- eps: float = 1e-5,
32
- elementwise_affine: bool = True,
33
- device=None,
34
- dtype=None,
35
- ) -> None:
36
- factory_kwargs = {"device": device, "dtype": dtype}
37
- super(LayerNorm, self).__init__()
38
- if isinstance(normalized_shape, numbers.Integral):
39
- # mypy error: incompatible types in assignment
40
- normalized_shape = (normalized_shape,) # type: ignore[assignment]
41
- self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
42
- self.eps = eps
43
- self.elementwise_affine = elementwise_affine
44
- if self.elementwise_affine:
45
- self.weight = nn.Parameter(
46
- torch.empty(self.normalized_shape, **factory_kwargs)
47
- )
48
- self.bias = nn.Parameter(
49
- torch.empty(self.normalized_shape, **factory_kwargs)
50
- )
51
- else:
52
- self.register_parameter("weight", None)
53
- self.register_parameter("bias", None)
54
-
55
- self.reset_parameters()
56
-
57
- def reset_parameters(self) -> None:
58
- if self.elementwise_affine:
59
- nn.init.ones_(self.weight)
60
- nn.init.zeros_(self.bias)
61
-
62
- def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
63
- if isinstance(input, tuple):
64
- input, embedding = input
65
- return (
66
- F.layer_norm(
67
- input,
68
- self.normalized_shape,
69
- self.weight,
70
- self.bias,
71
- self.eps,
72
- ),
73
- embedding,
74
- )
75
-
76
- assert embedding is None
77
- return F.layer_norm(
78
- input, self.normalized_shape, self.weight, self.bias, self.eps
79
- )
80
-
81
- def extra_repr(self) -> str:
82
- return (
83
- "{normalized_shape}, eps={eps}, "
84
- "elementwise_affine={elementwise_affine}".format(**self.__dict__)
85
- )
86
-
87
-
88
- class IdentityNorm(nn.Module):
89
- def __init__(
90
- self,
91
- d_model: int,
92
- eps: float = 1e-5,
93
- device=None,
94
- dtype=None,
95
- ) -> None:
96
- super(IdentityNorm, self).__init__()
97
-
98
- def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
99
- if isinstance(input, tuple):
100
- return input
101
-
102
- assert embedding is None
103
- return input
104
-
105
-
106
- class TransformerEncoder(nn.Module):
107
- r"""TransformerEncoder is a stack of N encoder layers. Users can build the
108
- BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
109
-
110
- Args:
111
- encoder_layer: an instance of the TransformerEncoderLayer() class (required).
112
- num_layers: the number of sub-encoder-layers in the encoder (required).
113
- norm: the layer normalization component (optional).
114
- enable_nested_tensor: if True, input will automatically convert to nested tensor
115
- (and convert back on output). This will improve the overall performance of
116
- TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
117
-
118
- Examples::
119
- >>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
120
- >>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
121
- >>> src = torch.rand(10, 32, 512)
122
- >>> out = transformer_encoder(src)
123
- """
124
- __constants__ = ["norm"]
125
-
126
- def __init__(self, encoder_layer, num_layers, norm=None):
127
- super(TransformerEncoder, self).__init__()
128
- self.layers = _get_clones(encoder_layer, num_layers)
129
- self.num_layers = num_layers
130
- self.norm = norm
131
-
132
- def forward(
133
- self,
134
- src: Tensor,
135
- mask: Optional[Tensor] = None,
136
- src_key_padding_mask: Optional[Tensor] = None,
137
- return_layer_states: bool = False,
138
- cache=None,
139
- ) -> Tensor:
140
- r"""Pass the input through the encoder layers in turn.
141
-
142
- Args:
143
- src: the sequence to the encoder (required).
144
- mask: the mask for the src sequence (optional).
145
- src_key_padding_mask: the mask for the src keys per batch (optional).
146
- return_layer_states: return layers' state (optional).
147
-
148
- Shape:
149
- see the docs in Transformer class.
150
- """
151
- if return_layer_states:
152
- layer_states = [] # layers' output
153
- output = src
154
- for mod in self.layers:
155
- output = mod(
156
- output,
157
- src_mask=mask,
158
- src_key_padding_mask=src_key_padding_mask,
159
- cache=cache,
160
- )
161
- layer_states.append(output[0])
162
-
163
- if self.norm is not None:
164
- output = self.norm(output)
165
-
166
- return layer_states, output
167
-
168
- output = src
169
- for mod in self.layers:
170
- output = mod(
171
- output,
172
- src_mask=mask,
173
- src_key_padding_mask=src_key_padding_mask,
174
- cache=cache,
175
- )
176
-
177
- if self.norm is not None:
178
- output = self.norm(output)
179
-
180
- return output
181
-
182
-
183
- class TransformerEncoderLayer(nn.Module):
184
- __constants__ = ["batch_first", "norm_first"]
185
-
186
- def __init__(
187
- self,
188
- d_model: int,
189
- nhead: int,
190
- dim_feedforward: int = 2048,
191
- dropout: float = 0.1,
192
- activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
193
- batch_first: bool = False,
194
- norm_first: bool = False,
195
- device=None,
196
- dtype=None,
197
- linear1_self_attention_cls: nn.Module = nn.Linear,
198
- linear2_self_attention_cls: nn.Module = nn.Linear,
199
- linear1_feedforward_cls: nn.Module = nn.Linear,
200
- linear2_feedforward_cls: nn.Module = nn.Linear,
201
- layer_norm_cls: nn.Module = LayerNorm,
202
- layer_norm_eps: float = 1e-5,
203
- adaptive_layer_norm=False,
204
- ) -> None:
205
- factory_kwargs = {"device": device, "dtype": dtype}
206
- super(TransformerEncoderLayer, self).__init__()
207
- # print(233333333333,d_model,nhead)
208
- # import os
209
- # os._exit(2333333)
210
- self.self_attn = MultiheadAttention(
211
- d_model, # 512 16
212
- nhead,
213
- dropout=dropout,
214
- batch_first=batch_first,
215
- linear1_cls=linear1_self_attention_cls,
216
- linear2_cls=linear2_self_attention_cls,
217
- **factory_kwargs,
218
- )
219
-
220
- # Implementation of Feedforward model
221
- self.linear1 = linear1_feedforward_cls(
222
- d_model, dim_feedforward, **factory_kwargs
223
- )
224
- self.dropout = nn.Dropout(dropout)
225
- self.linear2 = linear2_feedforward_cls(
226
- dim_feedforward, d_model, **factory_kwargs
227
- )
228
-
229
- self.norm_first = norm_first
230
- self.dropout1 = nn.Dropout(dropout)
231
- self.dropout2 = nn.Dropout(dropout)
232
-
233
- # Legacy string support for activation function.
234
- if isinstance(activation, str):
235
- activation = _get_activation_fn(activation)
236
- elif isinstance(activation, partial):
237
- activation = activation(d_model)
238
- elif activation == BalancedDoubleSwish:
239
- activation = BalancedDoubleSwish(d_model)
240
-
241
- # # We can't test self.activation in forward() in TorchScript,
242
- # # so stash some information about it instead.
243
- # if activation is F.relu or isinstance(activation, torch.nn.ReLU):
244
- # self.activation_relu_or_gelu = 1
245
- # elif activation is F.gelu or isinstance(activation, torch.nn.GELU):
246
- # self.activation_relu_or_gelu = 2
247
- # else:
248
- # self.activation_relu_or_gelu = 0
249
- self.activation = activation
250
-
251
- norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
252
- if layer_norm_cls == IdentityNorm:
253
- norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
254
- else:
255
- norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
256
-
257
- if adaptive_layer_norm:
258
- self.norm1 = AdaptiveLayerNorm(d_model, norm1)
259
- self.norm2 = AdaptiveLayerNorm(d_model, norm2)
260
- else:
261
- self.norm1 = norm1
262
- self.norm2 = norm2
263
-
264
- def __setstate__(self, state):
265
- super(TransformerEncoderLayer, self).__setstate__(state)
266
- if not hasattr(self, "activation"):
267
- self.activation = F.relu
268
-
269
- def forward(
270
- self,
271
- src: Tensor,
272
- src_mask: Optional[Tensor] = None,
273
- src_key_padding_mask: Optional[Tensor] = None,
274
- cache=None,
275
- ) -> Tensor:
276
- r"""Pass the input through the encoder layer.
277
-
278
- Args:
279
- src: the sequence to the encoder layer (required).
280
- src_mask: the mask for the src sequence (optional).
281
- src_key_padding_mask: the mask for the src keys per batch (optional).
282
-
283
- Shape:
284
- see the docs in Transformer class.
285
- """
286
- x, stage_embedding = src, None
287
- is_src_tuple = False
288
- if isinstance(src, tuple):
289
- x, stage_embedding = src
290
- is_src_tuple = True
291
-
292
- if src_key_padding_mask is not None:
293
- _skpm_dtype = src_key_padding_mask.dtype
294
- if _skpm_dtype != torch.bool and not torch.is_floating_point(
295
- src_key_padding_mask
296
- ):
297
- raise AssertionError(
298
- "only bool and floating types of key_padding_mask are supported"
299
- )
300
-
301
- if self.norm_first:
302
- x = x + self._sa_block(
303
- self.norm1(x, stage_embedding),
304
- src_mask,
305
- src_key_padding_mask,
306
- cache=cache,
307
- )
308
- x = x + self._ff_block(self.norm2(x, stage_embedding))
309
- else:
310
- x = self.norm1(
311
- x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache),
312
- stage_embedding,
313
- )
314
- x = self.norm2(x + self._ff_block(x), stage_embedding)
315
-
316
- if is_src_tuple:
317
- return (x, stage_embedding)
318
- return x
319
-
320
- # self-attention block
321
- def _sa_block(
322
- self,
323
- x: Tensor,
324
- attn_mask: Optional[Tensor],
325
- key_padding_mask: Optional[Tensor],
326
- cache=None,
327
- ) -> Tensor:
328
- # print(x.shape,attn_mask.shape,key_padding_mask)
329
- # torch.Size([1, 188, 512]) torch.Size([188, 188]) None
330
- # import os
331
- # os._exit(23333)
332
- x = self.self_attn(
333
- x,
334
- x,
335
- x,
336
- attn_mask=attn_mask,
337
- key_padding_mask=key_padding_mask,
338
- need_weights=False,
339
- cache=cache,
340
- )[0]
341
- return self.dropout1(x)
342
-
343
- # feed forward block
344
- def _ff_block(self, x: Tensor) -> Tensor:
345
- x = self.linear2(self.dropout(self.activation(self.linear1(x))))
346
- return self.dropout2(x)
347
-
348
-
349
- class AdaptiveLayerNorm(nn.Module):
350
- r"""Adaptive Layer Normalization"""
351
-
352
- def __init__(self, d_model, norm) -> None:
353
- super(AdaptiveLayerNorm, self).__init__()
354
- self.project_layer = nn.Linear(d_model, 2 * d_model)
355
- self.norm = norm
356
- self.d_model = d_model
357
- self.eps = self.norm.eps
358
-
359
- def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
360
- if isinstance(input, tuple):
361
- input, embedding = input
362
- weight, bias = torch.split(
363
- self.project_layer(embedding),
364
- split_size_or_sections=self.d_model,
365
- dim=-1,
366
- )
367
- return (weight * self.norm(input) + bias, embedding)
368
-
369
- weight, bias = torch.split(
370
- self.project_layer(embedding),
371
- split_size_or_sections=self.d_model,
372
- dim=-1,
373
- )
374
- return weight * self.norm(input) + bias
375
-
376
-
377
- def _get_clones(module, N):
378
- return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/modules/transformer_onnx.py DELETED
@@ -1,292 +0,0 @@
1
- # modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
2
- import copy
3
- import numbers
4
- from functools import partial
5
- from typing import Any
6
- from typing import Callable
7
- from typing import List
8
- from typing import Optional
9
- from typing import Tuple
10
- from typing import Union
11
-
12
- import torch
13
- from AR.modules.activation_onnx import MultiheadAttention
14
- from AR.modules.scaling import BalancedDoubleSwish
15
- from torch import nn
16
- from torch import Tensor
17
- from torch.nn import functional as F
18
-
19
- _shape_t = Union[int, List[int], torch.Size]
20
-
21
-
22
- class LayerNorm(nn.Module):
23
- __constants__ = ["normalized_shape", "eps", "elementwise_affine"]
24
- normalized_shape: Tuple[int, ...]
25
- eps: float
26
- elementwise_affine: bool
27
-
28
- def __init__(
29
- self,
30
- normalized_shape: _shape_t,
31
- eps: float = 1e-5,
32
- elementwise_affine: bool = True,
33
- device=None,
34
- dtype=None,
35
- ) -> None:
36
- factory_kwargs = {"device": device, "dtype": dtype}
37
- super(LayerNorm, self).__init__()
38
- if isinstance(normalized_shape, numbers.Integral):
39
- # mypy error: incompatible types in assignment
40
- normalized_shape = (normalized_shape,) # type: ignore[assignment]
41
- self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
42
- self.eps = eps
43
- self.elementwise_affine = elementwise_affine
44
- if self.elementwise_affine:
45
- self.weight = nn.Parameter(
46
- torch.empty(self.normalized_shape, **factory_kwargs)
47
- )
48
- self.bias = nn.Parameter(
49
- torch.empty(self.normalized_shape, **factory_kwargs)
50
- )
51
- else:
52
- self.register_parameter("weight", None)
53
- self.register_parameter("bias", None)
54
-
55
- self.reset_parameters()
56
-
57
- def reset_parameters(self) -> None:
58
- if self.elementwise_affine:
59
- nn.init.ones_(self.weight)
60
- nn.init.zeros_(self.bias)
61
-
62
- def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
63
- if isinstance(input, tuple):
64
- input, embedding = input
65
- return (
66
- F.layer_norm(
67
- input,
68
- self.normalized_shape,
69
- self.weight,
70
- self.bias,
71
- self.eps,
72
- ),
73
- embedding,
74
- )
75
-
76
- assert embedding is None
77
- return F.layer_norm(
78
- input, self.normalized_shape, self.weight, self.bias, self.eps
79
- )
80
-
81
- def extra_repr(self) -> str:
82
- return (
83
- "{normalized_shape}, eps={eps}, "
84
- "elementwise_affine={elementwise_affine}".format(**self.__dict__)
85
- )
86
-
87
-
88
- class IdentityNorm(nn.Module):
89
- def __init__(
90
- self,
91
- d_model: int,
92
- eps: float = 1e-5,
93
- device=None,
94
- dtype=None,
95
- ) -> None:
96
- super(IdentityNorm, self).__init__()
97
-
98
- def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
99
- if isinstance(input, tuple):
100
- return input
101
-
102
- assert embedding is None
103
- return input
104
-
105
-
106
- class TransformerEncoder(nn.Module):
107
- r"""TransformerEncoder is a stack of N encoder layers. Users can build the
108
- BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
109
-
110
- Args:
111
- encoder_layer: an instance of the TransformerEncoderLayer() class (required).
112
- num_layers: the number of sub-encoder-layers in the encoder (required).
113
- norm: the layer normalization component (optional).
