zhaokong commited on
Commit
2d30e7b
1 Parent(s): e76b8fd

Upload 48 files

Browse files
Files changed (48) hide show
  1. .gitignore +164 -0
  2. LICENSE +661 -0
  3. app.py +131 -0
  4. attentions.py +344 -0
  5. bert/chinese-roberta-wwm-ext-large/.gitattributes +9 -0
  6. bert/chinese-roberta-wwm-ext-large/.gitignore +1 -0
  7. bert/chinese-roberta-wwm-ext-large/README.md +57 -0
  8. bert/chinese-roberta-wwm-ext-large/added_tokens.json +1 -0
  9. bert/chinese-roberta-wwm-ext-large/config.json +28 -0
  10. bert/chinese-roberta-wwm-ext-large/flax_model.msgpack +3 -0
  11. bert/chinese-roberta-wwm-ext-large/main +449 -0
  12. bert/chinese-roberta-wwm-ext-large/pytorch_model.bin +3 -0
  13. bert/chinese-roberta-wwm-ext-large/special_tokens_map.json +1 -0
  14. bert/chinese-roberta-wwm-ext-large/tf_model.h5 +3 -0
  15. bert/chinese-roberta-wwm-ext-large/tokenizer.json +0 -0
  16. bert/chinese-roberta-wwm-ext-large/tokenizer_config.json +1 -0
  17. bert/chinese-roberta-wwm-ext-large/vocab.txt +0 -0
  18. bert_gen.py +53 -0
  19. commons.py +161 -0
  20. configs/config.json +95 -0
  21. data_utils.py +321 -0
  22. filelists/.ipynb_checkpoints/speaker-checkpoint.list +0 -0
  23. logs/mymodels/jiaran.pth +3 -0
  24. losses.py +61 -0
  25. mel_processing.py +112 -0
  26. models.py +707 -0
  27. modules.py +452 -0
  28. monotonic_align/__init__.py +15 -0
  29. monotonic_align/core.py +35 -0
  30. preprocess_text.py +64 -0
  31. requirements.txt +17 -0
  32. resample.py +42 -0
  33. server.py +123 -0
  34. text/__init__.py +28 -0
  35. text/chinese.py +193 -0
  36. text/chinese_bert.py +59 -0
  37. text/cleaner.py +27 -0
  38. text/cmudict.rep +0 -0
  39. text/cmudict_cache.pickle +3 -0
  40. text/english.py +138 -0
  41. text/english_bert_mock.py +5 -0
  42. text/japanese.py +104 -0
  43. text/opencpop-strict.txt +429 -0
  44. text/symbols.py +51 -0
  45. text/tone_sandhi.py +351 -0
  46. train_ms.py +393 -0
  47. transforms.py +193 -0
  48. utils.py +289 -0
.gitignore ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ # Cython debug symbols
153
+ cython_debug/
154
+
155
+ # PyCharm
156
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
159
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ #.idea/
161
+
162
+ .DS_Store
163
+ /models
164
+ /logs
LICENSE ADDED
@@ -0,0 +1,661 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU AFFERO GENERAL PUBLIC LICENSE
2
+ Version 3, 19 November 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU Affero General Public License is a free, copyleft license for
11
+ software and other kinds of works, specifically designed to ensure
12
+ cooperation with the community in the case of network server software.
13
+
14
+ The licenses for most software and other practical works are designed
15
+ to take away your freedom to share and change the works. By contrast,
16
+ our General Public Licenses are intended to guarantee your freedom to
17
+ share and change all versions of a program--to make sure it remains free
18
+ software for all its users.
19
+
20
+ When we speak of free software, we are referring to freedom, not
21
+ price. Our General Public Licenses are designed to make sure that you
22
+ have the freedom to distribute copies of free software (and charge for
23
+ them if you wish), that you receive source code or can get it if you
24
+ want it, that you can change the software or use pieces of it in new
25
+ free programs, and that you know you can do these things.
26
+
27
+ Developers that use our General Public Licenses protect your rights
28
+ with two steps: (1) assert copyright on the software, and (2) offer
29
+ you this License which gives you legal permission to copy, distribute
30
+ and/or modify the software.
31
+
32
+ A secondary benefit of defending all users' freedom is that
33
+ improvements made in alternate versions of the program, if they
34
+ receive widespread use, become available for other developers to
35
+ incorporate. Many developers of free software are heartened and
36
+ encouraged by the resulting cooperation. However, in the case of
37
+ software used on network servers, this result may fail to come about.
38
+ The GNU General Public License permits making a modified version and
39
+ letting the public access it on a server without ever releasing its
40
+ source code to the public.
