Spaces:
Sleeping
Sleeping
import sys | |
from io import BytesIO | |
import numpy as np | |
import pyrubberband as pyrb | |
import soundfile as sf | |
from pydub import AudioSegment, effects | |
INT16_MAX = np.iinfo(np.int16).max | |
def audio_to_int16(audio_data: np.ndarray) -> np.ndarray: | |
if ( | |
audio_data.dtype == np.float32 | |
or audio_data.dtype == np.float64 | |
or audio_data.dtype == np.float128 | |
or audio_data.dtype == np.float16 | |
): | |
audio_data = (audio_data * INT16_MAX).astype(np.int16) | |
return audio_data | |
def pydub_to_np(audio: AudioSegment) -> tuple[int, np.ndarray]: | |
""" | |
Converts pydub audio segment into np.float32 of shape [duration_in_seconds*sample_rate, channels], | |
where each value is in range [-1.0, 1.0]. | |
Returns tuple (audio_np_array, sample_rate). | |
""" | |
nd_array = np.array(audio.get_array_of_samples(), dtype=np.float32) | |
if audio.channels != 1: | |
nd_array = nd_array.reshape((-1, audio.channels)) | |
nd_array = nd_array / (1 << (8 * audio.sample_width - 1)) | |
return ( | |
audio.frame_rate, | |
nd_array, | |
) | |
def audiosegment_to_librosawav(audiosegment: AudioSegment) -> np.ndarray: | |
""" | |
Converts pydub audio segment into np.float32 of shape [duration_in_seconds*sample_rate, channels], | |
where each value is in range [-1.0, 1.0]. | |
""" | |
channel_sounds = audiosegment.split_to_mono() | |
samples = [s.get_array_of_samples() for s in channel_sounds] | |
fp_arr = np.array(samples).T.astype(np.float32) | |
fp_arr /= np.iinfo(samples[0].typecode).max | |
fp_arr = fp_arr.reshape(-1) | |
return fp_arr | |
def ndarray_to_segment( | |
ndarray: np.ndarray, frame_rate: int, sample_width: int = None, channels: int = None | |
) -> AudioSegment: | |
buffer = BytesIO() | |
sf.write(buffer, ndarray, frame_rate, format="wav", subtype="PCM_16") | |
buffer.seek(0) | |
sound: AudioSegment = AudioSegment.from_wav(buffer) | |
if sample_width is None: | |
sample_width = sound.sample_width | |
if channels is None: | |
channels = sound.channels | |
return ( | |
sound.set_frame_rate(frame_rate) | |
.set_sample_width(sample_width) | |
.set_channels(channels) | |
) | |
def apply_prosody_to_audio_segment( | |
audio_segment: AudioSegment, | |
rate: float = 1, | |
volume: float = 0, | |
pitch: int = 0, | |
sr: int = 24000, | |
) -> AudioSegment: | |
audio_data = audiosegment_to_librosawav(audio_segment) | |
audio_data = apply_prosody_to_audio_data(audio_data, rate, volume, pitch, sr) | |
audio_segment = ndarray_to_segment( | |
audio_data, sr, audio_segment.sample_width, audio_segment.channels | |
) | |
return audio_segment | |
def apply_prosody_to_audio_data( | |
audio_data: np.ndarray, | |
rate: float = 1, | |
volume: float = 0, | |
pitch: float = 0, | |
sr: int = 24000, | |
) -> np.ndarray: | |
if rate != 1: | |
audio_data = pyrb.time_stretch(audio_data, sr=sr, rate=rate) | |
if volume != 0: | |
audio_data = audio_data * volume | |
if pitch != 0: | |
audio_data = pyrb.pitch_shift(audio_data, sr=sr, n_steps=pitch) | |
return audio_data | |
def apply_normalize( | |
audio_data: np.ndarray, | |
headroom: float = 1, | |
sr: int = 24000, | |
): | |
segment = ndarray_to_segment(audio_data, sr) | |
segment = effects.normalize(seg=segment, headroom=headroom) | |
return pydub_to_np(segment) | |
if __name__ == "__main__": | |
input_file = sys.argv[1] | |
time_stretch_factors = [0.5, 0.75, 1.5, 1.0] | |
pitch_shift_factors = [-12, -5, 0, 5, 12] | |
input_sound = AudioSegment.from_mp3(input_file) | |
for time_factor in time_stretch_factors: | |
output_wav = f"{input_file}_time_{time_factor}.wav" | |
output_sound = apply_prosody_to_audio_segment(input_sound, rate=time_factor) | |
output_sound.export(output_wav, format="wav") | |
for pitch_factor in pitch_shift_factors: | |
output_wav = f"{input_file}_pitch_{pitch_factor}.wav" | |
output_sound = apply_prosody_to_audio_segment(input_sound, pitch=pitch_factor) | |
output_sound.export(output_wav, format="wav") | |