114
- enable_nested_tensor: if True, input will automatically convert to nested tensor
115
- (and convert back on output). This will improve the overall performance of
116
- TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
117
-
118
- Examples::
119
- >>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
120
- >>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
121
- >>> src = torch.rand(10, 32, 512)
122
- >>> out = transformer_encoder(src)
123
- """
124
- __constants__ = ["norm"]
125
-
126
- def __init__(self, encoder_layer, num_layers, norm=None):
127
- super(TransformerEncoder, self).__init__()
128
- self.layers = _get_clones(encoder_layer, num_layers)
129
- self.num_layers = num_layers
130
- self.norm = norm
131
-
132
- def forward(
133
- self,
134
- src: Tensor,
135
- mask: Optional[Tensor] = None,
136
- src_key_padding_mask: Optional[Tensor] = None,
137
- return_layer_states: bool = False,
138
- cache=None,
139
- ) -> Tensor:
140
- output = src
141
- for mod in self.layers:
142
- output = mod(
143
- output,
144
- src_mask=mask,
145
- src_key_padding_mask=src_key_padding_mask,
146
- cache=cache,
147
- )
148
-
149
- if self.norm is not None:
150
- output = self.norm(output)
151
-
152
- return output
153
-
154
-
155
- class TransformerEncoderLayer(nn.Module):
156
- __constants__ = ["batch_first", "norm_first"]
157
- def __init__(
158
- self,
159
- d_model: int,
160
- nhead: int,
161
- dim_feedforward: int = 2048,
162
- dropout: float = 0.1,
163
- activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
164
- batch_first: bool = False,
165
- norm_first: bool = False,
166
- device=None,
167
- dtype=None,
168
- linear1_self_attention_cls: nn.Module = nn.Linear,
169
- linear2_self_attention_cls: nn.Module = nn.Linear,
170
- linear1_feedforward_cls: nn.Module = nn.Linear,
171
- linear2_feedforward_cls: nn.Module = nn.Linear,
172
- layer_norm_cls: nn.Module = LayerNorm,
173
- layer_norm_eps: float = 1e-5,
174
- adaptive_layer_norm=False,
175
- ) -> None:
176
- factory_kwargs = {"device": device, "dtype": dtype}
177
- super(TransformerEncoderLayer, self).__init__()
178
- self.self_attn = MultiheadAttention(
179
- d_model, # 512 16
180
- nhead,
181
- dropout=dropout,
182
- batch_first=batch_first,
183
- linear1_cls=linear1_self_attention_cls,
184
- linear2_cls=linear2_self_attention_cls,
185
- **factory_kwargs,
186
- )
187
- self.linear1 = linear1_feedforward_cls(
188
- d_model, dim_feedforward, **factory_kwargs
189
- )
190
- self.dropout = nn.Dropout(dropout)
191
- self.linear2 = linear2_feedforward_cls(
192
- dim_feedforward, d_model, **factory_kwargs
193
- )
194
- self.norm_first = norm_first
195
- self.dropout1 = nn.Dropout(dropout)
196
- self.dropout2 = nn.Dropout(dropout)
197
- if isinstance(activation, str):
198
- activation = _get_activation_fn(activation)
199
- elif isinstance(activation, partial):
200
- activation = activation(d_model)
201
- elif activation == BalancedDoubleSwish:
202
- activation = BalancedDoubleSwish(d_model)
203
- self.activation = activation
204
-
205
- norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
206
- if layer_norm_cls == IdentityNorm:
207
- norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
208
- else:
209
- norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
210
-
211
- if adaptive_layer_norm:
212
- self.norm1 = AdaptiveLayerNorm(d_model, norm1)
213
- self.norm2 = AdaptiveLayerNorm(d_model, norm2)
214
- else:
215
- self.norm1 = norm1
216
- self.norm2 = norm2
217
-
218
- def __setstate__(self, state):
219
- super(TransformerEncoderLayer, self).__setstate__(state)
220
- if not hasattr(self, "activation"):
221
- self.activation = F.relu
222
-
223
- def forward(
224
- self,
225
- src: Tensor,
226
- src_mask: Optional[Tensor] = None,
227
- src_key_padding_mask: Optional[Tensor] = None,
228
- cache=None,
229
- ) -> Tensor:
230
- x = src
231
- stage_embedding = None
232
- x = self.norm1(
233
- x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache),
234
- stage_embedding,
235
- )
236
- x = self.norm2(x + self._ff_block(x), stage_embedding)
237
-
238
- return x
239
-
240
- def _sa_block(
241
- self,
242
- x: Tensor,
243
- attn_mask: Optional[Tensor],
244
- key_padding_mask: Optional[Tensor],
245
- cache=None,
246
- ) -> Tensor:
247
- x = self.self_attn(
248
- x,
249
- x,
250
- x,
251
- attn_mask=attn_mask,
252
- key_padding_mask=key_padding_mask,
253
- need_weights=False,
254
- cache=cache,
255
- )
256
- return self.dropout1(x)
257
-
258
- def _ff_block(self, x: Tensor) -> Tensor:
259
- x = self.linear2(self.dropout(self.activation(self.linear1(x))))
260
- return self.dropout2(x)
261
-
262
-
263
- class AdaptiveLayerNorm(nn.Module):
264
- r"""Adaptive Layer Normalization"""
265
-
266
- def __init__(self, d_model, norm) -> None:
267
- super(AdaptiveLayerNorm, self).__init__()
268
- self.project_layer = nn.Linear(d_model, 2 * d_model)
269
- self.norm = norm
270
- self.d_model = d_model
271
- self.eps = self.norm.eps
272
-
273
- def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
274
- if isinstance(input, tuple):
275
- input, embedding = input
276
- weight, bias = torch.split(
277
- self.project_layer(embedding),
278
- split_size_or_sections=self.d_model,
279
- dim=-1,
280
- )
281
- return (weight * self.norm(input) + bias, embedding)
282
-
283
- weight, bias = torch.split(
284
- self.project_layer(embedding),
285
- split_size_or_sections=self.d_model,
286
- dim=-1,
287
- )
288
- return weight * self.norm(input) + bias
289
-
290
-
291
- def _get_clones(module, N):
292
- return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/text_processing/__init__.py DELETED
File without changes
GPT_SoVITS/AR/text_processing/phonemizer.py DELETED
@@ -1,79 +0,0 @@
1
- # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/text_processing/phonemizer.py
2
- # reference: https://github.com/lifeiteng/vall-e
3
- import itertools
4
- import re
5
- from typing import Dict
6
- from typing import List
7
-
8
- import regex
9
- from gruut import sentences
10
- from gruut.const import Sentence
11
- from gruut.const import Word
12
- from AR.text_processing.symbols import SYMBOL_TO_ID
13
-
14
-
15
- class GruutPhonemizer:
16
- def __init__(self, language: str):
17
- self._phonemizer = sentences
18
- self.lang = language
19
- self.symbol_to_id = SYMBOL_TO_ID
20
- self._special_cases_dict: Dict[str] = {
21
- r"\.\.\.": "... ",
22
- ";": "; ",
23
- ":": ": ",
24
- ",": ", ",
25
- r"\.": ". ",
26
- "!": "! ",
27
- r"\?": "? ",
28
- "—": "—",
29
- "…": "… ",
30
- "«": "«",
31
- "»": "»",
32
- }
33
- self._punctuation_regexp: str = (
34
- rf"([{''.join(self._special_cases_dict.keys())}])"
35
- )
36
-
37
- def _normalize_punctuation(self, text: str) -> str:
38
- text = regex.sub(rf"\pZ+{self._punctuation_regexp}", r"\1", text)
39
- text = regex.sub(rf"{self._punctuation_regexp}(\pL)", r"\1 \2", text)
40
- text = regex.sub(r"\pZ+", r" ", text)
41
- return text.strip()
42
-
43
- def _convert_punctuation(self, word: Word) -> str:
44
- if not word.phonemes:
45
- return ""
46
- if word.phonemes[0] in ["‖", "|"]:
47
- return word.text.strip()
48
-
49
- phonemes = "".join(word.phonemes)
50
- # remove modifier characters ˈˌː with regex
51
- phonemes = re.sub(r"[ˈˌː͡]", "", phonemes)
52
- return phonemes.strip()
53
-
54
- def phonemize(self, text: str, espeak: bool = False) -> str:
55
- text_to_phonemize: str = self._normalize_punctuation(text)
56
- sents: List[Sentence] = [
57
- sent
58
- for sent in self._phonemizer(text_to_phonemize, lang="en-us", espeak=espeak)
59
- ]
60
- words: List[str] = [
61
- self._convert_punctuation(word) for word in itertools.chain(*sents)
62
- ]
63
- return " ".join(words)
64
-
65
- def transform(self, phonemes):
66
- # convert phonemes to ids
67
- # dictionary is in symbols.py
68
- return [self.symbol_to_id[p] for p in phonemes if p in self.symbol_to_id.keys()]
69
-
70
-
71
- if __name__ == "__main__":
72
- phonemizer = GruutPhonemizer("en-us")
73
- # text -> IPA
74
- phonemes = phonemizer.phonemize("Hello, wor-ld ?")
75
- print("phonemes:", phonemes)
76
- print("len(phonemes):", len(phonemes))
77
- phoneme_ids = phonemizer.transform(phonemes)
78
- print("phoneme_ids:", phoneme_ids)
79
- print("len(phoneme_ids):", len(phoneme_ids))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/text_processing/symbols.py DELETED
@@ -1,10 +0,0 @@
1
- # modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/text_processing/symbols.py
2
- # reference: https://github.com/lifeiteng/vall-e
3
- PAD = "_"
4
- PUNCTUATION = ';:,.!?¡¿—…"«»“” '
5
- LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
6
- IPA_LETTERS = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
7
- SYMBOLS = [PAD] + list(PUNCTUATION) + list(LETTERS) + list(IPA_LETTERS)
8
- SPACE_ID = SYMBOLS.index(" ")
9
- SYMBOL_TO_ID = {s: i for i, s in enumerate(SYMBOLS)}
10
- ID_TO_SYMBOL = {i: s for i, s in enumerate(SYMBOLS)}
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/utils/__init__.py DELETED
@@ -1,37 +0,0 @@
1
- import re
2
-
3
-
4
- def str2bool(str):
5
- return True if str.lower() == 'true' else False
6
-
7
-
8
- def get_newest_ckpt(string_list):
9
- # 定义一个正则表达式模式,用于匹配字符串中的数字
10
- pattern = r'epoch=(\d+)-step=(\d+)\.ckpt'
11
-
12
- # 使用正则表达式提取每个字符串中的数字信息,并创建一个包含元组的列表
13
- extracted_info = []
14
- for string in string_list:
15
- match = re.match(pattern, string)
16
- if match:
17
- epoch = int(match.group(1))
18
- step = int(match.group(2))
19
- extracted_info.append((epoch, step, string))
20
- # 按照 epoch 后面的数字和 step 后面的数字进行排序
21
- sorted_info = sorted(
22
- extracted_info, key=lambda x: (x[0], x[1]), reverse=True)
23
- # 获取最新的 ckpt 文件名
24
- newest_ckpt = sorted_info[0][2]
25
- return newest_ckpt
26
-
27
-
28
- # 文本存在且不为空时 return True
29
- def check_txt_file(file_path):
30
- try:
31
- with open(file_path, 'r') as file:
32
- text = file.readline().strip()
33
- assert text.strip() != ''
34
- return text
35
- except Exception:
36
- return False
37
- return False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/utils/initialize.py DELETED
@@ -1,38 +0,0 @@
1
- #!/usr/bin/env python3
2
- """Initialize modules for espnet2 neural networks."""
3
- import torch
4
- from typeguard import check_argument_types
5
-
6
-
7
- def initialize(model: torch.nn.Module, init: str):
8
- """Initialize weights of a neural network module.
9
-
10
- Parameters are initialized using the given method or distribution.
11
-
12
- Custom initialization routines can be implemented into submodules
13
- as function `espnet_initialization_fn` within the custom module.
14
-
15
- Args:
16
- model: Target.
17
- init: Method of initialization.
18
- """
19
- assert check_argument_types()
20
- print("init with", init)
21
-
22
- # weight init
23
- for p in model.parameters():
24
- if p.dim() > 1:
25
- if init == "xavier_uniform":
26
- torch.nn.init.xavier_uniform_(p.data)
27
- elif init == "xavier_normal":
28
- torch.nn.init.xavier_normal_(p.data)
29
- elif init == "kaiming_uniform":
30
- torch.nn.init.kaiming_uniform_(p.data, nonlinearity="relu")
31
- elif init == "kaiming_normal":
32
- torch.nn.init.kaiming_normal_(p.data, nonlinearity="relu")
33
- else:
34
- raise ValueError("Unknown initialization: " + init)
35
- # bias init
36
- for name, p in model.named_parameters():
37
- if ".bias" in name and p.dim() == 1:
38
- p.data.zero_()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/AR/utils/io.py DELETED
@@ -1,34 +0,0 @@
1
- import sys
2
-
3
- import torch
4
- import yaml
5
-
6
-
7
- def load_yaml_config(path):
8
- with open(path) as f:
9
- config = yaml.full_load(f)
10
- return config
11
-
12
-
13
- def save_config_to_yaml(config, path):
14
- assert path.endswith(".yaml")
15
- with open(path, "w") as f:
16
- f.write(yaml.dump(config))
17
- f.close()
18
-
19
-
20
- def write_args(args, path):
21
- args_dict = dict(
22
- (name, getattr(args, name)) for name in dir(args) if not name.startswith("_")
23
- )
24
- with open(path, "a") as args_file:
25
- args_file.write("==> torch version: {}\n".format(torch.__version__))
26
- args_file.write(
27
- "==> cudnn version: {}\n".format(torch.backends.cudnn.version())
28
- )
29
- args_file.write("==> Cmd:\n")
30
- args_file.write(str(sys.argv))
31
- args_file.write("\n==> args:\n")
32
- for k, v in sorted(args_dict.items()):
33
- args_file.write(" %s: %s\n" % (str(k), str(v)))
34
- args_file.close()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/TTS_infer_pack/TTS.py DELETED
@@ -1,1034 +0,0 @@
1
- from copy import deepcopy
2
- import math
3
- import os, sys, gc
4
- import random
5
- import traceback
6
-
7
- from tqdm import tqdm
8
- now_dir = os.getcwd()
9
- sys.path.append(now_dir)
10
- import ffmpeg
11
- import os
12
- from typing import Generator, List, Tuple, Union
13
- import numpy as np
14
- import torch
15
- import torch.nn.functional as F
16
- import yaml
17
- from transformers import AutoModelForMaskedLM, AutoTokenizer
18
-
19
- from AR.models.t2s_lightning_module import Text2SemanticLightningModule
20
- from feature_extractor.cnhubert import CNHubert
21
- from module.models import SynthesizerTrn
22
- import librosa
23
- from time import time as ttime
24
- from tools.i18n.i18n import I18nAuto, scan_language_list
25
- from tools.my_utils import load_audio
26
- from module.mel_processing import spectrogram_torch
27
- from TTS_infer_pack.text_segmentation_method import splits
28
- from TTS_infer_pack.TextPreprocessor import TextPreprocessor
29
- language=os.environ.get("language","Auto")
30
- language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
31
- i18n = I18nAuto(language=language)
32
-
33
- # configs/tts_infer.yaml
34
- """
35
- custom:
36
- bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
37
- cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
38
- device: cpu
39
- is_half: false
40
- t2s_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt
41
- vits_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth
42
- version: v2
43
- default:
44
- bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
45
- cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
46
- device: cpu
47
- is_half: false
48
- t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
49
- vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
50
- version: v1
51
- default_v2:
52
- bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
53
- cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
54
- device: cpu
55
- is_half: false
56
- t2s_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt
57
- vits_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth
58
- version: v2
59
- """
60
-
61
- def set_seed(seed:int):
62
- seed = int(seed)
63
- seed = seed if seed != -1 else random.randrange(1 << 32)
64
- print(f"Set seed to {seed}")
65
- os.environ['PYTHONHASHSEED'] = str(seed)
66
- random.seed(seed)
67
- np.random.seed(seed)
68
- torch.manual_seed(seed)
69
- try:
70
- if torch.cuda.is_available():
71
- torch.cuda.manual_seed(seed)
72
- torch.cuda.manual_seed_all(seed)
73
- # torch.backends.cudnn.deterministic = True
74
- # torch.backends.cudnn.benchmark = False
75
- # torch.backends.cudnn.enabled = True
76
- # 开启后会影响精度
77
- torch.backends.cuda.matmul.allow_tf32 = False
78
- torch.backends.cudnn.allow_tf32 = False
79
- except:
80
- pass
81
- return seed
82
-
83
- class TTS_Config:
84
- default_configs={
85
- "default":{
86
- "device": "cpu",
87
- "is_half": False,
88
- "version": "v1",
89
- "t2s_weights_path": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
90
- "vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth",
91
- "cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
92
- "bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
93
- },
94
- "default_v2":{
95
- "device": "cpu",
96
- "is_half": False,
97
- "version": "v2",
98
- "t2s_weights_path": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
99
- "vits_weights_path": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
100
- "cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
101
- "bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
102
- },
103
- }
104
- configs:dict = None
105
- v1_languages:list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"]
106
- v2_languages:list = ["auto", "auto_yue", "en", "zh", "ja", "yue", "ko", "all_zh", "all_ja", "all_yue", "all_ko"]
107
- languages:list = v2_languages
108
- # "all_zh",#全部按中文识别
109
- # "en",#全部按英文识别#######不变
110
- # "all_ja",#全部按日文识别
111
- # "all_yue",#全部按中文识别
112
- # "all_ko",#全部按韩文识别
113
- # "zh",#按中英混合识别####不变
114
- # "ja",#按日英混合识别####不变
115
- # "yue",#按粤英混合识别####不变
116
- # "ko",#按韩英混合识别####不变
117
- # "auto",#多语种启动切分识别语种
118
- # "auto_yue",#多语种启动切分识别语种
119
-
120
- def __init__(self, configs: Union[dict, str]=None):
121
-
122
- # 设置默认配置文件路径
123
- configs_base_path:str = "GPT_SoVITS/configs/"
124
- os.makedirs(configs_base_path, exist_ok=True)
125
- self.configs_path:str = os.path.join(configs_base_path, "tts_infer.yaml")
126
-
127
- if configs in ["", None]:
128
- if not os.path.exists(self.configs_path):
129
- self.save_configs()
130
- print(f"Create default config file at {self.configs_path}")
131
- configs:dict = deepcopy(self.default_configs)
132
-
133
- if isinstance(configs, str):
134
- self.configs_path = configs
135
- configs:dict = self._load_configs(self.configs_path)
136
-
137
- assert isinstance(configs, dict)
138
- version = configs.get("version", "v2").lower()
139
- assert version in ["v1", "v2"]
140
- self.default_configs["default"] = configs.get("default", self.default_configs["default"])
141
- self.default_configs["default_v2"] = configs.get("default_v2", self.default_configs["default_v2"])
142
-
143
- default_config_key = "default"if version=="v1" else "default_v2"
144
- self.configs:dict = configs.get("custom", deepcopy(self.default_configs[default_config_key]))
145
-
146
-
147
- self.device = self.configs.get("device", torch.device("cpu"))
148
- self.is_half = self.configs.get("is_half", False)
149
- self.version = version
150
- self.t2s_weights_path = self.configs.get("t2s_weights_path", None)
151
- self.vits_weights_path = self.configs.get("vits_weights_path", None)
152
- self.bert_base_path = self.configs.get("bert_base_path", None)
153
- self.cnhuhbert_base_path = self.configs.get("cnhuhbert_base_path", None)
154
- self.languages = self.v2_languages if self.version=="v2" else self.v1_languages
155
-
156
-
157
- if (self.t2s_weights_path in [None, ""]) or (not os.path.exists(self.t2s_weights_path)):
158
- self.t2s_weights_path = self.default_configs[default_config_key]['t2s_weights_path']
159
- print(f"fall back to default t2s_weights_path: {self.t2s_weights_path}")
160
- if (self.vits_weights_path in [None, ""]) or (not os.path.exists(self.vits_weights_path)):
161
- self.vits_weights_path = self.default_configs[default_config_key]['vits_weights_path']
162
- print(f"fall back to default vits_weights_path: {self.vits_weights_path}")
163
- if (self.bert_base_path in [None, ""]) or (not os.path.exists(self.bert_base_path)):
164
- self.bert_base_path = self.default_configs[default_config_key]['bert_base_path']
165
- print(f"fall back to default bert_base_path: {self.bert_base_path}")
166
- if (self.cnhuhbert_base_path in [None, ""]) or (not os.path.exists(self.cnhuhbert_base_path)):
167
- self.cnhuhbert_base_path = self.default_configs[default_config_key]['cnhuhbert_base_path']
168
- print(f"fall back to default cnhuhbert_base_path: {self.cnhuhbert_base_path}")
169
- self.update_configs()
170
-
171
-
172
- self.max_sec = None
173
- self.hz:int = 50
174
- self.semantic_frame_rate:str = "25hz"
175
- self.segment_size:int = 20480
176
- self.filter_length:int = 2048
177
- self.sampling_rate:int = 32000
178
- self.hop_length:int = 640
179
- self.win_length:int = 2048
180
- self.n_speakers:int = 300
181
-
182
-
183
-
184
- def _load_configs(self, configs_path: str)->dict:
185
- if os.path.exists(configs_path):
186
- ...