41
+
42
+ The GNU Affero General Public License is designed specifically to
43
+ ensure that, in such cases, the modified source code becomes available
44
+ to the community. It requires the operator of a network server to
45
+ provide the source code of the modified version running there to the
46
+ users of that server. Therefore, public use of a modified version, on
47
+ a publicly accessible server, gives the public access to the source
48
+ code of the modified version.
49
+
50
+ An older license, called the Affero General Public License and
51
+ published by Affero, was designed to accomplish similar goals. This is
52
+ a different license, not a version of the Affero GPL, but Affero has
53
+ released a new version of the Affero GPL which permits relicensing under
54
+ this license.
55
+
56
+ The precise terms and conditions for copying, distribution and
57
+ modification follow.
58
+
59
+ TERMS AND CONDITIONS
60
+
61
+ 0. Definitions.
62
+
63
+ "This License" refers to version 3 of the GNU Affero General Public License.
64
+
65
+ "Copyright" also means copyright-like laws that apply to other kinds of
66
+ works, such as semiconductor masks.
67
+
68
+ "The Program" refers to any copyrightable work licensed under this
69
+ License. Each licensee is addressed as "you". "Licensees" and
70
+ "recipients" may be individuals or organizations.
71
+
72
+ To "modify" a work means to copy from or adapt all or part of the work
73
+ in a fashion requiring copyright permission, other than the making of an
74
+ exact copy. The resulting work is called a "modified version" of the
75
+ earlier work or a work "based on" the earlier work.
76
+
77
+ A "covered work" means either the unmodified Program or a work based
78
+ on the Program.
79
+
80
+ To "propagate" a work means to do anything with it that, without
81
+ permission, would make you directly or secondarily liable for
82
+ infringement under applicable copyright law, except executing it on a
83
+ computer or modifying a private copy. Propagation includes copying,
84
+ distribution (with or without modification), making available to the
85
+ public, and in some countries other activities as well.
86
+
87
+ To "convey" a work means any kind of propagation that enables other
88
+ parties to make or receive copies. Mere interaction with a user through
89
+ a computer network, with no transfer of a copy, is not conveying.
90
+
91
+ An interactive user interface displays "Appropriate Legal Notices"
92
+ to the extent that it includes a convenient and prominently visible
93
+ feature that (1) displays an appropriate copyright notice, and (2)
94
+ tells the user that there is no warranty for the work (except to the
95
+ extent that warranties are provided), that licensees may convey the
96
+ work under this License, and how to view a copy of this License. If
97
+ the interface presents a list of user commands or options, such as a
98
+ menu, a prominent item in the list meets this criterion.
99
+
100
+ 1. Source Code.
101
+
102
+ The "source code" for a work means the preferred form of the work
103
+ for making modifications to it. "Object code" means any non-source
104
+ form of a work.
105
+
106
+ A "Standard Interface" means an interface that either is an official
107
+ standard defined by a recognized standards body, or, in the case of
108
+ interfaces specified for a particular programming language, one that
109
+ is widely used among developers working in that language.
110
+
111
+ The "System Libraries" of an executable work include anything, other
112
+ than the work as a whole, that (a) is included in the normal form of
113
+ packaging a Major Component, but which is not part of that Major
114
+ Component, and (b) serves only to enable use of the work with that
115
+ Major Component, or to implement a Standard Interface for which an
116
+ implementation is available to the public in source code form. A
117
+ "Major Component", in this context, means a major essential component
118
+ (kernel, window system, and so on) of the specific operating system
119
+ (if any) on which the executable work runs, or a compiler used to
120
+ produce the work, or an object code interpreter used to run it.
121
+
122
+ The "Corresponding Source" for a work in object code form means all
123
+ the source code needed to generate, install, and (for an executable
124
+ work) run the object code and to modify the work, including scripts to
125
+ control those activities. However, it does not include the work's
126
+ System Libraries, or general-purpose tools or generally available free
127
+ programs which are used unmodified in performing those activities but
128
+ which are not part of the work. For example, Corresponding Source
129
+ includes interface definition files associated with source files for
130
+ the work, and the source code for shared libraries and dynamically
131
+ linked subprograms that the work is specifically designed to require,
132
+ such as by intimate data communication or control flow between those
133
+ subprograms and other parts of the work.
134
+
135
+ The Corresponding Source need not include anything that users
136
+ can regenerate automatically from other parts of the Corresponding
137
+ Source.
138
+
139
+ The Corresponding Source for a work in source code form is that
140
+ same work.
141
+
142
+ 2. Basic Permissions.
143
+
144
+ All rights granted under this License are granted for the term of
145
+ copyright on the Program, and are irrevocable provided the stated
146
+ conditions are met. This License explicitly affirms your unlimited
147
+ permission to run the unmodified Program. The output from running a
148
+ covered work is covered by this License only if the output, given its
149
+ content, constitutes a covered work. This License acknowledges your
150
+ rights of fair use or other equivalent, as provided by copyright law.
151
+
152
+ You may make, run and propagate covered works that you do not
153
+ convey, without conditions so long as your license otherwise remains
154
+ in force. You may convey covered works to others for the sole purpose
155
+ of having them make modifications exclusively for you, or provide you
156
+ with facilities for running those works, provided that you comply with
157
+ the terms of this License in conveying all material for which you do
158
+ not control copyright. Those thus making or running the covered works
159
+ for you must do so exclusively on your behalf, under your direction
160
+ and control, on terms that prohibit them from making any copies of
161
+ your copyrighted material outside their relationship with you.
162
+
163
+ Conveying under any other circumstances is permitted solely under
164
+ the conditions stated below. Sublicensing is not allowed; section 10
165
+ makes it unnecessary.
166
+
167
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168
+
169
+ No covered work shall be deemed part of an effective technological
170
+ measure under any applicable law fulfilling obligations under article
171
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172
+ similar laws prohibiting or restricting circumvention of such
173
+ measures.
174
+
175
+ When you convey a covered work, you waive any legal power to forbid
176
+ circumvention of technological measures to the extent such circumvention
177
+ is effected by exercising rights under this License with respect to
178
+ the covered work, and you disclaim any intention to limit operation or
179
+ modification of the work as a means of enforcing, against the work's
180
+ users, your or third parties' legal rights to forbid circumvention of
181
+ technological measures.
182
+
183
+ 4. Conveying Verbatim Copies.
184
+
185
+ You may convey verbatim copies of the Program's source code as you
186
+ receive it, in any medium, provided that you conspicuously and
187
+ appropriately publish on each copy an appropriate copyright notice;
188
+ keep intact all notices stating that this License and any
189
+ non-permissive terms added in accord with section 7 apply to the code;
190
+ keep intact all notices of the absence of any warranty; and give all
191
+ recipients a copy of this License along with the Program.
192
+
193
+ You may charge any price or no price for each copy that you convey,
194
+ and you may offer support or warranty protection for a fee.
195
+
196
+ 5. Conveying Modified Source Versions.
197
+
198
+ You may convey a work based on the Program, or the modifications to
199
+ produce it from the Program, in the form of source code under the
200
+ terms of section 4, provided that you also meet all of these conditions:
201
+
202
+ a) The work must carry prominent notices stating that you modified
203
+ it, and giving a relevant date.
204
+
205
+ b) The work must carry prominent notices stating that it is
206
+ released under this License and any conditions added under section
207
+ 7. This requirement modifies the requirement in section 4 to
208
+ "keep intact all notices".
209
+
210
+ c) You must license the entire work, as a whole, under this
211
+ License to anyone who comes into possession of a copy. This
212
+ License will therefore apply, along with any applicable section 7
213
+ additional terms, to the whole of the work, and all its parts,
214
+ regardless of how they are packaged. This License gives no
215
+ permission to license the work in any other way, but it does not
216
+ invalidate such permission if you have separately received it.
217
+
218
+ d) If the work has interactive user interfaces, each must display
219
+ Appropriate Legal Notices; however, if the Program has interactive
220
+ interfaces that do not display Appropriate Legal Notices, your
221
+ work need not make them do so.
222
+
223
+ A compilation of a covered work with other separate and independent
224
+ works, which are not by their nature extensions of the covered work,
225
+ and which are not combined with it such as to form a larger program,
226
+ in or on a volume of a storage or distribution medium, is called an
227
+ "aggregate" if the compilation and its resulting copyright are not
228
+ used to limit the access or legal rights of the compilation's users
229
+ beyond what the individual works permit. Inclusion of a covered work
230
+ in an aggregate does not cause this License to apply to the other
231
+ parts of the aggregate.
232
+
233
+ 6. Conveying Non-Source Forms.
234
+
235
+ You may convey a covered work in object code form under the terms
236
+ of sections 4 and 5, provided that you also convey the
237
+ machine-readable Corresponding Source under the terms of this License,
238
+ in one of these ways:
239
+
240
+ a) Convey the object code in, or embodied in, a physical product
241
+ (including a physical distribution medium), accompanied by the
242
+ Corresponding Source fixed on a durable physical medium
243
+ customarily used for software interchange.
244
+
245
+ b) Convey the object code in, or embodied in, a physical product
246
+ (including a physical distribution medium), accompanied by a
247
+ written offer, valid for at least three years and valid for as
248
+ long as you offer spare parts or customer support for that product
249
+ model, to give anyone who possesses the object code either (1) a
250
+ copy of the Corresponding Source for all the software in the
251
+ product that is covered by this License, on a durable physical
252
+ medium customarily used for software interchange, for a price no
253
+ more than your reasonable cost of physically performing this
254
+ conveying of source, or (2) access to copy the
255
+ Corresponding Source from a network server at no charge.