187
- else:
188
- print(i18n("路径不存在,使用默认配置"))
189
- self.save_configs(configs_path)
190
- with open(configs_path, 'r') as f:
191
- configs = yaml.load(f, Loader=yaml.FullLoader)
192
-
193
- return configs
194
-
195
- def save_configs(self, configs_path:str=None)->None:
196
- configs=deepcopy(self.default_configs)
197
- if self.configs is not None:
198
- configs["custom"] = self.update_configs()
199
-
200
- if configs_path is None:
201
- configs_path = self.configs_path
202
- with open(configs_path, 'w') as f:
203
- yaml.dump(configs, f)
204
-
205
- def update_configs(self):
206
- self.config = {
207
- "device" : str(self.device),
208
- "is_half" : self.is_half,
209
- "version" : self.version,
210
- "t2s_weights_path" : self.t2s_weights_path,
211
- "vits_weights_path" : self.vits_weights_path,
212
- "bert_base_path" : self.bert_base_path,
213
- "cnhuhbert_base_path": self.cnhuhbert_base_path,
214
- }
215
- return self.config
216
-
217
- def update_version(self, version:str)->None:
218
- self.version = version
219
- self.languages = self.v2_languages if self.version=="v2" else self.v1_languages
220
-
221
- def __str__(self):
222
- self.configs = self.update_configs()
223
- string = "TTS Config".center(100, '-') + '\n'
224
- for k, v in self.configs.items():
225
- string += f"{str(k).ljust(20)}: {str(v)}\n"
226
- string += "-" * 100 + '\n'
227
- return string
228
-
229
- def __repr__(self):
230
- return self.__str__()
231
-
232
- def __hash__(self):
233
- return hash(self.configs_path)
234
-
235
- def __eq__(self, other):
236
- return isinstance(other, TTS_Config) and self.configs_path == other.configs_path
237
-
238
-
239
- class TTS:
240
- def __init__(self, configs: Union[dict, str, TTS_Config]):
241
- if isinstance(configs, TTS_Config):
242
- self.configs = configs
243
- else:
244
- self.configs:TTS_Config = TTS_Config(configs)
245
-
246
- self.t2s_model:Text2SemanticLightningModule = None
247
- self.vits_model:SynthesizerTrn = None
248
- self.bert_tokenizer:AutoTokenizer = None
249
- self.bert_model:AutoModelForMaskedLM = None
250
- self.cnhuhbert_model:CNHubert = None
251
-
252
- self._init_models()
253
-
254
- self.text_preprocessor:TextPreprocessor = \
255
- TextPreprocessor(self.bert_model,
256
- self.bert_tokenizer,
257
- self.configs.device)
258
-
259
-
260
- self.prompt_cache:dict = {
261
- "ref_audio_path" : None,
262
- "prompt_semantic": None,
263
- "refer_spec" : [],
264
- "prompt_text" : None,
265
- "prompt_lang" : None,
266
- "phones" : None,
267
- "bert_features" : None,
268
- "norm_text" : None,
269
- "aux_ref_audio_paths": [],
270
- }
271
-
272
-
273
- self.stop_flag:bool = False
274
- self.precision:torch.dtype = torch.float16 if self.configs.is_half else torch.float32
275
-
276
- def _init_models(self,):
277
- self.init_t2s_weights(self.configs.t2s_weights_path)
278
- self.init_vits_weights(self.configs.vits_weights_path)
279
- self.init_bert_weights(self.configs.bert_base_path)
280
- self.init_cnhuhbert_weights(self.configs.cnhuhbert_base_path)
281
- # self.enable_half_precision(self.configs.is_half)
282
-
283
-
284
-
285
- def init_cnhuhbert_weights(self, base_path: str):
286
- print(f"Loading CNHuBERT weights from {base_path}")
287
- self.cnhuhbert_model = CNHubert(base_path)
288
- self.cnhuhbert_model=self.cnhuhbert_model.eval()
289
- self.cnhuhbert_model = self.cnhuhbert_model.to(self.configs.device)
290
- if self.configs.is_half and str(self.configs.device)!="cpu":
291
- self.cnhuhbert_model = self.cnhuhbert_model.half()
292
-
293
-
294
-
295
- def init_bert_weights(self, base_path: str):
296
- print(f"Loading BERT weights from {base_path}")
297
- self.bert_tokenizer = AutoTokenizer.from_pretrained(base_path)
298
- self.bert_model = AutoModelForMaskedLM.from_pretrained(base_path)
299
- self.bert_model=self.bert_model.eval()
300
- self.bert_model = self.bert_model.to(self.configs.device)
301
- if self.configs.is_half and str(self.configs.device)!="cpu":
302
- self.bert_model = self.bert_model.half()
303
-
304
- def init_vits_weights(self, weights_path: str):
305
- print(f"Loading VITS weights from {weights_path}")
306
- self.configs.vits_weights_path = weights_path
307
- dict_s2 = torch.load(weights_path, map_location=self.configs.device)
308
- hps = dict_s2["config"]
309
- if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
310
- self.configs.update_version("v1")
311
- else:
312
- self.configs.update_version("v2")
313
- self.configs.save_configs()
314
-
315
- hps["model"]["version"] = self.configs.version
316
- self.configs.filter_length = hps["data"]["filter_length"]
317
- self.configs.segment_size = hps["train"]["segment_size"]
318
- self.configs.sampling_rate = hps["data"]["sampling_rate"]
319
- self.configs.hop_length = hps["data"]["hop_length"]
320
- self.configs.win_length = hps["data"]["win_length"]
321
- self.configs.n_speakers = hps["data"]["n_speakers"]
322
- self.configs.semantic_frame_rate = "25hz"
323
- kwargs = hps["model"]
324
- vits_model = SynthesizerTrn(
325
- self.configs.filter_length // 2 + 1,
326
- self.configs.segment_size // self.configs.hop_length,
327
- n_speakers=self.configs.n_speakers,
328
- **kwargs
329
- )
330
-
331
- if hasattr(vits_model, "enc_q"):
332
- del vits_model.enc_q
333
-
334
- vits_model = vits_model.to(self.configs.device)
335
- vits_model = vits_model.eval()
336
- vits_model.load_state_dict(dict_s2["weight"], strict=False)
337
- self.vits_model = vits_model
338
- if self.configs.is_half and str(self.configs.device)!="cpu":
339
- self.vits_model = self.vits_model.half()
340
-
341
-
342
- def init_t2s_weights(self, weights_path: str):
343
- print(f"Loading Text2Semantic weights from {weights_path}")
344
- self.configs.t2s_weights_path = weights_path
345
- self.configs.save_configs()
346
- self.configs.hz = 50
347
- dict_s1 = torch.load(weights_path, map_location=self.configs.device)
348
- config = dict_s1["config"]
349
- self.configs.max_sec = config["data"]["max_sec"]
350
- t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
351
- t2s_model.load_state_dict(dict_s1["weight"])
352
- t2s_model = t2s_model.to(self.configs.device)
353
- t2s_model = t2s_model.eval()
354
- self.t2s_model = t2s_model
355
- if self.configs.is_half and str(self.configs.device)!="cpu":
356
- self.t2s_model = self.t2s_model.half()
357
-
358
- def enable_half_precision(self, enable: bool = True, save: bool = True):
359
- '''
360
- To enable half precision for the TTS model.
361
- Args:
362
- enable: bool, whether to enable half precision.
363
-
364
- '''
365
- if str(self.configs.device) == "cpu" and enable:
366
- print("Half precision is not supported on CPU.")
367
- return
368
-
369
- self.configs.is_half = enable
370
- self.precision = torch.float16 if enable else torch.float32
371
- if save:
372
- self.configs.save_configs()
373
- if enable:
374
- if self.t2s_model is not None:
375
- self.t2s_model =self.t2s_model.half()
376
- if self.vits_model is not None:
377
- self.vits_model = self.vits_model.half()
378
- if self.bert_model is not None:
379
- self.bert_model =self.bert_model.half()
380
- if self.cnhuhbert_model is not None:
381
- self.cnhuhbert_model = self.cnhuhbert_model.half()
382
- else:
383
- if self.t2s_model is not None:
384
- self.t2s_model = self.t2s_model.float()
385
- if self.vits_model is not None:
386
- self.vits_model = self.vits_model.float()
387
- if self.bert_model is not None:
388
- self.bert_model = self.bert_model.float()
389
- if self.cnhuhbert_model is not None:
390
- self.cnhuhbert_model = self.cnhuhbert_model.float()
391
-
392
- def set_device(self, device: torch.device, save: bool = True):
393
- '''
394
- To set the device for all models.
395
- Args:
396
- device: torch.device, the device to use for all models.
397
- '''
398
- self.configs.device = device
399
- if save:
400
- self.configs.save_configs()
401
- if self.t2s_model is not None:
402
- self.t2s_model = self.t2s_model.to(device)
403
- if self.vits_model is not None:
404
- self.vits_model = self.vits_model.to(device)
405
- if self.bert_model is not None:
406
- self.bert_model = self.bert_model.to(device)
407
- if self.cnhuhbert_model is not None:
408
- self.cnhuhbert_model = self.cnhuhbert_model.to(device)
409
-
410
- def set_ref_audio(self, ref_audio_path:str):
411
- '''
412
- To set the reference audio for the TTS model,
413
- including the prompt_semantic and refer_spepc.
414
- Args:
415
- ref_audio_path: str, the path of the reference audio.
416
- '''
417
- self._set_prompt_semantic(ref_audio_path)
418
- self._set_ref_spec(ref_audio_path)
419
- self._set_ref_audio_path(ref_audio_path)
420
-
421
- def _set_ref_audio_path(self, ref_audio_path):
422
- self.prompt_cache["ref_audio_path"] = ref_audio_path
423
-
424
- def _set_ref_spec(self, ref_audio_path):
425
- spec = self._get_ref_spec(ref_audio_path)
426
- if self.prompt_cache["refer_spec"] in [[],None]:
427
- self.prompt_cache["refer_spec"]=[spec]
428
- else:
429
- self.prompt_cache["refer_spec"][0] = spec
430
-
431
- def _get_ref_spec(self, ref_audio_path):
432
- audio = load_audio(ref_audio_path, int(self.configs.sampling_rate))
433
- audio = torch.FloatTensor(audio)
434
- maxx=audio.abs().max()
435
- if(maxx>1):audio/=min(2,maxx)
436
- audio_norm = audio
437
- audio_norm = audio_norm.unsqueeze(0)
438
- spec = spectrogram_torch(
439
- audio_norm,
440
- self.configs.filter_length,
441
- self.configs.sampling_rate,
442
- self.configs.hop_length,
443
- self.configs.win_length,
444
- center=False,
445
- )
446
- spec = spec.to(self.configs.device)
447
- if self.configs.is_half:
448
- spec = spec.half()
449
- return spec
450
-
451
- def _set_prompt_semantic(self, ref_wav_path:str):
452
- zero_wav = np.zeros(
453
- int(self.configs.sampling_rate * 0.3),
454
- dtype=np.float16 if self.configs.is_half else np.float32,
455
- )
456
- with torch.no_grad():
457
- wav16k, sr = librosa.load(ref_wav_path, sr=16000)
458
- if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
459
- raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
460
- wav16k = torch.from_numpy(wav16k)
461
- zero_wav_torch = torch.from_numpy(zero_wav)
462
- wav16k = wav16k.to(self.configs.device)
463
- zero_wav_torch = zero_wav_torch.to(self.configs.device)
464
- if self.configs.is_half:
465
- wav16k = wav16k.half()
466
- zero_wav_torch = zero_wav_torch.half()
467
-
468
- wav16k = torch.cat([wav16k, zero_wav_torch])
469
- hubert_feature = self.cnhuhbert_model.model(wav16k.unsqueeze(0))[
470
- "last_hidden_state"
471
- ].transpose(
472
- 1, 2
473
- ) # .float()
474
- codes = self.vits_model.extract_latent(hubert_feature)
475
-
476
- prompt_semantic = codes[0, 0].to(self.configs.device)
477
- self.prompt_cache["prompt_semantic"] = prompt_semantic
478
-
479
- def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length:int=None):
480
- seq = sequences[0]
481
- ndim = seq.dim()
482
- if axis < 0:
483
- axis += ndim
484
- dtype:torch.dtype = seq.dtype
485
- pad_value = torch.tensor(pad_value, dtype=dtype)
486
- seq_lengths = [seq.shape[axis] for seq in sequences]
487
- if max_length is None:
488
- max_length = max(seq_lengths)
489
- else:
490
- max_length = max(seq_lengths) if max_length < max(seq_lengths) else max_length
491
-
492
- padded_sequences = []
493
- for seq, length in zip(sequences, seq_lengths):
494
- padding = [0] * axis + [0, max_length - length] + [0] * (ndim - axis - 1)
495
- padded_seq = torch.nn.functional.pad(seq, padding, value=pad_value)
496
- padded_sequences.append(padded_seq)
497
- batch = torch.stack(padded_sequences)
498
- return batch
499
-
500
- def to_batch(self, data:list,
501
- prompt_data:dict=None,
502
- batch_size:int=5,
503
- threshold:float=0.75,
504
- split_bucket:bool=True,
505
- device:torch.device=torch.device("cpu"),
506
- precision:torch.dtype=torch.float32,
507
- ):
508
- _data:list = []
509
- index_and_len_list = []
510
- for idx, item in enumerate(data):
511
- norm_text_len = len(item["norm_text"])
512
- index_and_len_list.append([idx, norm_text_len])
513
-
514
- batch_index_list = []
515
- if split_bucket:
516
- index_and_len_list.sort(key=lambda x: x[1])
517
- index_and_len_list = np.array(index_and_len_list, dtype=np.int64)
518
-
519
- batch_index_list_len = 0
520
- pos = 0
521
- while pos <index_and_len_list.shape[0]:
522
- # batch_index_list.append(index_and_len_list[pos:min(pos+batch_size,len(index_and_len_list))])
523
- pos_end = min(pos+batch_size,index_and_len_list.shape[0])
524
- while pos < pos_end:
525
- batch=index_and_len_list[pos:pos_end, 1].astype(np.float32)
526
- score=batch[(pos_end-pos)//2]/(batch.mean()+1e-8)
527
- if (score>=threshold) or (pos_end-pos==1):
528
- batch_index=index_and_len_list[pos:pos_end, 0].tolist()
529
- batch_index_list_len += len(batch_index)
530
- batch_index_list.append(batch_index)
531
- pos = pos_end
532
- break
533
- pos_end=pos_end-1
534
-
535
- assert batch_index_list_len == len(data)
536
-
537
- else:
538
- for i in range(len(data)):
539
- if i%batch_size == 0:
540
- batch_index_list.append([])
541
- batch_index_list[-1].append(i)
542
-
543
-
544
- for batch_idx, index_list in enumerate(batch_index_list):
545
- item_list = [data[idx] for idx in index_list]
546
- phones_list = []
547
- phones_len_list = []
548
- # bert_features_list = []
549
- all_phones_list = []
550
- all_phones_len_list = []
551
- all_bert_features_list = []
552
- norm_text_batch = []
553
- all_bert_max_len = 0
554
- all_phones_max_len = 0
555
- for item in item_list:
556
- if prompt_data is not None:
557
- all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\
558
- .to(dtype=precision, device=device)
559
- all_phones = torch.LongTensor(prompt_data["phones"]+item["phones"]).to(device)
560
- phones = torch.LongTensor(item["phones"]).to(device)
561
- # norm_text = prompt_data["norm_text"]+item["norm_text"]
562
- else:
563
- all_bert_features = item["bert_features"]\
564
- .to(dtype=precision, device=device)
565
- phones = torch.LongTensor(item["phones"]).to(device)
566
- all_phones = phones
567
- # norm_text = item["norm_text"]
568
-
569
- all_bert_max_len = max(all_bert_max_len, all_bert_features.shape[-1])
570
- all_phones_max_len = max(all_phones_max_len, all_phones.shape[-1])
571
-
572
- phones_list.append(phones)
573
- phones_len_list.append(phones.shape[-1])
574
- all_phones_list.append(all_phones)
575
- all_phones_len_list.append(all_phones.shape[-1])
576
- all_bert_features_list.append(all_bert_features)
577
- norm_text_batch.append(item["norm_text"])
578
-
579
- phones_batch = phones_list
580
- all_phones_batch = all_phones_list
581
- all_bert_features_batch = all_bert_features_list
582
-
583
-
584
- max_len = max(all_bert_max_len, all_phones_max_len)
585
- # phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
586
- #### 直接对phones和bert_features进行pad。(padding策略会影响T2S模型生成的结果,但不直接影响复读概率。影响复读概率的主要因素是mask的策略)
587
- # all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len)
588
- # all_bert_features_batch = all_bert_features_list
589
- # all_bert_features_batch = torch.zeros((len(all_bert_features_list), 1024, max_len), dtype=precision, device=device)
590
- # for idx, item in enumerate(all_bert_features_list):
591
- # all_bert_features_batch[idx, :, : item.shape[-1]] = item
592
-
593
- # #### 先对phones进行embedding、对bert_features进行project,再pad到相同长度,(padding策略会影响T2S模型生成的结果,但不直接影响复读概率。影响复读概率的主要因素是mask的策略)
594
- # all_phones_list = [self.t2s_model.model.ar_text_embedding(item.to(self.t2s_model.device)) for item in all_phones_list]
595
- # all_phones_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) for item in all_phones_list]
596
- # all_phones_batch = torch.stack(all_phones_list, dim=0)
597
-
598
- # all_bert_features_list = [self.t2s_model.model.bert_proj(item.to(self.t2s_model.device).transpose(0, 1)) for item in all_bert_features_list]
599
- # all_bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) for item in all_bert_features_list]
600
- # all_bert_features_batch = torch.stack(all_bert_features_list, dim=0)
601
-
602
- batch = {
603
- "phones": phones_batch,
604
- "phones_len": torch.LongTensor(phones_len_list).to(device),
605
- "all_phones": all_phones_batch,
606
- "all_phones_len": torch.LongTensor(all_phones_len_list).to(device),
607
- "all_bert_features": all_bert_features_batch,
608
- "norm_text": norm_text_batch,
609
- "max_len": max_len,
610
- }
611
- _data.append(batch)
612
-
613
- return _data, batch_index_list
614
-
615
- def recovery_order(self, data:list, batch_index_list:list)->list:
616
- '''
617
- Recovery the order of the audio according to the batch_index_list.