256
+
257
+ c) Convey individual copies of the object code with a copy of the
258
+ written offer to provide the Corresponding Source. This
259
+ alternative is allowed only occasionally and noncommercially, and
260
+ only if you received the object code with such an offer, in accord
261
+ with subsection 6b.
262
+
263
+ d) Convey the object code by offering access from a designated
264
+ place (gratis or for a charge), and offer equivalent access to the
265
+ Corresponding Source in the same way through the same place at no
266
+ further charge. You need not require recipients to copy the
267
+ Corresponding Source along with the object code. If the place to
268
+ copy the object code is a network server, the Corresponding Source
269
+ may be on a different server (operated by you or a third party)
270
+ that supports equivalent copying facilities, provided you maintain
271
+ clear directions next to the object code saying where to find the
272
+ Corresponding Source. Regardless of what server hosts the
273
+ Corresponding Source, you remain obligated to ensure that it is
274
+ available for as long as needed to satisfy these requirements.
275
+
276
+ e) Convey the object code using peer-to-peer transmission, provided
277
+ you inform other peers where the object code and Corresponding
278
+ Source of the work are being offered to the general public at no
279
+ charge under subsection 6d.
280
+
281
+ A separable portion of the object code, whose source code is excluded
282
+ from the Corresponding Source as a System Library, need not be
283
+ included in conveying the object code work.
284
+
285
+ A "User Product" is either (1) a "consumer product", which means any
286
+ tangible personal property which is normally used for personal, family,
287
+ or household purposes, or (2) anything designed or sold for incorporation
288
+ into a dwelling. In determining whether a product is a consumer product,
289
+ doubtful cases shall be resolved in favor of coverage. For a particular
290
+ product received by a particular user, "normally used" refers to a
291
+ typical or common use of that class of product, regardless of the status
292
+ of the particular user or of the way in which the particular user
293
+ actually uses, or expects or is expected to use, the product. A product
294
+ is a consumer product regardless of whether the product has substantial
295
+ commercial, industrial or non-consumer uses, unless such uses represent
296
+ the only significant mode of use of the product.
297
+
298
+ "Installation Information" for a User Product means any methods,
299
+ procedures, authorization keys, or other information required to install
300
+ and execute modified versions of a covered work in that User Product from
301
+ a modified version of its Corresponding Source. The information must
302
+ suffice to ensure that the continued functioning of the modified object
303
+ code is in no case prevented or interfered with solely because
304
+ modification has been made.
305
+
306
+ If you convey an object code work under this section in, or with, or
307
+ specifically for use in, a User Product, and the conveying occurs as
308
+ part of a transaction in which the right of possession and use of the
309
+ User Product is transferred to the recipient in perpetuity or for a
310
+ fixed term (regardless of how the transaction is characterized), the
311
+ Corresponding Source conveyed under this section must be accompanied
312
+ by the Installation Information. But this requirement does not apply
313
+ if neither you nor any third party retains the ability to install
314
+ modified object code on the User Product (for example, the work has
315
+ been installed in ROM).
316
+
317
+ The requirement to provide Installation Information does not include a
318
+ requirement to continue to provide support service, warranty, or updates
319
+ for a work that has been modified or installed by the recipient, or for
320
+ the User Product in which it has been modified or installed. Access to a
321
+ network may be denied when the modification itself materially and
322
+ adversely affects the operation of the network or violates the rules and
323
+ protocols for communication across the network.
324
+
325
+ Corresponding Source conveyed, and Installation Information provided,
326
+ in accord with this section must be in a format that is publicly
327
+ documented (and with an implementation available to the public in
328
+ source code form), and must require no special password or key for
329
+ unpacking, reading or copying.
330
+
331
+ 7. Additional Terms.
332
+
333
+ "Additional permissions" are terms that supplement the terms of this
334
+ License by making exceptions from one or more of its conditions.
335
+ Additional permissions that are applicable to the entire Program shall
336
+ be treated as though they were included in this License, to the extent
337
+ that they are valid under applicable law. If additional permissions
338
+ apply only to part of the Program, that part may be used separately
339
+ under those permissions, but the entire Program remains governed by
340
+ this License without regard to the additional permissions.
341
+
342
+ When you convey a copy of a covered work, you may at your option
343
+ remove any additional permissions from that copy, or from any part of
344
+ it. (Additional permissions may be written to require their own
345
+ removal in certain cases when you modify the work.) You may place
346
+ additional permissions on material, added by you to a covered work,
347
+ for which you have or can give appropriate copyright permission.
348
+
349
+ Notwithstanding any other provision of this License, for material you
350
+ add to a covered work, you may (if authorized by the copyright holders of
351
+ that material) supplement the terms of this License with terms:
352
+
353
+ a) Disclaiming warranty or limiting liability differently from the
354
+ terms of sections 15 and 16 of this License; or
355
+
356
+ b) Requiring preservation of specified reasonable legal notices or
357
+ author attributions in that material or in the Appropriate Legal
358
+ Notices displayed by works containing it; or
359
+
360
+ c) Prohibiting misrepresentation of the origin of that material, or
361
+ requiring that modified versions of such material be marked in
362
+ reasonable ways as different from the original version; or
363
+
364
+ d) Limiting the use for publicity purposes of names of licensors or
365
+ authors of the material; or
366
+
367
+ e) Declining to grant rights under trademark law for use of some
368
+ trade names, trademarks, or service marks; or
369
+
370
+ f) Requiring indemnification of licensors and authors of that
371
+ material by anyone who conveys the material (or modified versions of
372
+ it) with contractual assumptions of liability to the recipient, for
373
+ any liability that these contractual assumptions directly impose on
374
+ those licensors and authors.
375
+
376
+ All other non-permissive additional terms are considered "further
377
+ restrictions" within the meaning of section 10. If the Program as you
378
+ received it, or any part of it, contains a notice stating that it is
379
+ governed by this License along with a term that is a further
380
+ restriction, you may remove that term. If a license document contains
381
+ a further restriction but permits relicensing or conveying under this
382
+ License, you may add to a covered work material governed by the terms
383
+ of that license document, provided that the further restriction does
384
+ not survive such relicensing or conveying.
385
+
386
+ If you add terms to a covered work in accord with this section, you
387
+ must place, in the relevant source files, a statement of the
388
+ additional terms that apply to those files, or a notice indicating
389
+ where to find the applicable terms.
390
+
391
+ Additional terms, permissive or non-permissive, may be stated in the
392
+ form of a separately written license, or stated as exceptions;
393
+ the above requirements apply either way.
394
+
395
+ 8. Termination.
396
+
397
+ You may not propagate or modify a covered work except as expressly
398
+ provided under this License. Any attempt otherwise to propagate or
399
+ modify it is void, and will automatically terminate your rights under
400
+ this License (including any patent licenses granted under the third
401
+ paragraph of section 11).
402
+
403
+ However, if you cease all violation of this License, then your
404
+ license from a particular copyright holder is reinstated (a)
405
+ provisionally, unless and until the copyright holder explicitly and
406
+ finally terminates your license, and (b) permanently, if the copyright
407
+ holder fails to notify you of the violation by some reasonable means
408
+ prior to 60 days after the cessation.
409
+
410
+ Moreover, your license from a particular copyright holder is
411
+ reinstated permanently if the copyright holder notifies you of the
412
+ violation by some reasonable means, this is the first time you have
413
+ received notice of violation of this License (for any work) from that
414
+ copyright holder, and you cure the violation prior to 30 days after
415
+ your receipt of the notice.
416
+
417
+ Termination of your rights under this section does not terminate the
418
+ licenses of parties who have received copies or rights from you under
419
+ this License. If your rights have been terminated and not permanently
420
+ reinstated, you do not qualify to receive new licenses for the same
421
+ material under section 10.
422
+
423
+ 9. Acceptance Not Required for Having Copies.
424
+
425
+ You are not required to accept this License in order to receive or
426
+ run a copy of the Program. Ancillary propagation of a covered work
427
+ occurring solely as a consequence of using peer-to-peer transmission
428
+ to receive a copy likewise does not require acceptance. However,
429
+ nothing other than this License grants you permission to propagate or
430
+ modify any covered work. These actions infringe copyright if you do
431
+ not accept this License. Therefore, by modifying or propagating a
432
+ covered work, you indicate your acceptance of this License to do so.
433
+
434
+ 10. Automatic Licensing of Downstream Recipients.
435
+
436
+ Each time you convey a covered work, the recipient automatically
437
+ receives a license from the original licensors, to run, modify and
438
+ propagate that work, subject to this License. You are not responsible
439
+ for enforcing compliance by third parties with this License.
440
+
441
+ An "entity transaction" is a transaction transferring control of an
442
+ organization, or substantially all assets of one, or subdividing an
443
+ organization, or merging organizations. If propagation of a covered
444
+ work results from an entity transaction, each party to that
445
+ transaction who receives a copy of the work also receives whatever
446
+ licenses to the work the party's predecessor in interest had or could
447
+ give under the previous paragraph, plus a right to possession of the
448
+ Corresponding Source of the work from the predecessor in interest, if
449
+ the predecessor has it or can get it with reasonable efforts.
450
+
451
+ You may not impose any further restrictions on the exercise of the
452
+ rights granted or affirmed under this License. For example, you may
453
+ not impose a license fee, royalty, or other charge for exercise of
454
+ rights granted under this License, and you may not initiate litigation
455
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
456
+ any patent claim is infringed by making, using, selling, offering for
457
+ sale, or importing the Program or any portion of it.