618
-
619
- Args:
620
- data (List[list(np.ndarray)]): the out of order audio .
621
- batch_index_list (List[list[int]]): the batch index list.
622
-
623
- Returns:
624
- list (List[np.ndarray]): the data in the original order.
625
- '''
626
- length = len(sum(batch_index_list, []))
627
- _data = [None]*length
628
- for i, index_list in enumerate(batch_index_list):
629
- for j, index in enumerate(index_list):
630
- _data[index] = data[i][j]
631
- return _data
632
-
633
- def stop(self,):
634
- '''
635
- Stop the inference process.
636
- '''
637
- self.stop_flag = True
638
-
639
- @torch.no_grad()
640
- def run(self, inputs:dict):
641
- """
642
- Text to speech inference.
643
-
644
- Args:
645
- inputs (dict):
646
- {
647
- "text": "", # str.(required) text to be synthesized
648
- "text_lang: "", # str.(required) language of the text to be synthesized
649
- "ref_audio_path": "", # str.(required) reference audio path
650
- "aux_ref_audio_paths": [], # list.(optional) auxiliary reference audio paths for multi-speaker tone fusion
651
- "prompt_text": "", # str.(optional) prompt text for the reference audio
652
- "prompt_lang": "", # str.(required) language of the prompt text for the reference audio
653
- "top_k": 5, # int. top k sampling
654
- "top_p": 1, # float. top p sampling
655
- "temperature": 1, # float. temperature for sampling
656
- "text_split_method": "cut0", # str. text split method, see text_segmentation_method.py for details.
657
- "batch_size": 1, # int. batch size for inference
658
- "batch_threshold": 0.75, # float. threshold for batch splitting.
659
- "split_bucket: True, # bool. whether to split the batch into multiple buckets.
660
- "return_fragment": False, # bool. step by step return the audio fragment.
661
- "speed_factor":1.0, # float. control the speed of the synthesized audio.
662
- "fragment_interval":0.3, # float. to control the interval of the audio fragment.
663
- "seed": -1, # int. random seed for reproducibility.
664
- "parallel_infer": True, # bool. whether to use parallel inference.
665
- "repetition_penalty": 1.35 # float. repetition penalty for T2S model.
666
- }
667
- returns:
668
- Tuple[int, np.ndarray]: sampling rate and audio data.
669
- """
670
- ########## variables initialization ###########
671
- self.stop_flag:bool = False
672
- text:str = inputs.get("text", "")
673
- text_lang:str = inputs.get("text_lang", "")
674
- ref_audio_path:str = inputs.get("ref_audio_path", "")
675
- aux_ref_audio_paths:list = inputs.get("aux_ref_audio_paths", [])
676
- prompt_text:str = inputs.get("prompt_text", "")
677
- prompt_lang:str = inputs.get("prompt_lang", "")
678
- top_k:int = inputs.get("top_k", 5)
679
- top_p:float = inputs.get("top_p", 1)
680
- temperature:float = inputs.get("temperature", 1)
681
- text_split_method:str = inputs.get("text_split_method", "cut0")
682
- batch_size = inputs.get("batch_size", 1)
683
- batch_threshold = inputs.get("batch_threshold", 0.75)
684
- speed_factor = inputs.get("speed_factor", 1.0)
685
- split_bucket = inputs.get("split_bucket", True)
686
- return_fragment = inputs.get("return_fragment", False)
687
- fragment_interval = inputs.get("fragment_interval", 0.3)
688
- seed = inputs.get("seed", -1)
689
- seed = -1 if seed in ["", None] else seed
690
- actual_seed = set_seed(seed)
691
- parallel_infer = inputs.get("parallel_infer", True)
692
- repetition_penalty = inputs.get("repetition_penalty", 1.35)
693
-
694
- if parallel_infer:
695
- print(i18n("并行推理模式已开启"))
696
- self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_batch_infer
697
- else:
698
- print(i18n("并行推理模式已关闭"))
699
- self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_naive_batched
700
-
701
- if return_fragment:
702
- print(i18n("分段返回模式已开启"))
703
- if split_bucket:
704
- split_bucket = False
705
- print(i18n("分段返回模式不支持分桶处理,已自动关闭分桶处理"))
706
-
707
- if split_bucket and speed_factor==1.0:
708
- print(i18n("分桶处理模式已开启"))
709
- elif speed_factor!=1.0:
710
- print(i18n("语速调节不支持分桶处理,已自动关闭分桶处理"))
711
- split_bucket = False
712
- else:
713
- print(i18n("分桶处理模式已关闭"))
714
-
715
- if fragment_interval<0.01:
716
- fragment_interval = 0.01
717
- print(i18n("分段间隔过小,已自动设置为0.01"))
718
-
719
- no_prompt_text = False
720
- if prompt_text in [None, ""]:
721
- no_prompt_text = True
722
-
723
- assert text_lang in self.configs.languages
724
- if not no_prompt_text:
725
- assert prompt_lang in self.configs.languages
726
-
727
- if ref_audio_path in [None, ""] and \
728
- ((self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spec"] in [None, []])):
729
- raise ValueError("ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()")
730
-
731
- ###### setting reference audio and prompt text preprocessing ########
732
- t0 = ttime()
733
- if (ref_audio_path is not None) and (ref_audio_path != self.prompt_cache["ref_audio_path"]):
734
- if not os.path.exists(ref_audio_path):
735
- raise ValueError(f"{ref_audio_path} not exists")
736
- self.set_ref_audio(ref_audio_path)
737
-
738
- aux_ref_audio_paths = aux_ref_audio_paths if aux_ref_audio_paths is not None else []
739
- paths = set(aux_ref_audio_paths)&set(self.prompt_cache["aux_ref_audio_paths"])
740
- if not (len(list(paths)) == len(aux_ref_audio_paths) == len(self.prompt_cache["aux_ref_audio_paths"])):
741
- self.prompt_cache["aux_ref_audio_paths"] = aux_ref_audio_paths
742
- self.prompt_cache["refer_spec"] = [self.prompt_cache["refer_spec"][0]]
743
- for path in aux_ref_audio_paths:
744
- if path in [None, ""]:
745
- continue
746
- if not os.path.exists(path):
747
- print(i18n("音频文件不存在,跳过:{}").format(path))
748
- continue
749
- self.prompt_cache["refer_spec"].append(self._get_ref_spec(path))
750
-
751
- if not no_prompt_text:
752
- prompt_text = prompt_text.strip("\n")
753
- if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_lang != "en" else "."
754
- print(i18n("实际输入的参考文本:"), prompt_text)
755
- if self.prompt_cache["prompt_text"] != prompt_text:
756
- self.prompt_cache["prompt_text"] = prompt_text
757
- self.prompt_cache["prompt_lang"] = prompt_lang
758
- phones, bert_features, norm_text = \
759
- self.text_preprocessor.segment_and_extract_feature_for_text(
760
- prompt_text,
761
- prompt_lang,
762
- self.configs.version)
763
- self.prompt_cache["phones"] = phones
764
- self.prompt_cache["bert_features"] = bert_features
765
- self.prompt_cache["norm_text"] = norm_text
766
-
767
-
768
-
769
-
770
- ###### text preprocessing ########
771
- t1 = ttime()
772
- data:list = None
773
- if not return_fragment:
774
- data = self.text_preprocessor.preprocess(text, text_lang, text_split_method, self.configs.version)
775
- if len(data) == 0:
776
- yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
777
- dtype=np.int16)
778
- return
779
-
780
- batch_index_list:list = None
781
- data, batch_index_list = self.to_batch(data,
782
- prompt_data=self.prompt_cache if not no_prompt_text else None,
783
- batch_size=batch_size,
784
- threshold=batch_threshold,
785
- split_bucket=split_bucket,
786
- device=self.configs.device,
787
- precision=self.precision
788
- )
789
- else:
790
- print(i18n("############ 切分文本 ############"))
791
- texts = self.text_preprocessor.pre_seg_text(text, text_lang, text_split_method)
792
- data = []
793
- for i in range(len(texts)):
794
- if i%batch_size == 0:
795
- data.append([])
796
- data[-1].append(texts[i])
797
-
798
- def make_batch(batch_texts):
799
- batch_data = []
800
- print(i18n("############ 提取文本Bert特征 ############"))
801
- for text in tqdm(batch_texts):
802
- phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(text, text_lang, self.configs.version)
803
- if phones is None:
804
- continue
805
- res={
806
- "phones": phones,
807
- "bert_features": bert_features,
808
- "norm_text": norm_text,
809
- }
810
- batch_data.append(res)
811
- if len(batch_data) == 0:
812
- return None
813
- batch, _ = self.to_batch(batch_data,
814
- prompt_data=self.prompt_cache if not no_prompt_text else None,
815
- batch_size=batch_size,
816
- threshold=batch_threshold,
817
- split_bucket=False,
818
- device=self.configs.device,
819
- precision=self.precision
820
- )
821
- return batch[0]
822
-
823
-
824
- t2 = ttime()
825
- try:
826
- print("############ 推理 ############")
827
- ###### inference ######
828
- t_34 = 0.0
829
- t_45 = 0.0
830
- audio = []
831
- for item in data:
832
- t3 = ttime()
833
- if return_fragment:
834
- item = make_batch(item)
835
- if item is None:
836
- continue
837
-
838
- batch_phones:List[torch.LongTensor] = item["phones"]
839
- # batch_phones:torch.LongTensor = item["phones"]
840
- batch_phones_len:torch.LongTensor = item["phones_len"]
841
- all_phoneme_ids:torch.LongTensor = item["all_phones"]
842
- all_phoneme_lens:torch.LongTensor = item["all_phones_len"]
843
- all_bert_features:torch.LongTensor = item["all_bert_features"]
844
- norm_text:str = item["norm_text"]
845
- max_len = item["max_len"]
846
-
847
- print(i18n("前端处理后的文本(每句):"), norm_text)
848
- if no_prompt_text :
849
- prompt = None
850
- else:
851
- prompt = self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(self.configs.device)
852
-
853
-
854
- pred_semantic_list, idx_list = self.t2s_model.model.infer_panel(
855
- all_phoneme_ids,
856
- all_phoneme_lens,
857
- prompt,
858
- all_bert_features,
859
- # prompt_phone_len=ph_offset,
860
- top_k=top_k,
861
- top_p=top_p,
862
- temperature=temperature,
863
- early_stop_num=self.configs.hz * self.configs.max_sec,
864
- max_len=max_len,
865
- repetition_penalty=repetition_penalty,
866
- )
867
- t4 = ttime()
868
- t_34 += t4 - t3
869
-
870
- refer_audio_spec:torch.Tensor = [item.to(dtype=self.precision, device=self.configs.device) for item in self.prompt_cache["refer_spec"]]
871
-
872
-
873
- batch_audio_fragment = []
874
-
875
- # ## vits并行推理 method 1
876
- # pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
877
- # pred_semantic_len = torch.LongTensor([item.shape[0] for item in pred_semantic_list]).to(self.configs.device)
878
- # pred_semantic = self.batch_sequences(pred_semantic_list, axis=0, pad_value=0).unsqueeze(0)
879
- # max_len = 0
880
- # for i in range(0, len(batch_phones)):
881
- # max_len = max(max_len, batch_phones[i].shape[-1])
882
- # batch_phones = self.batch_sequences(batch_phones, axis=0, pad_value=0, max_length=max_len)
883
- # batch_phones = batch_phones.to(self.configs.device)
884
- # batch_audio_fragment = (self.vits_model.batched_decode(
885
- # pred_semantic, pred_semantic_len, batch_phones, batch_phones_len,refer_audio_spec
886
- # ))
887
-
888
- if speed_factor == 1.0:
889
- # ## vits并行推理 method 2
890
- pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
891
- upsample_rate = math.prod(self.vits_model.upsample_rates)
892
- audio_frag_idx = [pred_semantic_list[i].shape[0]*2*upsample_rate for i in range(0, len(pred_semantic_list))]
893
- audio_frag_end_idx = [ sum(audio_frag_idx[:i+1]) for i in range(0, len(audio_frag_idx))]
894
- all_pred_semantic = torch.cat(pred_semantic_list).unsqueeze(0).unsqueeze(0).to(self.configs.device)
895
- _batch_phones = torch.cat(batch_phones).unsqueeze(0).to(self.configs.device)
896
- _batch_audio_fragment = (self.vits_model.decode(
897
- all_pred_semantic, _batch_phones, refer_audio_spec, speed=speed_factor
898
- ).detach()[0, 0, :])
899
- audio_frag_end_idx.insert(0, 0)
900
- batch_audio_fragment= [_batch_audio_fragment[audio_frag_end_idx[i-1]:audio_frag_end_idx[i]] for i in range(1, len(audio_frag_end_idx))]
901
- else:
902
- # ## vits串行推理
903
- for i, idx in enumerate(idx_list):
904
- phones = batch_phones[i].unsqueeze(0).to(self.configs.device)
905
- _pred_semantic = (pred_semantic_list[i][-idx:].unsqueeze(0).unsqueeze(0)) # .unsqueeze(0)#mq要多unsqueeze一次
906
- audio_fragment =(self.vits_model.decode(
907
- _pred_semantic, phones, refer_audio_spec, speed=speed_factor
908
- ).detach()[0, 0, :])
909
- batch_audio_fragment.append(
910
- audio_fragment
911
- ) ###试试重建不带上prompt部分
912
-
913
- t5 = ttime()
914
- t_45 += t5 - t4
915
- if return_fragment:
916
- print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t4 - t3, t5 - t4))
917
- yield self.audio_postprocess([batch_audio_fragment],
918
- self.configs.sampling_rate,
919
- None,
920
- speed_factor,
921
- False,
922
- fragment_interval
923
- )
924
- else:
925
- audio.append(batch_audio_fragment)
926
-
927
- if self.stop_flag:
928
- yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
929
- dtype=np.int16)
930
- return
931
-
932
- if not return_fragment:
933
- print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t_34, t_45))
934
- if len(audio) == 0:
935
- yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
936
- dtype=np.int16)
937
- return
938
- yield self.audio_postprocess(audio,
939
- self.configs.sampling_rate,
940
- batch_index_list,
941
- speed_factor,
942
- split_bucket,
943
- fragment_interval
944
- )
945
-
946
- except Exception as e:
947
- traceback.print_exc()
948
- # 必须返回一个空音频, 否则会导致显存不释放。
949
- yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
950
- dtype=np.int16)
951
- # 重置模型, 否则会导致显存释放不完全。
952
- del self.t2s_model
953
- del self.vits_model
954
- self.t2s_model = None
955
- self.vits_model = None
956
- self.init_t2s_weights(self.configs.t2s_weights_path)
957
- self.init_vits_weights(self.configs.vits_weights_path)
958
- raise e
959
- finally:
960
- self.empty_cache()
961
-
962
- def empty_cache(self):
963
- try:
964
- gc.collect() # 触发gc的垃圾回收。避免内存一直增长。
965
- if "cuda" in str(self.configs.device):
966
- torch.cuda.empty_cache()
967
- elif str(self.configs.device) == "mps":
968
- torch.mps.empty_cache()
969
- except:
970
- pass
971
-
972
- def audio_postprocess(self,
973
- audio:List[torch.Tensor],
974
- sr:int,
975
- batch_index_list:list=None,
976
- speed_factor:float=1.0,
977
- split_bucket:bool=True,
978
- fragment_interval:float=0.3
979
- )->Tuple[int, np.ndarray]:
980
- zero_wav = torch.zeros(
981
- int(self.configs.sampling_rate * fragment_interval),
982
- dtype=self.precision,
983
- device=self.configs.device
984
- )
985
-
986
- for i, batch in enumerate(audio):
987
- for j, audio_fragment in enumerate(batch):
988
- max_audio=torch.abs(audio_fragment).max()#简单防止16bit爆音
989
- if max_audio>1: audio_fragment/=max_audio
990
- audio_fragment:torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0)
991
- audio[i][j] = audio_fragment.cpu().numpy()
992
-
993
-
994
- if split_bucket:
995
- audio = self.recovery_order(audio, batch_index_list)
996
- else:
997
- # audio = [item for batch in audio for item in batch]
998
- audio = sum(audio, [])
999
-
1000
-
1001
- audio = np.concatenate(audio, 0)
1002
- audio = (audio * 32768).astype(np.int16)
1003
-
1004
- # try:
1005
- # if speed_factor != 1.0:
1006
- # audio = speed_change(audio, speed=speed_factor, sr=int(sr))
1007
- # except Exception as e:
1008
- # print(f"Failed to change speed of audio: \n{e}")
1009
-
1010
- return sr, audio
1011
-
1012
-
1013
-
1014
-
1015
- def speed_change(input_audio:np.ndarray, speed:float, sr:int):
1016
- # 将 NumPy 数组转换为原始 PCM 流
1017
- raw_audio = input_audio.astype(np.int16).tobytes()
1018
-
1019
- # 设置 ffmpeg 输入流
1020
- input_stream = ffmpeg.input('pipe:', format='s16le', acodec='pcm_s16le', ar=str(sr), ac=1)
1021
-
1022
- # 变速处理
1023
- output_stream = input_stream.filter('atempo', speed)
1024
-
1025
- # 输出流到管道
1026
- out, _ = (
1027
- output_stream.output('pipe:', format='s16le', acodec='pcm_s16le')
1028
- .run(input=raw_audio, capture_stdout=True, capture_stderr=True)
1029
- )
1030
-
1031
- # 将管道输出解码为 NumPy 数组
1032
- processed_audio = np.frombuffer(out, np.int16)
1033
-
1034
- return processed_audio
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/TTS_infer_pack/TextPreprocessor.py DELETED
@@ -1,244 +0,0 @@
1
-
2
- import os, sys
3
-
4
- from tqdm import tqdm
5
- now_dir = os.getcwd()
6
- sys.path.append(now_dir)
7
-
8
- import re
9
- import torch
10
- import LangSegment
11
- from text import chinese
12
- from typing import Dict, List, Tuple
13
- from text.cleaner import clean_text
14
- from text import cleaned_text_to_sequence
15
- from transformers import AutoModelForMaskedLM, AutoTokenizer
16
- from TTS_infer_pack.text_segmentation_method import split_big_text, splits, get_method as get_seg_method
17
-
18
- from tools.i18n.i18n import I18nAuto, scan_language_list
19
-
20
- language=os.environ.get("language","Auto")
21
- language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
22
- i18n = I18nAuto(language=language)
23
- punctuation = set(['!', '?', '…', ',', '.', '-'," "])
24
-
25
- def get_first(text:str) -> str:
26
- pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
27
- text = re.split(pattern, text)[0].strip()
28
- return text
29
-
30
- def merge_short_text_in_array(texts:str, threshold:int) -> list:
31
- if (len(texts)) < 2:
32
- return texts
33
- result = []
34
- text = ""
35
- for ele in texts:
36
- text += ele
37
- if len(text) >= threshold:
38
- result.append(text)
39
- text = ""
40
- if (len(text) > 0):
41
- if len(result) == 0:
42
- result.append(text)
43
- else:
44
- result[len(result) - 1] += text
45
- return result
46
-
47
-
48
-
49
-
50
-
51
- class TextPreprocessor:
52
- def __init__(self, bert_model:AutoModelForMaskedLM,
53
- tokenizer:AutoTokenizer, device:torch.device):
54
- self.bert_model = bert_model
55
- self.tokenizer = tokenizer
56
- self.device = device
57
-
58
- def preprocess(self, text:str, lang:str, text_split_method:str, version:str="v2")->List[Dict]:
59
- print(i18n("############ 切分文本 ############"))
60
- text = self.replace_consecutive_punctuation(text)
61
- texts = self.pre_seg_text(text, lang, text_split_method)
62
- result = []
63
- print(i18n("############ 提取文本Bert特征 ############"))
64
- for text in tqdm(texts):
65
- phones, bert_features, norm_text = self.segment_and_extract_feature_for_text(text, lang, version)
66
- if phones is None or norm_text=="":
67
- continue
68
- res={
69
- "phones": phones,
70
- "bert_features": bert_features,
71
- "norm_text": norm_text,
72
- }
73
- result.append(res)
74
- return result
75
-
76
- def pre_seg_text(self, text:str, lang:str, text_split_method:str):
77
- text = text.strip("\n")
78
- if len(text) == 0:
79
- return []
80
- if (text[0] not in splits and len(get_first(text)) < 4):
81
- text = "。" + text if lang != "en" else "." + text
82
- print(i18n("实际输入的目标文本:"))
83
- print(text)
84
-
85
- seg_method = get_seg_method(text_split_method)
86
- text = seg_method(text)
87
-
88
- while "\n\n" in text:
89
- text = text.replace("\n\n", "\n")
90
-
91
- _texts = text.split("\n")
92
- _texts = self.filter_text(_texts)
93
- _texts = merge_short_text_in_array(_texts, 5)
94
- texts = []
95
-
96
-
97
- for text in _texts:
98
- # 解决输入目标文本的空行导致报错的问题
99
- if (len(text.strip()) == 0):
100
- continue
101
- if not re.sub("\W+", "", text):
102
- # 检测一下,如果是纯符号,就跳过。
103
- continue
104
- if (text[-1] not in splits): text += "。" if lang != "en" else "."