458
+
459
+ 11. Patents.
460
+
461
+ A "contributor" is a copyright holder who authorizes use under this
462
+ License of the Program or a work on which the Program is based. The
463
+ work thus licensed is called the contributor's "contributor version".
464
+
465
+ A contributor's "essential patent claims" are all patent claims
466
+ owned or controlled by the contributor, whether already acquired or
467
+ hereafter acquired, that would be infringed by some manner, permitted
468
+ by this License, of making, using, or selling its contributor version,
469
+ but do not include claims that would be infringed only as a
470
+ consequence of further modification of the contributor version. For
471
+ purposes of this definition, "control" includes the right to grant
472
+ patent sublicenses in a manner consistent with the requirements of
473
+ this License.
474
+
475
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
476
+ patent license under the contributor's essential patent claims, to
477
+ make, use, sell, offer for sale, import and otherwise run, modify and
478
+ propagate the contents of its contributor version.
479
+
480
+ In the following three paragraphs, a "patent license" is any express
481
+ agreement or commitment, however denominated, not to enforce a patent
482
+ (such as an express permission to practice a patent or covenant not to
483
+ sue for patent infringement). To "grant" such a patent license to a
484
+ party means to make such an agreement or commitment not to enforce a
485
+ patent against the party.
486
+
487
+ If you convey a covered work, knowingly relying on a patent license,
488
+ and the Corresponding Source of the work is not available for anyone
489
+ to copy, free of charge and under the terms of this License, through a
490
+ publicly available network server or other readily accessible means,
491
+ then you must either (1) cause the Corresponding Source to be so
492
+ available, or (2) arrange to deprive yourself of the benefit of the
493
+ patent license for this particular work, or (3) arrange, in a manner
494
+ consistent with the requirements of this License, to extend the patent
495
+ license to downstream recipients. "Knowingly relying" means you have
496
+ actual knowledge that, but for the patent license, your conveying the
497
+ covered work in a country, or your recipient's use of the covered work
498
+ in a country, would infringe one or more identifiable patents in that
499
+ country that you have reason to believe are valid.
500
+
501
+ If, pursuant to or in connection with a single transaction or
502
+ arrangement, you convey, or propagate by procuring conveyance of, a
503
+ covered work, and grant a patent license to some of the parties
504
+ receiving the covered work authorizing them to use, propagate, modify
505
+ or convey a specific copy of the covered work, then the patent license
506
+ you grant is automatically extended to all recipients of the covered
507
+ work and works based on it.
508
+
509
+ A patent license is "discriminatory" if it does not include within
510
+ the scope of its coverage, prohibits the exercise of, or is
511
+ conditioned on the non-exercise of one or more of the rights that are
512
+ specifically granted under this License. You may not convey a covered
513
+ work if you are a party to an arrangement with a third party that is
514
+ in the business of distributing software, under which you make payment
515
+ to the third party based on the extent of your activity of conveying
516
+ the work, and under which the third party grants, to any of the
517
+ parties who would receive the covered work from you, a discriminatory
518
+ patent license (a) in connection with copies of the covered work
519
+ conveyed by you (or copies made from those copies), or (b) primarily
520
+ for and in connection with specific products or compilations that
521
+ contain the covered work, unless you entered into that arrangement,
522
+ or that patent license was granted, prior to 28 March 2007.
523
+
524
+ Nothing in this License shall be construed as excluding or limiting
525
+ any implied license or other defenses to infringement that may
526
+ otherwise be available to you under applicable patent law.
527
+
528
+ 12. No Surrender of Others' Freedom.
529
+
530
+ If conditions are imposed on you (whether by court order, agreement or
531
+ otherwise) that contradict the conditions of this License, they do not
532
+ excuse you from the conditions of this License. If you cannot convey a
533
+ covered work so as to satisfy simultaneously your obligations under this
534
+ License and any other pertinent obligations, then as a consequence you may
535
+ not convey it at all. For example, if you agree to terms that obligate you
536
+ to collect a royalty for further conveying from those to whom you convey
537
+ the Program, the only way you could satisfy both those terms and this
538
+ License would be to refrain entirely from conveying the Program.
539
+
540
+ 13. Remote Network Interaction; Use with the GNU General Public License.
541
+
542
+ Notwithstanding any other provision of this License, if you modify the
543
+ Program, your modified version must prominently offer all users
544
+ interacting with it remotely through a computer network (if your version
545
+ supports such interaction) an opportunity to receive the Corresponding
546
+ Source of your version by providing access to the Corresponding Source
547
+ from a network server at no charge, through some standard or customary
548
+ means of facilitating copying of software. This Corresponding Source
549
+ shall include the Corresponding Source for any work covered by version 3
550
+ of the GNU General Public License that is incorporated pursuant to the
551
+ following paragraph.
552
+
553
+ Notwithstanding any other provision of this License, you have
554
+ permission to link or combine any covered work with a work licensed
555
+ under version 3 of the GNU General Public License into a single
556
+ combined work, and to convey the resulting work. The terms of this
557
+ License will continue to apply to the part which is the covered work,
558
+ but the work with which it is combined will remain governed by version
559
+ 3 of the GNU General Public License.
560
+
561
+ 14. Revised Versions of this License.
562
+
563
+ The Free Software Foundation may publish revised and/or new versions of
564
+ the GNU Affero General Public License from time to time. Such new versions
565
+ will be similar in spirit to the present version, but may differ in detail to
566
+ address new problems or concerns.
567
+
568
+ Each version is given a distinguishing version number. If the
569
+ Program specifies that a certain numbered version of the GNU Affero General
570
+ Public License "or any later version" applies to it, you have the
571
+ option of following the terms and conditions either of that numbered
572
+ version or of any later version published by the Free Software
573
+ Foundation. If the Program does not specify a version number of the
574
+ GNU Affero General Public License, you may choose any version ever published
575
+ by the Free Software Foundation.
576
+
577
+ If the Program specifies that a proxy can decide which future
578
+ versions of the GNU Affero General Public License can be used, that proxy's
579
+ public statement of acceptance of a version permanently authorizes you
580
+ to choose that version for the Program.
581
+
582
+ Later license versions may give you additional or different
583
+ permissions. However, no additional obligations are imposed on any
584
+ author or copyright holder as a result of your choosing to follow a
585
+ later version.
586
+
587
+ 15. Disclaimer of Warranty.
588
+
589
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597
+
598
+ 16. Limitation of Liability.
599
+
600
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608
+ SUCH DAMAGES.
609
+
610
+ 17. Interpretation of Sections 15 and 16.
611
+
612
+ If the disclaimer of warranty and limitation of liability provided
613
+ above cannot be given local legal effect according to their terms,
614
+ reviewing courts shall apply local law that most closely approximates
615
+ an absolute waiver of all civil liability in connection with the
616
+ Program, unless a warranty or assumption of liability accompanies a
617
+ copy of the Program in return for a fee.
618
+
619
+ END OF TERMS AND CONDITIONS
620
+
621
+ How to Apply These Terms to Your New Programs
622
+
623
+ If you develop a new program, and you want it to be of the greatest
624
+ possible use to the public, the best way to achieve this is to make it
625
+ free software which everyone can redistribute and change under these terms.
626
+
627
+ To do so, attach the following notices to the program. It is safest
628
+ to attach them to the start of each source file to most effectively
629
+ state the exclusion of warranty; and each file should have at least
630
+ the "copyright" line and a pointer to where the full notice is found.
631
+
632
+ <one line to give the program's name and a brief idea of what it does.>
633
+ Copyright (C) <year> <name of author>
634
+
635
+ This program is free software: you can redistribute it and/or modify
636
+ it under the terms of the GNU Affero General Public License as published
637
+ by the Free Software Foundation, either version 3 of the License, or
638
+ (at your option) any later version.
639
+
640
+ This program is distributed in the hope that it will be useful,
641
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
642
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643
+ GNU Affero General Public License for more details.
644
+
645
+ You should have received a copy of the GNU Affero General Public License
646
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
647
+
648
+ Also add information on how to contact you by electronic and paper mail.
649
+
650
+ If your software can interact with users remotely through a computer
651
+ network, you should also make sure that it provides a way for users to
652
+ get its source. For example, if your program is a web application, its
653
+ interface could display a "Source" link that leads users to an archive
654
+ of the code. There are many ways you could offer source, and different
655
+ solutions will be better for different programs; see section 13 for the
656
+ specific requirements.
657
+
658
+ You should also get your employer (if you work as a programmer) or school,
659
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
660
+ For more information on this, and how to apply and follow the GNU AGPL, see
661
+ <https://www.gnu.org/licenses/>.