105
-
106
- # 解决句子过长导致Bert报错的问题
107
- if (len(text) > 510):
108
- texts.extend(split_big_text(text))
109
- else:
110
- texts.append(text)
111
-
112
- print(i18n("实际输入的目标文本(切句后):"))
113
- print(texts)
114
- return texts
115
-
116
- def segment_and_extract_feature_for_text(self, text:str, language:str, version:str="v1")->Tuple[list, torch.Tensor, str]:
117
- return self.get_phones_and_bert(text, language, version)
118
-
119
- def get_phones_and_bert(self, text:str, language:str, version:str, final:bool=False):
120
- if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}:
121
- language = language.replace("all_","")
122
- if language == "en":
123
- LangSegment.setfilters(["en"])
124
- formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
125
- else:
126
- # 因无法区别中日韩文汉字,以用户输入为准
127
- formattext = text
128
- while " " in formattext:
129
- formattext = formattext.replace(" ", " ")
130
- if language == "zh":
131
- if re.search(r'[A-Za-z]', formattext):
132
- formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
133
- formattext = chinese.mix_text_normalize(formattext)
134
- return self.get_phones_and_bert(formattext,"zh",version)
135
- else:
136
- phones, word2ph, norm_text = self.clean_text_inf(formattext, language, version)
137
- bert = self.get_bert_feature(norm_text, word2ph).to(self.device)
138
- elif language == "yue" and re.search(r'[A-Za-z]', formattext):
139
- formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
140
- formattext = chinese.mix_text_normalize(formattext)
141
- return self.get_phones_and_bert(formattext,"yue",version)
142
- else:
143
- phones, word2ph, norm_text = self.clean_text_inf(formattext, language, version)
144
- bert = torch.zeros(
145
- (1024, len(phones)),
146
- dtype=torch.float32,
147
- ).to(self.device)
148
- elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}:
149
- textlist=[]
150
- langlist=[]
151
- LangSegment.setfilters(["zh","ja","en","ko"])
152
- if language == "auto":
153
- for tmp in LangSegment.getTexts(text):
154
- langlist.append(tmp["lang"])
155
- textlist.append(tmp["text"])
156
- elif language == "auto_yue":
157
- for tmp in LangSegment.getTexts(text):
158
- if tmp["lang"] == "zh":
159
- tmp["lang"] = "yue"
160
- langlist.append(tmp["lang"])
161
- textlist.append(tmp["text"])
162
- else:
163
- for tmp in LangSegment.getTexts(text):
164
- if tmp["lang"] == "en":
165
- langlist.append(tmp["lang"])
166
- else:
167
- # 因无法区别中日韩文汉字,以用户输入为准
168
- langlist.append(language)
169
- textlist.append(tmp["text"])
170
- # print(textlist)
171
- # print(langlist)
172
- phones_list = []
173
- bert_list = []
174
- norm_text_list = []
175
- for i in range(len(textlist)):
176
- lang = langlist[i]
177
- phones, word2ph, norm_text = self.clean_text_inf(textlist[i], lang, version)
178
- bert = self.get_bert_inf(phones, word2ph, norm_text, lang)
179
- phones_list.append(phones)
180
- norm_text_list.append(norm_text)
181
- bert_list.append(bert)
182
- bert = torch.cat(bert_list, dim=1)
183
- phones = sum(phones_list, [])
184
- norm_text = ''.join(norm_text_list)
185
-
186
- if not final and len(phones) < 6:
187
- return self.get_phones_and_bert("." + text,language,version,final=True)
188
-
189
- return phones, bert, norm_text
190
-
191
-
192
- def get_bert_feature(self, text:str, word2ph:list)->torch.Tensor:
193
- with torch.no_grad():
194
- inputs = self.tokenizer(text, return_tensors="pt")
195
- for i in inputs:
196
- inputs[i] = inputs[i].to(self.device)
197
- res = self.bert_model(**inputs, output_hidden_states=True)
198
- res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
199
- assert len(word2ph) == len(text)
200
- phone_level_feature = []
201
- for i in range(len(word2ph)):
202
- repeat_feature = res[i].repeat(word2ph[i], 1)
203
- phone_level_feature.append(repeat_feature)
204
- phone_level_feature = torch.cat(phone_level_feature, dim=0)
205
- return phone_level_feature.T
206
-
207
- def clean_text_inf(self, text:str, language:str, version:str="v2"):
208
- phones, word2ph, norm_text = clean_text(text, language, version)
209
- phones = cleaned_text_to_sequence(phones, version)
210
- return phones, word2ph, norm_text
211
-
212
- def get_bert_inf(self, phones:list, word2ph:list, norm_text:str, language:str):
213
- language=language.replace("all_","")
214
- if language == "zh":
215
- feature = self.get_bert_feature(norm_text, word2ph).to(self.device)
216
- else:
217
- feature = torch.zeros(
218
- (1024, len(phones)),
219
- dtype=torch.float32,
220
- ).to(self.device)
221
-
222
- return feature
223
-
224
-
225
- def filter_text(self,texts):
226
- _text=[]
227
- if all(text in [None, " ", "\n",""] for text in texts):
228
- raise ValueError(i18n("请输入有效文本"))
229
- for text in texts:
230
- if text in [None, " ", ""]:
231
- pass
232
- else:
233
- _text.append(text)
234
- return _text
235
-
236
-
237
- def replace_consecutive_punctuation(self,text):
238
- punctuations = ''.join(re.escape(p) for p in punctuation)
239
- pattern = f'([{punctuations}])([{punctuations}])+'
240
- result = re.sub(pattern, r'\1', text)
241
- return result
242
-
243
-
244
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/TTS_infer_pack/__init__.py DELETED
@@ -1 +0,0 @@
1
- from . import TTS, text_segmentation_method
 
 
GPT_SoVITS/TTS_infer_pack/text_segmentation_method.py DELETED
@@ -1,173 +0,0 @@
1
-
2
-
3
-
4
-
5
- import re
6
- from typing import Callable
7
-
8
- punctuation = set(['!', '?', '…', ',', '.', '-'," "])
9
- METHODS = dict()
10
-
11
- def get_method(name:str)->Callable:
12
- method = METHODS.get(name, None)
13
- if method is None:
14
- raise ValueError(f"Method {name} not found")
15
- return method
16
-
17
- def get_method_names()->list:
18
- return list(METHODS.keys())
19
-
20
- def register_method(name):
21
- def decorator(func):
22
- METHODS[name] = func
23
- return func
24
- return decorator
25
-
26
- splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
27
-
28
- def split_big_text(text, max_len=510):
29
- # 定义全角和半角标点符号
30
- punctuation = "".join(splits)
31
-
32
- # 切割文本
33
- segments = re.split('([' + punctuation + '])', text)
34
-
35
- # 初始化结果列表和当前片段
36
- result = []
37
- current_segment = ''
38
-
39
- for segment in segments:
40
- # 如果当前片段加上新的片段长度超过max_len,就将当前片段加入结果列表,并重置当前片段
41
- if len(current_segment + segment) > max_len:
42
- result.append(current_segment)
43
- current_segment = segment
44
- else:
45
- current_segment += segment
46
-
47
- # 将最后一个片段加入结果列表
48
- if current_segment:
49
- result.append(current_segment)
50
-
51
- return result
52
-
53
-
54
-
55
- def split(todo_text):
56
- todo_text = todo_text.replace("……", "。").replace("——", ",")
57
- if todo_text[-1] not in splits:
58
- todo_text += "。"
59
- i_split_head = i_split_tail = 0
60
- len_text = len(todo_text)
61
- todo_texts = []
62
- while 1:
63
- if i_split_head >= len_text:
64
- break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
65
- if todo_text[i_split_head] in splits:
66
- i_split_head += 1
67
- todo_texts.append(todo_text[i_split_tail:i_split_head])
68
- i_split_tail = i_split_head
69
- else:
70
- i_split_head += 1
71
- return todo_texts
72
-
73
-
74
- # 不切
75
- @register_method("cut0")
76
- def cut0(inp):
77
- if not set(inp).issubset(punctuation):
78
- return inp
79
- else:
80
- return "/n"
81
-
82
-
83
- # 凑四句一切
84
- @register_method("cut1")
85
- def cut1(inp):
86
- inp = inp.strip("\n")
87
- inps = split(inp)
88
- split_idx = list(range(0, len(inps), 4))
89
- split_idx[-1] = None
90
- if len(split_idx) > 1:
91
- opts = []
92
- for idx in range(len(split_idx) - 1):
93
- opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
94
- else:
95
- opts = [inp]
96
- opts = [item for item in opts if not set(item).issubset(punctuation)]
97
- return "\n".join(opts)
98
-
99
-
100
- # 凑50字一切
101
- @register_method("cut2")
102
- def cut2(inp):
103
- inp = inp.strip("\n")
104
- inps = split(inp)
105
- if len(inps) < 2:
106
- return inp
107
- opts = []
108
- summ = 0
109
- tmp_str = ""
110
- for i in range(len(inps)):
111
- summ += len(inps[i])
112
- tmp_str += inps[i]
113
- if summ > 50:
114
- summ = 0
115
- opts.append(tmp_str)
116
- tmp_str = ""
117
- if tmp_str != "":
118
- opts.append(tmp_str)
119
- # print(opts)
120
- if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
121
- opts[-2] = opts[-2] + opts[-1]
122
- opts = opts[:-1]
123
- opts = [item for item in opts if not set(item).issubset(punctuation)]
124
- return "\n".join(opts)
125
-
126
- # 按中文句号。切
127
- @register_method("cut3")
128
- def cut3(inp):
129
- inp = inp.strip("\n")
130
- opts = ["%s" % item for item in inp.strip("。").split("。")]
131
- opts = [item for item in opts if not set(item).issubset(punctuation)]
132
- return "\n".join(opts)
133
-
134
- #按英文句号.切
135
- @register_method("cut4")
136
- def cut4(inp):
137
- inp = inp.strip("\n")
138
- opts = ["%s" % item for item in inp.strip(".").split(".")]
139
- opts = [item for item in opts if not set(item).issubset(punctuation)]
140
- return "\n".join(opts)
141
-
142
- # 按标点符号切
143
- # contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
144
- @register_method("cut5")
145
- def cut5(inp):
146
- inp = inp.strip("\n")
147
- punds = {',', '.', ';', '?', '!', '、', ',', '。', '?', '!', ';', ':', '…'}
148
- mergeitems = []
149
- items = []
150
-
151
- for i, char in enumerate(inp):
152
- if char in punds:
153
- if char == '.' and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit():
154
- items.append(char)
155
- else:
156
- items.append(char)
157
- mergeitems.append("".join(items))
158
- items = []
159
- else:
160
- items.append(char)
161
-
162
- if items:
163
- mergeitems.append("".join(items))
164
-
165
- opt = [item for item in mergeitems if not set(item).issubset(punds)]
166
- return "\n".join(opt)
167
-
168
-
169
-
170
- if __name__ == '__main__':
171
- method = get_method("cut5")
172
- print(method("你好,我是小明。你好,我是小红。你好,我是小刚。你好,我是小张。"))
173
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/configs/.gitignore DELETED
@@ -1 +0,0 @@
1
- *.yaml
 
 
GPT_SoVITS/configs/s2.json DELETED
@@ -1,90 +0,0 @@
1
- {
2
- "train": {
3
- "log_interval": 100,
4
- "eval_interval": 500,
5
- "seed": 1234,
6
- "epochs": 100,
7
- "learning_rate": 0.0001,
8
- "betas": [
9
- 0.8,
10
- 0.99
11
- ],
12
- "eps": 1e-09,
13
- "batch_size": 32,
14
- "fp16_run": true,
15
- "lr_decay": 0.999875,
16
- "segment_size": 20480,
17
- "init_lr_ratio": 1,
18
- "warmup_epochs": 0,
19
- "c_mel": 45,
20
- "c_kl": 1.0,
21
- "text_low_lr_rate": 0.4
22
- },
23
- "data": {
24
- "max_wav_value": 32768.0,
25
- "sampling_rate": 32000,
26
- "filter_length": 2048,
27
- "hop_length": 640,
28
- "win_length": 2048,
29
- "n_mel_channels": 128,
30
- "mel_fmin": 0.0,
31
- "mel_fmax": null,
32
- "add_blank": true,
33
- "n_speakers": 300,
34
- "cleaned_text": true
35
- },
36
- "model": {
37
- "inter_channels": 192,
38
- "hidden_channels": 192,
39
- "filter_channels": 768,
40
- "n_heads": 2,
41
- "n_layers": 6,
42
- "kernel_size": 3,
43
- "p_dropout": 0.1,
44
- "resblock": "1",
45
- "resblock_kernel_sizes": [
46
- 3,
47
- 7,
48
- 11
49
- ],
50
- "resblock_dilation_sizes": [
51
- [
52
- 1,
53
- 3,
54
- 5
55
- ],
56
- [
57
- 1,
58
- 3,
59
- 5
60
- ],
61
- [
62
- 1,
63
- 3,
64
- 5
65
- ]
66
- ],
67
- "upsample_rates": [
68
- 10,
69
- 8,
70
- 2,
71
- 2,
72
- 2
73
- ],
74
- "upsample_initial_channel": 512,
75
- "upsample_kernel_sizes": [
76
- 16,
77
- 16,
78
- 8,
79
- 2,
80
- 2
81
- ],
82
- "n_layers_q": 3,
83
- "use_spectral_norm": false,
84
- "gin_channels": 512,
85
- "semantic_frame_rate": "25hz",
86
- "freeze_quantizer": true
87
- },
88
- "s2_ckpt_dir": "logs/s2/big2k1",
89
- "content_module": "cnhubert"
90
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/download.py DELETED
@@ -1,5 +0,0 @@
1
- import os, sys
2
- now_dir = os.getcwd()
3
- sys.path.insert(0, now_dir)
4
- from text.g2pw import G2PWPinyin
5
- g2pw = G2PWPinyin(model_dir="GPT_SoVITS/text/G2PWModel",model_source="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",v_to_u=False, neutral_tone_with_five=True)
 
 
 
 
 
 
GPT_SoVITS/feature_extractor/__init__.py DELETED
@@ -1,6 +0,0 @@
1
- from . import cnhubert, whisper_enc
2
-
3
- content_module_map = {
4
- 'cnhubert': cnhubert,
5
- 'whisper': whisper_enc
6
- }
 
 
 
 
 
 
 
GPT_SoVITS/feature_extractor/cnhubert.py DELETED
@@ -1,111 +0,0 @@
1
- import time
2
-
3
- import librosa
4
- import torch
5
- import torch.nn.functional as F
6
- import soundfile as sf
7
- import os
8
- from transformers import logging as tf_logging
9
- tf_logging.set_verbosity_error()
10
-
11
- import logging
12
- logging.getLogger("numba").setLevel(logging.WARNING)
13
-
14
- from transformers import (
15
- Wav2Vec2FeatureExtractor,
16
- HubertModel,
17
- )
18
-
19
- import utils
20
- import torch.nn as nn
21
-
22
- cnhubert_base_path = None
23
-
24
-
25
- class CNHubert(nn.Module):
26
- def __init__(self, base_path:str=None):
27
- super().__init__()
28
- if base_path is None:
29
- base_path = cnhubert_base_path
30
- if os.path.exists(base_path):...
31
- else:raise FileNotFoundError(base_path)
32
- self.model = HubertModel.from_pretrained(base_path, local_files_only=True)
33
- self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
34
- base_path, local_files_only=True
35
- )
36
-
37
- def forward(self, x):
38
- input_values = self.feature_extractor(
39
- x, return_tensors="pt", sampling_rate=16000
40
- ).input_values.to(x.device)
41
- feats = self.model(input_values)["last_hidden_state"]
42
- return feats
43
-
44
-
45
- # class CNHubertLarge(nn.Module):
46
- # def __init__(self):
47
- # super().__init__()
48
- # self.model = HubertModel.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-hubert-large")
49
- # self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-hubert-large")
50
- # def forward(self, x):
51
- # input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device)
52
- # feats = self.model(input_values)["last_hidden_state"]
53
- # return feats
54
- #
55
- # class CVec(nn.Module):
56
- # def __init__(self):
57
- # super().__init__()
58
- # self.model = HubertModel.from_pretrained("/data/docker/liujing04/vc-webui-big/hubert_base")
59
- # self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("/data/docker/liujing04/vc-webui-big/hubert_base")
60
- # def forward(self, x):
61
- # input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device)
62
- # feats = self.model(input_values)["last_hidden_state"]
63
- # return feats
64
- #
65
- # class cnw2v2base(nn.Module):
66
- # def __init__(self):
67
- # super().__init__()
68
- # self.model = Wav2Vec2Model.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-wav2vec2-base")
69
- # self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-wav2vec2-base")
70
- # def forward(self, x):
71
- # input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device)
72
- # feats = self.model(input_values)["last_hidden_state"]
73
- # return feats
74
-
75
-
76
- def get_model():
77
- model = CNHubert()
78
- model.eval()
79
- return model
80
-
81
-
82
- # def get_large_model():
83
- # model = CNHubertLarge()
84
- # model.eval()
85
- # return model
86
- #
87
- # def get_model_cvec():
88
- # model = CVec()
89
- # model.eval()
90
- # return model
91
- #
92
- # def get_model_cnw2v2base():
93
- # model = cnw2v2base()
94
- # model.eval()
95
- # return model
96
-
97
-
98
- def get_content(hmodel, wav_16k_tensor):
99
- with torch.no_grad():
100
- feats = hmodel(wav_16k_tensor)
101
- return feats.transpose(1, 2)
102
-
103
-
104
- if __name__ == "__main__":
105
- model = get_model()
106
- src_path = "/Users/Shared/原音频2.wav"
107
- wav_16k_tensor = utils.load_wav_to_torch_and_resample(src_path, 16000)
108
- model = model
109
- wav_16k_tensor = wav_16k_tensor
110
- feats = get_content(model, wav_16k_tensor)
111
- print(feats.shape)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/feature_extractor/whisper_enc.py DELETED
@@ -1,25 +0,0 @@
1
- import torch
2
-
3
-
4
- def get_model():
5
- import whisper
6
-
7
- model = whisper.load_model("small", device="cpu")
8
-
9
- return model.encoder
10
-
11
-
12
- def get_content(model=None, wav_16k_tensor=None):
13
- from whisper import log_mel_spectrogram, pad_or_trim
14
-
15
- dev = next(model.parameters()).device
16
- mel = log_mel_spectrogram(wav_16k_tensor).to(dev)[:, :3000]
17
- # if torch.cuda.is_available():
18
- # mel = mel.to(torch.float16)
19
- feature_len = mel.shape[-1] // 2
20
- assert mel.shape[-1] < 3000, "输入音频过长,只允许输入30以内音频"
21
- with torch.no_grad():
22
- feature = model(pad_or_trim(mel, 3000).unsqueeze(0))[
23
- :1, :feature_len, :
24
- ].transpose(1, 2)
25
- return feature
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/inference_cli.py DELETED
@@ -1,55 +0,0 @@
1
- import argparse
2
- import os
3
- import soundfile as sf
4
-
5
- from tools.i18n.i18n import I18nAuto
6
- from GPT_SoVITS.inference_webui import change_gpt_weights, change_sovits_weights, get_tts_wav
7
-
8
- i18n = I18nAuto()
9
-
10
- def synthesize(GPT_model_path, SoVITS_model_path, ref_audio_path, ref_text_path, ref_language, target_text_path, target_language, output_path):
11
- # Read reference text
12
- with open(ref_text_path, 'r', encoding='utf-8') as file:
13
- ref_text = file.read()
14
-
15
- # Read target text
16
- with open(target_text_path, 'r', encoding='utf-8') as file:
17
- target_text = file.read()
18
-
19
- # Change model weights
20
- change_gpt_weights(gpt_path=GPT_model_path)
21
- change_sovits_weights(sovits_path=SoVITS_model_path)
22
-
23
- # Synthesize audio
24
- synthesis_result = get_tts_wav(ref_wav_path=ref_audio_path,
25
- prompt_text=ref_text,
26
- prompt_language=i18n(ref_language),
27
- text=target_text,
28
- text_language=i18n(target_language), top_p=1, temperature=1)
29
-
30
- result_list = list(synthesis_result)
31
-
32
- if result_list:
33
- last_sampling_rate, last_audio_data = result_list[-1]
34
- output_wav_path = os.path.join(output_path, "output.wav")
35
- sf.write(output_wav_path, last_audio_data, last_sampling_rate)
36
- print(f"Audio saved to {output_wav_path}")
37
-
38
- def main():
39
- parser = argparse.ArgumentParser(description="GPT-SoVITS Command Line Tool")
40
- parser.add_argument('--gpt_model', required=True, help="Path to the GPT model file")
41
- parser.add_argument('--sovits_model', required=True, help="Path to the SoVITS model file")
42
- parser.add_argument('--ref_audio', required=True, help="Path to the reference audio file")
43
- parser.add_argument('--ref_text', required=True, help="Path to the reference text file")
44
- parser.add_argument('--ref_language', required=True, choices=["中文", "英文", "日文"], help="Language of the reference audio")
45
- parser.add_argument('--target_text', required=True, help="Path to the target text file")
46
- parser.add_argument('--target_language', required=True, choices=["中文", "英文", "日文", "中英混合", "日英混合", "多语种混合"], help="Language of the target text")
47
- parser.add_argument('--output_path', required=True, help="Path to the output directory")
48
-
49
- args = parser.parse_args()
50
-
51
- synthesize(args.gpt_model, args.sovits_model, args.ref_audio, args.ref_text, args.ref_language, args.target_text, args.target_language, args.output_path)
52
-
53
- if __name__ == '__main__':
54
- main()
55
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/inference_gui.py DELETED
@@ -1,310 +0,0 @@
1
- import os
2
- import sys
3
- from PyQt5.QtCore import QEvent
4
- from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QLineEdit, QPushButton, QTextEdit
5
- from PyQt5.QtWidgets import QGridLayout, QVBoxLayout, QWidget, QFileDialog, QStatusBar, QComboBox
6
- import soundfile as sf
7
-
8
- from tools.i18n.i18n import I18nAuto
9
- i18n = I18nAuto()
10
-
11
- from inference_webui import gpt_path, sovits_path, change_gpt_weights, change_sovits_weights, get_tts_wav
12
-
13
-
14
- class GPTSoVITSGUI(QMainWindow):
15
- GPT_Path = gpt_path
16
- SoVITS_Path = sovits_path
17
-
18
- def __init__(self):
19
- super().__init__()
20
-
21
- self.setWindowTitle('GPT-SoVITS GUI')
22
- self.setGeometry(800, 450, 950, 850)
23
-
24
- self.setStyleSheet("""
25
- QWidget {
26
- background-color: #a3d3b1;
27
- }
28
-
29
- QTabWidget::pane {
30
- background-color: #a3d3b1;
31
- }
32
-
33
- QTabWidget::tab-bar {
34
- alignment: left;
35
- }
36
-
37
- QTabBar::tab {
38
- background: #8da4bf;
39
- color: #ffffff;
40
- padding: 8px;
41
- }
42
-
43
- QTabBar::tab:selected {
44
- background: #2a3f54;
45
- }
46
-
47
- QLabel {
48
- color: #000000;
49
- }
50
-
51
- QPushButton {
52
- background-color: #4CAF50;
53
- color: white;
54
- padding: 8px;
55
- border: 1px solid #4CAF50;
56
- border-radius: 4px;
57
- }
58
-
59
- QPushButton:hover {
60
- background-color: #45a049;
61
- border: 1px solid #45a049;
62
- box-shadow: 2px 2px 2px rgba(0, 0, 0, 0.1);
63
- }
64
- """)
65
-
66
- license_text = (
67
- "本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. "
68
- "如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")
69
- license_label = QLabel(license_text)
70
- license_label.setWordWrap(True)
71
-
72
- self.GPT_model_label = QLabel("选择GPT模型:")
73
- self.GPT_model_input = QLineEdit()
74
- self.GPT_model_input.setPlaceholderText("拖拽或选择文件")
75
- self.GPT_model_input.setText(self.GPT_Path)
76
- self.GPT_model_input.setReadOnly(True)
77
- self.GPT_model_button = QPushButton("选择GPT模型文件")
78
- self.GPT_model_button.clicked.connect(self.select_GPT_model)
79
-
80
- self.SoVITS_model_label = QLabel("选择SoVITS模型:")
81
- self.SoVITS_model_input = QLineEdit()
82
- self.SoVITS_model_input.setPlaceholderText("拖拽或选择文件")
83
- self.SoVITS_model_input.setText(self.SoVITS_Path)
84
- self.SoVITS_model_input.setReadOnly(True)
85
- self.SoVITS_model_button = QPushButton("选择SoVITS模型文件")
86
- self.SoVITS_model_button.clicked.connect(self.select_SoVITS_model)
87
-
88
- self.ref_audio_label = QLabel("上传参考音频:")
89
- self.ref_audio_input = QLineEdit()
90
- self.ref_audio_input.setPlaceholderText("拖拽或选择文件")
91
- self.ref_audio_input.setReadOnly(True)
92
- self.ref_audio_button = QPushButton("选择音频文件")
93
- self.ref_audio_button.clicked.connect(self.select_ref_audio)
94
-
95
- self.ref_text_label = QLabel("参考音频文本:")
96
- self.ref_text_input = QLineEdit()
97
- self.ref_text_input.setPlaceholderText("直接输入文字或上传文本")
98
- self.ref_text_button = QPushButton("上传文本")
99
- self.ref_text_button.clicked.connect(self.upload_ref_text)
100
-
101
- self.ref_language_label = QLabel("参考音频语言:")
102
- self.ref_language_combobox = QComboBox()
103
- self.ref_language_combobox.addItems(["中文", "英文", "日文", "中英混合", "日英混合", "多语种混合"])
104
- self.ref_language_combobox.setCurrentText("多语种混合")
105
-
106
- self.target_text_label = QLabel("合成目标文本:")
107
- self.target_text_input = QLineEdit()
108
- self.target_text_input.setPlaceholderText("直接输入文字或上传文本")
109
- self.target_text_button = QPushButton("上传文本")
110
- self.target_text_button.clicked.connect(self.upload_target_text)
111
-
112
- self.target_language_label = QLabel("合成音频语言:")
113
- self.target_language_combobox = QComboBox()
114
- self.target_language_combobox.addItems(["中文", "英文", "日文", "中英混合", "日英混合", "多语种混合"])
115
- self.target_language_combobox.setCurrentText("多语种混合")
116
-
117
- self.output_label = QLabel("输出音频路径:")
118
- self.output_input = QLineEdit()
119
- self.output_input.setPlaceholderText("拖拽或选择文件")
120
- self.output_input.setReadOnly(True)
121
- self.output_button = QPushButton("选择文件夹")
122
- self.output_button.clicked.connect(self.select_output_path)
123
-
124
- self.output_text = QTextEdit()
125
- self.output_text.setReadOnly(True)
126
-
127
- self.add_drag_drop_events([
128
- self.GPT_model_input,
129
- self.SoVITS_model_input,
130
- self.ref_audio_input,
131
- self.ref_text_input,
132
- self.target_text_input,
133
- self.output_input,
134
- ])
135
-
136
- self.synthesize_button = QPushButton("合成")
137
- self.synthesize_button.clicked.connect(self.synthesize)
138
-
139
- self.clear_output_button = QPushButton("清空输出")
140
- self.clear_output_button.clicked.connect(self.clear_output)
141
-
142
- self.status_bar = QStatusBar()
143
-
144
- main_layout = QVBoxLayout()
145
-
146
- input_layout = QGridLayout(self)
147
- input_layout.setSpacing(10)
148
-
149
- input_layout.addWidget(license_label, 0, 0, 1, 3)
150
-
151
- input_layout.addWidget(self.GPT_model_label, 1, 0)
152
- input_layout.addWidget(self.GPT_model_input, 2, 0, 1, 2)
153
- input_layout.addWidget(self.GPT_model_button, 2, 2)
154
-
155
- input_layout.addWidget(self.SoVITS_model_label, 3, 0)
156
- input_layout.addWidget(self.SoVITS_model_input, 4, 0, 1, 2)
157
- input_layout.addWidget(self.SoVITS_model_button, 4, 2)
158
-
159
- input_layout.addWidget(self.ref_audio_label, 5, 0)
160
- input_layout.addWidget(self.ref_audio_input, 6, 0, 1, 2)
161
- input_layout.addWidget(self.ref_audio_button, 6, 2)
162
-
163
- input_layout.addWidget(self.ref_language_label, 7, 0)
164
- input_layout.addWidget(self.ref_language_combobox, 8, 0, 1, 1)
165
- input_layout.addWidget(self.ref_text_label, 9, 0)
166
- input_layout.addWidget(self.ref_text_input, 10, 0, 1, 2)
167
- input_layout.addWidget(self.ref_text_button, 10, 2)
168
-
169
- input_layout.addWidget(self.target_language_label, 11, 0)
170
- input_layout.addWidget(self.target_language_combobox, 12, 0, 1, 1)
171
- input_layout.addWidget(self.target_text_label, 13, 0)
172
- input_layout.addWidget(self.target_text_input, 14, 0, 1, 2)
173
- input_layout.addWidget(self.target_text_button, 14, 2)
174
-
175
- input_layout.addWidget(self.output_label, 15, 0)
176
- input_layout.addWidget(self.output_input, 16, 0, 1, 2)
177
- input_layout.addWidget(self.output_button, 16, 2)
178
-
179
- main_layout.addLayout(input_layout)
180
-
181
- output_layout = QVBoxLayout()
182
- output_layout.addWidget(self.output_text)
183
- main_layout.addLayout(output_layout)
184
-
185
- main_layout.addWidget(self.synthesize_button)
186
-
187
- main_layout.addWidget(self.clear_output_button)
188
-
189
- main_layout.addWidget(self.status_bar)
190
-
191
- self.central_widget = QWidget()
192
- self.central_widget.setLayout(main_layout)
193
- self.setCentralWidget(self.central_widget)
194
-
195
- def dragEnterEvent(self, event):
196
- if event.mimeData().hasUrls():
197
- event.acceptProposedAction()
198
-
199
- def dropEvent(self, event):
200
- if event.mimeData().hasUrls():
201
- file_paths = [url.toLocalFile() for url in event.mimeData().urls()]
202
- if len(file_paths) == 1:
203
- self.update_ref_audio(file_paths[0])
204
- else:
205
- self.update_ref_audio(", ".join(file_paths))
206
-
207
- def add_drag_drop_events(self, widgets):
208
- for widget in widgets:
209
- widget.setAcceptDrops(True)
210
- widget.installEventFilter(self)
211
-
212
- def eventFilter(self, obj, event):
213
- if event.type() in (QEvent.DragEnter, QEvent.Drop):
214
- mime_data = event.mimeData()
215
- if mime_data.hasUrls():
216
- event.acceptProposedAction()
217
-
218
- return super().eventFilter(obj, event)
219
-
220
- def select_GPT_model(self):
221
- file_path, _ = QFileDialog.getOpenFileName(self, "选择GPT模型文件", "", "GPT Files (*.ckpt)")
222
- if file_path:
223
- self.GPT_model_input.setText(file_path)
224
-
225
- def select_SoVITS_model(self):
226
- file_path, _ = QFileDialog.getOpenFileName(self, "选择SoVITS模型文件", "", "SoVITS Files (*.pth)")
227
- if file_path:
228
- self.SoVITS_model_input.setText(file_path)
229
-
230
- def select_ref_audio(self):
231
- file_path, _ = QFileDialog.getOpenFileName(self, "选择参考音频文件", "", "Audio Files (*.wav *.mp3)")
232
- if file_path:
233
- self.update_ref_audio(file_path)
234
-
235
- def upload_ref_text(self):
236
- file_path, _ = QFileDialog.getOpenFileName(self, "选择文本文件", "", "Text Files (*.txt)")
237
- if file_path:
238
- with open(file_path, 'r', encoding='utf-8') as file:
239
- content = file.read()
240
- self.ref_text_input.setText(content)
241
-
242
- def upload_target_text(self):
243
- file_path, _ = QFileDialog.getOpenFileName(self, "选择文本文件", "", "Text Files (*.txt)")
244
- if file_path:
245
- with open(file_path, 'r', encoding='utf-8') as file:
246
- content = file.read()
247
- self.target_text_input.setText(content)
248
-
249
- def select_output_path(self):
250
- options = QFileDialog.Options()
251
- options |= QFileDialog.DontUseNativeDialog
252
- options |= QFileDialog.ShowDirsOnly
253
-
254
- folder_dialog = QFileDialog()
255
- folder_dialog.setOptions(options)
256
- folder_dialog.setFileMode(QFileDialog.Directory)
257
-
258
- if folder_dialog.exec_():
259
- folder_path = folder_dialog.selectedFiles()[0]
260
- self.output_input.setText(folder_path)
261
-
262
- def update_ref_audio(self, file_path):
263
- self.ref_audio_input.setText(file_path)
264
-
265
- def clear_output(self):
266
- self.output_text.clear()
267
-
268
- def synthesize(self):
269
- GPT_model_path = self.GPT_model_input.text()
270
- SoVITS_model_path = self.SoVITS_model_input.text()
271
- ref_audio_path = self.ref_audio_input.text()
272
- language_combobox = self.ref_language_combobox.currentText()
273
- language_combobox = i18n(language_combobox)
274
- ref_text = self.ref_text_input.text()
275
- target_language_combobox = self.target_language_combobox.currentText()
276
- target_language_combobox = i18n(target_language_combobox)
277
- target_text = self.target_text_input.text()
278
- output_path = self.output_input.text()
279
-
280
- if GPT_model_path != self.GPT_Path:
281
- change_gpt_weights(gpt_path=GPT_model_path)
282
- self.GPT_Path = GPT_model_path
283
- if SoVITS_model_path != self.SoVITS_Path:
284
- change_sovits_weights(sovits_path=SoVITS_model_path)
285
- self.SoVITS_Path = SoVITS_model_path
286
-
287
- synthesis_result = get_tts_wav(ref_wav_path=ref_audio_path,
288
- prompt_text=ref_text,
289
- prompt_language=language_combobox,
290
- text=target_text,
291
- text_language=target_language_combobox)
292
-
293
- result_list = list(synthesis_result)
294
-
295
- if result_list:
296
- last_sampling_rate, last_audio_data = result_list[-1]
297
- output_wav_path = os.path.join(output_path, "output.wav")
298
- sf.write(output_wav_path, last_audio_data, last_sampling_rate)
299
-
300
- result = "Audio saved to " + output_wav_path
301
-
302
- self.status_bar.showMessage("合成完成!输出路径:" + output_wav_path, 5000)
303
- self.output_text.append("处理结果:\n" + result)
304
-
305
-
306
- if __name__ == '__main__':
307
- app = QApplication(sys.argv)
308
- mainWin = GPTSoVITSGUI()
309
- mainWin.show()
310
- sys.exit(app.exec_())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GPT_SoVITS/inference_webui.py DELETED
@@ -1,772 +0,0 @@
1
- '''
2
- 按中英混合识别
3
- 按日英混合识别
4
- 多语种启动切分识别语种
5
- 全部按中文识别
6
- 全部按英文识别
7
- 全部按日文识别
8
- '''
9
- import logging
10
- import traceback
11
-
12
- logging.getLogger("markdown_it").setLevel(logging.ERROR)
13
- logging.getLogger("urllib3").setLevel(logging.ERROR)
14
- logging.getLogger("httpcore").setLevel(logging.ERROR)
15
- logging.getLogger("httpx").setLevel(logging.ERROR)
16
- logging.getLogger("asyncio").setLevel(logging.ERROR)
17
- logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
18
- logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
19
- logging.getLogger("multipart.multipart").setLevel(logging.ERROR)
20
- import LangSegment, os, re, sys, json
21
- import pdb
22
- import torch
23
-
24
- try:
25
- import gradio.analytics as analytics
26
- analytics.version_check = lambda:None
27
- except:...
28
-
29
- version=os.environ.get("version","v2")
30
- pretrained_sovits_name=["GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth", "GPT_SoVITS/pretrained_models/s2G488k.pth"]
31
- pretrained_gpt_name=["GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"]
32
-
33
- _ =[[],[]]
34
- for i in range(2):
35
- if os.path.exists(pretrained_gpt_name[i]):
36
- _[0].append(pretrained_gpt_name[i])
37
- if os.path.exists(pretrained_sovits_name[i]):
38
- _[-1].append(pretrained_sovits_name[i])
39
- pretrained_gpt_name,pretrained_sovits_name = _
40
-
41
-
42
-
43
- if os.path.exists(f"./weight.json"):
44
- pass
45
- else:
46
- with open(f"./weight.json", 'w', encoding="utf-8") as file:json.dump({'GPT':{},'SoVITS':{}},file)
47
-
48
- with open(f"./weight.json", 'r', encoding="utf-8") as file:
49
- weight_data = file.read()
50
- weight_data=json.loads(weight_data)
51
- gpt_path = os.environ.get(
52
- "gpt_path", weight_data.get('GPT',{}).get(version,pretrained_gpt_name))
53
- sovits_path = os.environ.get(
54
- "sovits_path", weight_data.get('SoVITS',{}).get(version,pretrained_sovits_name))
55
- if isinstance(gpt_path,list):
56
- gpt_path = gpt_path[0]
57
- if isinstance(sovits_path,list):
58
- sovits_path = sovits_path[0]
59
-
60
- # gpt_path = os.environ.get(
61
- # "gpt_path", pretrained_gpt_name
62
- # )
63
- # sovits_path = os.environ.get("sovits_path", pretrained_sovits_name)
64
- cnhubert_base_path = os.environ.get(
65
- "cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
66
- )
67
- bert_path = os.environ.get(
68
- "bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
69
- )
70
- infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
71
- infer_ttswebui = int(infer_ttswebui)
72
- is_share = os.environ.get("is_share", "False")
73
- is_share = eval(is_share)
74
- if "_CUDA_VISIBLE_DEVICES" in os.environ:
75
- os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
76
- is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
77
- punctuation = set(['!', '?', '…', ',', '.', '-'," "])
78
- import gradio as gr
79
- from transformers import AutoModelForMaskedLM, AutoTokenizer
80
- import numpy as np
81
- import librosa
82
- from feature_extractor import cnhubert
83
-
84
- cnhubert.cnhubert_base_path = cnhubert_base_path
85
-
86
- from module.models import SynthesizerTrn
87
- from AR.models.t2s_lightning_module import Text2SemanticLightningModule
88
- from text import cleaned_text_to_sequence
89
- from text.cleaner import clean_text
90
- from time import time as ttime
91
- from module.mel_processing import spectrogram_torch
92
- from tools.my_utils import load_audio
93
- from tools.i18n.i18n import I18nAuto, scan_language_list
94
-
95
- language=os.environ.get("language","Auto")
96
- language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
97
- i18n = I18nAuto(language=language)
98
-
99
- # os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
100
-
101
- if torch.cuda.is_available():
102
- device = "cuda"
103
- else:
104
- device = "cpu"
105
-
106
- dict_language_v1 = {
107
- i18n("中文"): "all_zh",#全部按中文识别
108
- i18n("英文"): "en",#全部按英文识别#######不变
109
- i18n("日文"): "all_ja",#全部按日文识别
110
- i18n("中英混合"): "zh",#按中英混合识别####不变
111
- i18n("日英混合"): "ja",#按日英混合识别####不变
112
- i18n("多语种混合"): "auto",#多语种启动切分识别语种
113
- }
114
- dict_language_v2 = {
115
- i18n("中文"): "all_zh",#全部按中文识别
116
- i18n("英文"): "en",#全部按英文识别#######不变
117
- i18n("日文"): "all_ja",#全部按日文识别
118
- i18n("粤语"): "all_yue",#全部按中文识别
119
- i18n("韩文"): "all_ko",#全部按韩文识别
120
- i18n("中英混合"): "zh",#按中英混合识别####不变
121
- i18n("日英混合"): "ja",#按日英混合识别####不变
122
- i18n("粤英混合"): "yue",#按粤英混合识别####不变
123
- i18n("韩英混合"): "ko",#按韩英混合识别####不变
124
- i18n("多语种混合"): "auto",#多语种启动切分识别语种
125
- i18n("多语种混合(粤语)"): "auto_yue",#多语种启动切分识别语种
126
- }
127
- dict_language = dict_language_v1 if version =='v1' else dict_language_v2
128
-
129
- tokenizer = AutoTokenizer.from_pretrained(bert_path)
130
- bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
131
- if is_half == True:
132
- bert_model = bert_model.half().to(device)
133
- else:
134
- bert_model = bert_model.to(device)
135
-
136
-
137
- def get_bert_feature(text, word2ph):
138
- with torch.no_grad():
139
- inputs = tokenizer(text, return_tensors="pt")
140
- for i in inputs:
141
- inputs[i] = inputs[i].to(device)
142
- res = bert_model(**inputs, output_hidden_states=True)
143
- res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
144
- assert len(word2ph) == len(text)
145
- phone_level_feature = []
146
- for i in range(len(word2ph)):
147
- repeat_feature = res[i].repeat(word2ph[i], 1)
148
- phone_level_feature.append(repeat_feature)
149
- phone_level_feature = torch.cat(phone_level_feature, dim=0)
150
- return phone_level_feature.T
151
-
152
-
153
- class DictToAttrRecursive(dict):
154
- def __init__(self, input_dict):
155
- super().__init__(input_dict)
156
- for key, value in input_dict.items():
157
- if isinstance(value, dict):
158
- value = DictToAttrRecursive(value)
159
- self[key] = value
160
- setattr(self, key, value)
161
-
162
- def __getattr__(self, item):
163
- try:
164
- return self[item]
165
- except KeyError:
166
- raise AttributeError(f"Attribute {item} not found")
167
-
168
- def __setattr__(self, key, value):
169
- if isinstance(value, dict):
170
- value = DictToAttrRecursive(value)
171
- super(DictToAttrRecursive, self).__setitem__(key, value)
172
- super().__setattr__(key, value)
173
-
174
- def __delattr__(self, item):
175
- try:
176
- del self[item]
177
- except KeyError:
178
- raise AttributeError(f"Attribute {item} not found")
179
-
180
-
181
- ssl_model = cnhubert.get_model()
182
- if is_half == True:
183
- ssl_model = ssl_model.half().to(device)
184
- else:
185
- ssl_model = ssl_model.to(device)
186
-
187
-
188
- def change_sovits_weights(sovits_path,prompt_language=None,text_language=None):
189
- global vq_model, hps, version, dict_language
190
- dict_s2 = torch.load(sovits_path, map_location="cpu")
191
- hps = dict_s2["config"]
192
- hps = DictToAttrRecursive(hps)
193
- hps.model.semantic_frame_rate = "25hz"
194
- if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
195
- hps.model.version = "v1"
196
- else:
197
- hps.model.version = "v2"
198
- version = hps.model.version
199
- # print("sovits版本:",hps.model.version)
200
- vq_model = SynthesizerTrn(
201
- hps.data.filter_length // 2 + 1,
202
- hps.train.segment_size // hps.data.hop_length,
203
- n_speakers=hps.data.n_speakers,
204
- **hps.model
205
- )
206
- if ("pretrained" not in sovits_path):
207
- del vq_model.enc_q
208
- if is_half == True:
209
- vq_model = vq_model.half().to(device)
210
- else:
211
- vq_model = vq_model.to(device)
212
- vq_model.eval()
213
- print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
214
- dict_language = dict_language_v1 if version =='v1' else dict_language_v2
215
- with open("./weight.json")as f:
216
- data=f.read()
217
- data=json.loads(data)
218
- data["SoVITS"][version]=sovits_path
219
- with open("./weight.json","w")as f:f.write(json.dumps(data))
220
- if prompt_language is not None and text_language is not None:
221
- if prompt_language in list(dict_language.keys()):
222
- prompt_text_update, prompt_language_update = {'__type__':'update'}, {'__type__':'update', 'value':prompt_language}
223
- else:
224
- prompt_text_update = {'__type__':'update', 'value':''}
225
- prompt_language_update = {'__type__':'update', 'value':i18n("中文")}
226
- if text_language in list(dict_language.keys()):
227
- text_update, text_language_update = {'__type__':'update'}, {'__type__':'update', 'value':text_language}
228
- else:
229
- text_update = {'__type__':'update', 'value':''}
230
- text_language_update = {'__type__':'update', 'value':i18n("中文")}
231
- return {'__type__':'update', 'choices':list(dict_language.keys())}, {'__type__':'update', 'choices':list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update
232
-
233
-
234
-
235
- change_sovits_weights(sovits_path)
236
-
237
-
238
- def change_gpt_weights(gpt_path):
239
- global hz, max_sec, t2s_model, config
240
- hz = 50
241
- dict_s1 = torch.load(gpt_path, map_location="cpu")
242
- config = dict_s1["config"]
243
- max_sec = config["data"]["max_sec"]
244
- t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
245
- t2s_model.load_state_dict(dict_s1["weight"])
246
- if is_half == True:
247
- t2s_model = t2s_model.half()
248
- t2s_model = t2s_model.to(device)
249
- t2s_model.eval()
250
- total = sum([param.nelement() for param in t2s_model.parameters()])
251
- print("Number of parameter: %.2fM" % (total / 1e6))
252
- with open("./weight.json")as f:
253
- data=f.read()
254
- data=json.loads(data)
255
- data["GPT"][version]=gpt_path
256
- with open("./weight.json","w")as f:f.write(json.dumps(data))
257
-
258
-
259
- change_gpt_weights(gpt_path)
260
-
261
-
262
- def get_spepc(hps, filename):
263
- audio = load_audio(filename, int(hps.data.sampling_rate))
264
- audio = torch.FloatTensor(audio)
265
- maxx=audio.abs().max()
266
- if(maxx>1):audio/=min(2,maxx)
267
- audio_norm = audio
268
- audio_norm = audio_norm.unsqueeze(0)
269
- spec = spectrogram_torch(
270
- audio_norm,
271
- hps.data.filter_length,
272
- hps.data.sampling_rate,
273
- hps.data.hop_length,
274
- hps.data.win_length,
275
- center=False,
276
- )
277
- return spec
278
-
279
- def clean_text_inf(text, language, version):
280
- phones, word2ph, norm_text = clean_text(text, language, version)
281
- phones = cleaned_text_to_sequence(phones, version)
282
- return phones, word2ph, norm_text
283
-
284
- dtype=torch.float16 if is_half == True else torch.float32
285
- def get_bert_inf(phones, word2ph, norm_text, language):
286
- language=language.replace("all_","")
287
- if language == "zh":
288
- bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
289
- else:
290
- bert = torch.zeros(
291
- (1024, len(phones)),
292
- dtype=torch.float16 if is_half == True else torch.float32,
293
- ).to(device)
294
-
295
- return bert
296
-
297
-
298
- splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
299
-
300
-
301
- def get_first(text):
302
- pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
303
- text = re.split(pattern, text)[0].strip()
304
- return text
305
-
306
- from text import chinese
307
- def get_phones_and_bert(text,language,version,final=False):
308
- if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}:
309
- language = language.replace("all_","")
310
- if language == "en":
311
- LangSegment.setfilters(["en"])
312
- formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
313
- else:
314
- # 因无法区别中日韩文汉字,以用户输入为准
315
- formattext = text
316
- while " " in formattext:
317
- formattext = formattext.replace(" ", " ")
318
- if language == "zh":
319
- if re.search(r'[A-Za-z]', formattext):
320
- formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
321
- formattext = chinese.mix_text_normalize(formattext)
322
- return get_phones_and_bert(formattext,"zh",version)
323
- else:
324
- phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
325
- bert = get_bert_feature(norm_text, word2ph).to(device)
326
- elif language == "yue" and re.search(r'[A-Za-z]', formattext):
327
- formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
328
- formattext = chinese.mix_text_normalize(formattext)
329
- return get_phones_and_bert(formattext,"yue",version)
330
- else:
331
- phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
332
- bert = torch.zeros(
333
- (1024, len(phones)),
334
- dtype=torch.float16 if is_half == True else torch.float32,
335
- ).to(device)
336
- elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}:
337
- textlist=[]
338
- langlist=[]
339
- LangSegment.setfilters(["zh","ja","en","ko"])
340
- if language == "auto":
341
- for tmp in LangSegment.getTexts(text):
342
- langlist.append(tmp["lang"])
343
- textlist.append(tmp["text"])
344
- elif language == "auto_yue":
345
- for tmp in LangSegment.getTexts(text):
346
- if tmp["lang"] == "zh":
347
- tmp["lang"] = "yue"
348
- langlist.append(tmp["lang"])
349
- textlist.append(tmp["text"])
350
- else:
351
- for tmp in LangSegment.getTexts(text):
352
- if tmp["lang"] == "en":
353
- langlist.append(tmp["lang"])
354
- else:
355
- # 因无法区别中日韩文汉字,以用户输入为准
356
- langlist.append(language)
357
- textlist.append(tmp["text"])
358
- print(textlist)
359
- print(langlist)
360
- phones_list = []
361
- bert_list = []
362
- norm_text_list = []
363
- for i in range(len(textlist)):
364
- lang = langlist[i]
365
- phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version)
366
- bert = get_bert_inf(phones, word2ph, norm_text, lang)
367
- phones_list.append(phones)
368
- norm_text_list.append(norm_text)
369
- bert_list.append(bert)
370
- bert = torch.cat(bert_list, dim=1)
371
- phones = sum(phones_list, [])
372
- norm_text = ''.join(norm_text_list)
373
-
374
- if not final and len(phones) < 6:
375
- return get_phones_and_bert("." + text,language,version,final=True)
376
-
377
- return phones,bert.to(dtype),norm_text
378
-
379
-
380
- def merge_short_text_in_array(texts, threshold):
381
- if (len(texts)) < 2:
382
- return texts
383
- result = []
384
- text = ""
385
- for ele in texts:
386
- text += ele
387
- if len(text) >= threshold:
388
- result.append(text)
389
- text = ""
390
- if (len(text) > 0):
391
- if len(result) == 0:
392
- result.append(text)
393
- else:
394
- result[len(result) - 1] += text
395
- return result
396
-
397
- ##ref_wav_path+prompt_text+prompt_language+text(单个)+text_language+top_k+top_p+temperature
398
- # cache_tokens={}#暂未实现清理机制
399
- cache= {}
400
- def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free
401
- =False,speed=1,if_freeze=False,inp_refs=None):
402
- global cache
403
- if ref_wav_path:pass
404
- else:gr.Warning(i18n('请上传参考音频'))
405
- if text:pass
406
- else:gr.Warning(i18n('请填入推理文本'))
407
- t = []
408
- if prompt_text is None or len(prompt_text) == 0:
409
- ref_free = True
410
- t0 = ttime()
411
- prompt_language = dict_language[prompt_language]
412
- text_language = dict_language[text_language]
413
-
414
-
415
- if not ref_free:
416
- prompt_text = prompt_text.strip("\n")
417
- if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
418
- print(i18n("实际输入的参考文本:"), prompt_text)
419
- text = text.strip("\n")
420
- # if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
421
-
422
- print(i18n("实际输入的目标文本:"), text)
423
- zero_wav = np.zeros(
424
- int(hps.data.sampling_rate * 0.3),
425
- dtype=np.float16 if is_half == True else np.float32,
426
- )
427
- if not ref_free:
428
- with torch.no_grad():
429
- wav16k, sr = librosa.load(ref_wav_path, sr=16000)
430
- if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
431
- gr.Warning(i18n("参考音频在3~10秒范围外,请更换!"))
432
- raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
433
- wav16k = torch.from_numpy(wav16k)
434
- zero_wav_torch = torch.from_numpy(zero_wav)
435
- if is_half == True:
436
- wav16k = wav16k.half().to(device)
437
- zero_wav_torch = zero_wav_torch.half().to(device)
438
- else:
439
- wav16k = wav16k.to(device)
440
- zero_wav_torch = zero_wav_torch.to(device)
441
- wav16k = torch.cat([wav16k, zero_wav_torch])
442
- ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
443
- "last_hidden_state"
444
- ].transpose(
445
- 1, 2
446
- ) # .float()
447
- codes = vq_model.extract_latent(ssl_content)
448
- prompt_semantic = codes[0, 0]
449
- prompt = prompt_semantic.unsqueeze(0).to(device)
450
-
451
- t1 = ttime()
452
- t.append(t1-t0)
453
-
454
- if (how_to_cut == i18n("凑四句一切")):
455
- text = cut1(text)
456
- elif (how_to_cut == i18n("凑50字一切")):
457
- text = cut2(text)
458
- elif (how_to_cut == i18n("按中文句号。切")):
459
- text = cut3(text)
460
- elif (how_to_cut == i18n("按英文句号.切")):
461
- text = cut4(text)
462
- elif (how_to_cut == i18n("按标点符号切")):
463
- text = cut5(text)
464
- while "\n\n" in text:
465
- text = text.replace("\n\n", "\n")
466
- print(i18n("实际输入的目标文本(切句后):"), text)
467
- texts = text.split("\n")
468
- texts = process_text(texts)
469
- texts = merge_short_text_in_array(texts, 5)
470
- audio_opt = []
471
- if not ref_free:
472
- phones1,bert1,norm_text1=get_phones_and_bert(prompt_text, prompt_language, version)
473
-
474
- for i_text,text in enumerate(texts):
475
- # 解决输入目标文本的空行导致报错的问题
476
- if (len(text.strip()) == 0):
477
- continue
478
- if (text[-1] not in splits): text += "。" if text_language != "en" else "."
479
- print(i18n("实际输入的目标文本(每句):"), text)
480
- phones2,bert2,norm_text2=get_phones_and_bert(text, text_language, version)
481
- print(i18n("前端处理后的文本(每句):"), norm_text2)
482
- if not ref_free:
483
- bert = torch.cat([bert1, bert2], 1)
484
- all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
485
- else:
486
- bert = bert2
487
- all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
488
-
489
- bert = bert.to(device).unsqueeze(0)
490
- all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
491
-
492
- t2 = ttime()
493
- # cache_key="%s-%s-%s-%s-%s-%s-%s-%s"%(ref_wav_path,prompt_text,prompt_language,text,text_language,top_k,top_p,temperature)
494
- # print(cache.keys(),if_freeze)
495
- if(i_text in cache and if_freeze==True):pred_semantic=cache[i_text]
496
- else:
497
- with torch.no_grad():
498
- pred_semantic, idx = t2s_model.model.infer_panel(
499
- all_phoneme_ids,
500
- all_phoneme_len,
501
- None if ref_free else prompt,
502
- bert,
503
- # prompt_phone_len=ph_offset,
504
- top_k=top_k,
505
- top_p=top_p,
506
- temperature=temperature,
507
- early_stop_num=hz * max_sec,
508
- )
509
- pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)
510
- cache[i_text]=pred_semantic
511
- t3 = ttime()
512
- refers=[]
513
- if(inp_refs):
514
- for path in inp_refs:
515
- try:
516
- refer = get_spepc(hps, path.name).to(dtype).to(device)
517
- refers.append(refer)
518
- except:
519
- traceback.print_exc()
520
- if(len(refers)==0):refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)]
521
- audio = (vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers,speed=speed).detach().cpu().numpy()[0, 0])
522
- max_audio=np.abs(audio).max()#简单防止16bit爆音
523
- if max_audio>1:audio/=max_audio
524
- audio_opt.append(audio)
525
- audio_opt.append(zero_wav)
526
- t4 = ttime()
527
- t.extend([t2 - t1,t3 - t2, t4 - t3])
528
- t1 = ttime()
529
- print("%.3f\t%.3f\t%.3f\t%.3f" %
530
- (t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3]))
531
- )
532
- yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
533
- np.int16
534
- )
535
-
536
-
537
- def split(todo_text):
538
- todo_text = todo_text.replace("……", "。").replace("——", ",")
539
- if todo_text[-1] not in splits:
540
- todo_text += "。"
541
- i_split_head = i_split_tail = 0
542
- len_text = len(todo_text)
543
- todo_texts = []
544
- while 1:
545
- if i_split_head >= len_text:
546
- break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
547
- if todo_text[i_split_head] in splits:
548
- i_split_head += 1
549
- todo_texts.append(todo_text[i_split_tail:i_split_head])
550
- i_split_tail = i_split_head
551
- else:
552
- i_split_head += 1
553
- return todo_texts
554
-
555
-
556
- def cut1(inp):
557
- inp = inp.strip("\n")
558
- inps = split(inp)
559
- split_idx = list(range(0, len(inps), 4))
560
- split_idx[-1] = None
561
- if len(split_idx) > 1:
562
- opts = []
563
- for idx in range(len(split_idx) - 1):
564
- opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
565
- else:
566
- opts = [inp]
567
- opts = [item for item in opts if not set(item).issubset(punctuation)]
568
- return "\n".join(opts)
569
-
570
-
571
- def cut2(inp):
572
- inp = inp.strip("\n")
573
- inps = split(inp)
574
- if len(inps) < 2:
575
- return inp
576
- opts = []
577
- summ = 0
578
- tmp_str = ""
579
- for i in range(len(inps)):
580
- summ += len(inps[i])
581
- tmp_str += inps[i]
582
- if summ > 50:
583
- summ = 0
584
- opts.append(tmp_str)
585
- tmp_str = ""
586
- if tmp_str != "":
587
- opts.append(tmp_str)
588
- # print(opts)
589
- if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
590
- opts[-2] = opts[-2] + opts[-1]
591
- opts = opts[:-1]
592
- opts = [item for item in opts if not set(item).issubset(punctuation)]
593
- return "\n".join(opts)
594
-
595
-
596
- def cut3(inp):
597
- inp = inp.strip("\n")
598
- opts = ["%s" % item for item in inp.strip("。").split("。")]
599
- opts = [item for item in opts if not set(item).issubset(punctuation)]
600
- return "\n".join(opts)
601
-
602
- def cut4(inp):
603
- inp = inp.strip("\n")
604
- opts = ["%s" % item for item in inp.strip(".").split(".")]
605
- opts = [item for item in opts if not set(item).issubset(punctuation)]
606
- return "\n".join(opts)
607
-
608
-
609
- # contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
610
- def cut5(inp):
611
- inp = inp.strip("\n")
612
- punds = {',', '.', ';', '?', '!', '、', ',', '。', '?', '!', ';', ':', '…'}
613
- mergeitems = []
614
- items = []
615
-
616
- for i, char in enumerate(inp):
617
- if char in punds:
618
- if char == '.' and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit():
619
- items.append(char)
620
- else:
621
- items.append(char)
622
- mergeitems.append("".join(items))
623
- items = []
624
- else:
625
- items.append(char)
626
-
627
- if items:
628
- mergeitems.append("".join(items))
629
-
630
- opt = [item for item in mergeitems if not set(item).issubset(punds)]
631
- return "\n".join(opt)
632
-
633
-
634
- def custom_sort_key(s):
635
- # 使用正则表达式提取字符串中的数字部分和非数字部分
636
- parts = re.split('(\d+)', s)
637
- # 将数字部分转换为整数,非数字部分保持不变
638
- parts = [int(part) if part.isdigit() else part for part in parts]
639
- return parts
640
-
641
- def process_text(texts):
642
- _text=[]
643
- if all(text in [None, " ", "\n",""] for text in texts):
644
- raise ValueError(i18n("请输入有效文本"))
645
- for text in texts:
646
- if text in [None, " ", ""]:
647
- pass
648
- else:
649
- _text.append(text)
650
- return _text
651
-
652
-
653
- def change_choices():
654
- SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
655
- return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
656
-
657
-
658
- SoVITS_weight_root=["SoVITS_weights_v2","SoVITS_weights"]
659
- GPT_weight_root=["GPT_weights_v2","GPT_weights"]
660
- for path in SoVITS_weight_root+GPT_weight_root:
661
- os.makedirs(path,exist_ok=True)
662
-
663
-
664
- def get_weights_names(GPT_weight_root, SoVITS_weight_root):
665
- SoVITS_names = [i for i in pretrained_sovits_name]
666
- for path in SoVITS_weight_root:
667
- for name in os.listdir(path):
668
- if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (path, name))
669
- GPT_names = [i for i in pretrained_gpt_name]
670
- for path in GPT_weight_root:
671
- for name in os.listdir(path):
672
- if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (path, name))
673
- return SoVITS_names, GPT_names
674
-
675
-
676
- SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
677
-
678
- def html_center(text, label='p'):
679
- return f"""<div style="text-align: center; margin: 100; padding: 50;">
680
- <{label} style="margin: 0; padding: 0;">{text}</{label}>
681
- </div>"""
682
-
683
- def html_left(text, label='p'):
684
- return f"""<div style="text-align: left; margin: 0; padding: 0;">
685
- <{label} style="margin: 0; padding: 0;">{text}</{label}>
686
- </div>"""
687
-
688
-
689
- with gr.Blocks(title="GPT-SoVITS WebUI") as app:
690
- gr.Markdown(
691
- value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
692
- )
693
- with gr.Group():
694
- gr.Markdown(html_center(i18n("模型切换"),'h3'))
695
- with gr.Row():
696
- GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True, scale=14)
697
- SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True, scale=14)
698
- refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary", scale=14)
699
- refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
700
- gr.Markdown(html_center(i18n("*请上传并填写参考信息"),'h3'))
701
- with gr.Row():
702
- inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath", scale=13)
703
- with gr.Column(scale=13):
704
- ref_text_free = gr.Checkbox(label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True, show_label=True,scale=1)
705
- gr.Markdown(html_left(i18n("使用无参考文本模式时建议使用微调的GPT,听不清参考音频说的啥(不晓得写啥)可以开。<br>开启后无视填写的参考文本。")))
706
- prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="", lines=5, max_lines=5,scale=1)
707
- with gr.Column(scale=14):
708
- prompt_language = gr.Dropdown(
709
- label=i18n("参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文"),
710
- )
711
- inp_refs = gr.File(label=i18n("可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。"),file_count="multiple")
712
- gr.Markdown(html_center(i18n("*请填写需要合成的目标文本和语种模式"),'h3'))
713
- with gr.Row():
714
- with gr.Column(scale=13):
715
- text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=26, max_lines=26)
716
- with gr.Column(scale=7):
717
- text_language = gr.Dropdown(
718
- label=i18n("需要合成的语种")+i18n(".限制范围越小判别效果越好。"), choices=list(dict_language.keys()), value=i18n("中文"), scale=1
719
- )
720
- how_to_cut = gr.Dropdown(
721
- label=i18n("怎么切"),
722
- choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
723
- value=i18n("凑四句一切"),
724
- interactive=True, scale=1
725
- )
726
- gr.Markdown(value=html_center(i18n("语速调整,高为更快")))
727
- if_freeze=gr.Checkbox(label=i18n("是否直接对上次合成结果调整语速和音色。防止随机性。"), value=False, interactive=True,show_label=True, scale=1)
728
- speed = gr.Slider(minimum=0.6,maximum=1.65,step=0.05,label=i18n("语速"),value=1,interactive=True, scale=1)
729
- gr.Markdown(html_center(i18n("GPT采样参数(无参考文本时不要太低。不懂就用默认):")))
730
- top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=15,interactive=True, scale=1)
731
- top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True, scale=1)
732
- temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True, scale=1)
733
- # with gr.Column():
734
- # gr.Markdown(value=i18n("手工调整音素。当音素框不为空时使用手工音素输入推理,无视目标文本框。"))
735
- # phoneme=gr.Textbox(label=i18n("音素框"), value="")
736
- # get_phoneme_button = gr.Button(i18n("目标文本转音素"), variant="primary")
737
- with gr.Row():
738
- inference_button = gr.Button(i18n("合成语音"), variant="primary", size='lg', scale=25)
739
- output = gr.Audio(label=i18n("输出的语音"), scale=14)
740
-
741
- inference_button.click(
742
- get_tts_wav,
743
- [inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut, top_k, top_p, temperature, ref_text_free,speed,if_freeze,inp_refs],
744
- [output],
745
- )
746
- SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown,prompt_language,text_language], [prompt_language,text_language,prompt_text,prompt_language,text,text_language])
747
- GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], [])
748
-
749
- # gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
750
- # with gr.Row():
751
- # text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="")
752
- # button1 = gr.Button(i18n("凑四句一切"), variant="primary")
753
- # button2 = gr.Button(i18n("凑50字一切"), variant="primary")
754
- # button3 = gr.Button(i18n("按中文句号。切"), variant="primary")
755
- # button4 = gr.Button(i18n("按英文句号.切"), variant="primary")
756
- # button5 = gr.Button(i18n("按标点符号切"), variant="primary")
757
- # text_opt = gr.Textbox(label=i18n("切分后文本"), value="")
758
- # button1.click(cut1, [text_inp], [text_opt])
759
- # button2.click(cut2, [text_inp], [text_opt])
760
- # button3.click(cut3, [text_inp], [text_opt])
761
- # button4.click(cut4, [text_inp], [text_opt])
762
- # button5.click(cut5, [text_inp], [text_opt])
763
- # gr.Markdown(html_center(i18n("后续将支持转音素、手工修改音素、语音合成分步执行。")))
764
-
765
- if __name__ == '__main__':
766
- app.queue().launch(#concurrency_count=511, max_size=1022
767
- server_name="0.0.0.0",
768
- inbrowser=True,
769
- share=is_share,
770
- server_port=infer_ttswebui,
771
- quiet=True,
772
- )