app.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys, os
2
+
3
+ if sys.platform == "darwin":
4
+ os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
5
+
6
+ import logging
7
+
8
+ logging.getLogger("numba").setLevel(logging.WARNING)
9
+ logging.getLogger("markdown_it").setLevel(logging.WARNING)
10
+ logging.getLogger("urllib3").setLevel(logging.WARNING)
11
+ logging.getLogger("matplotlib").setLevel(logging.WARNING)
12
+
13
+ logging.basicConfig(level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s")
14
+
15
+ logger = logging.getLogger(__name__)
16
+
17
+ import torch
18
+ import argparse
19
+ import commons
20
+ import utils
21
+ from models import SynthesizerTrn
22
+ from text.symbols import symbols
23
+ from text import cleaned_text_to_sequence, get_bert
24
+ from text.cleaner import clean_text
25
+ import gradio as gr
26
+ import webbrowser
27
+
28
+ net_g = None
29
+
30
+
31
+ def get_text(text, language_str, hps):
32
+ norm_text, phone, tone, word2ph = clean_text(text, language_str)
33
+ phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
34
+
35
+ if hps.data.add_blank:
36
+ phone = commons.intersperse(phone, 0)
37
+ tone = commons.intersperse(tone, 0)
38
+ language = commons.intersperse(language, 0)
39
+ for i in range(len(word2ph)):
40
+ word2ph[i] = word2ph[i] * 2
41
+ word2ph[0] += 1
42
+ bert = get_bert(norm_text, word2ph, language_str)
43
+ del word2ph
44
+
45
+ assert bert.shape[-1] == len(phone)
46
+
47
+ phone = torch.LongTensor(phone)
48
+ tone = torch.LongTensor(tone)
49
+ language = torch.LongTensor(language)
50
+
51
+ return bert, phone, tone, language
52
+
53
+
54
+ def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid):
55
+ global net_g
56
+ bert, phones, tones, lang_ids = get_text(text, "ZH", hps)
57
+ with torch.no_grad():
58
+ x_tst = phones.to(device).unsqueeze(0)
59
+ tones = tones.to(device).unsqueeze(0)
60
+ lang_ids = lang_ids.to(device).unsqueeze(0)
61
+ bert = bert.to(device).unsqueeze(0)
62
+ x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
63
+ del phones
64
+ speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
65
+ audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sdp_ratio=sdp_ratio,
66
+ noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][
67
+ 0, 0].data.cpu().float().numpy()
68
+ del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
69
+ return audio
70
+
71
+
72
+ def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
73
+ with torch.no_grad():
74
+ audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w,
75
+ length_scale=length_scale, sid=speaker)
76
+ return "Success", (hps.data.sampling_rate, audio)
77
+
78
+
79
+ if __name__ == "__main__":
80
+ parser = argparse.ArgumentParser()
81
+ parser.add_argument("-m", "--model", default="./logs/mymodels/hutao.pth", help="path of your model")
82
+ parser.add_argument("-c", "--config", default="./configs/config.json", help="path of your config file")
83
+ parser.add_argument("--share", default=False, help="make link public")
84
+ parser.add_argument("-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log")
85
+
86
+ args = parser.parse_args()
87
+ if args.debug:
88
+ logger.info("Enable DEBUG-LEVEL log")
89
+ logging.basicConfig(level=logging.DEBUG)
90
+ hps = utils.get_hparams_from_file(args.config)
91
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
92
+
93
+ net_g = SynthesizerTrn(
94
+ len(symbols),
95
+ hps.data.filter_length // 2 + 1,
96
+ hps.train.segment_size // hps.data.hop_length,
97
+ n_speakers=hps.data.n_speakers,
98
+ **hps.model).to(device)
99
+ _ = net_g.eval()
100
+
101
+ _ = utils.load_checkpoint(args.model, net_g, None, skip_optimizer=True)
102
+
103
+ speaker_ids = hps.data.spk2id
104
+ speakers = list(speaker_ids.keys())
105
+ with gr.Blocks() as app:
106
+ with gr.Row():
107
+ with gr.Column():
108
+ gr.Markdown(value="""
109
+ 欢迎使用该模型,该模型由[bilibili@徐昭空](https://space.bilibili.com/49851595)制作</p>
110
+ 基于Bert-vits2开源项目制作,完全免费</p>
111
+ 使用该模型必须遵守该地区相关法律法规,禁止用其从事任何违法犯罪活动</p>
112
+ Bert-vits2项目地址:https://github.com/fishaudio/Bert-VITS2 </p>
113
+ 欢迎加入QQ交流群: 101442473</p>
114
+ """)
115
+ text = gr.TextArea(label="文本", placeholder="请输入用于转换的文本",
116
+ value="旅行者你好,我是往生堂堂主胡桃")
117
+ speaker = gr.Dropdown(choices=speakers, value=speakers[0], label='角色')
118
+ sdp_ratio = gr.Slider(minimum=0, maximum=1, value=0.2, step=0.1, label='SDP/DP混合比')
119
+ noise_scale = gr.Slider(minimum=0.1, maximum=2, value=0.6, step=0.1, label='感情调节')
120
+ noise_scale_w = gr.Slider(minimum=0.1, maximum=2, value=0.8, step=0.1, label='音素长度')
121
+ length_scale = gr.Slider(minimum=0.1, maximum=2, value=1, step=0.1, label='生成长度')
122
+ btn = gr.Button("点击生成喵~", variant="primary")
123
+ with gr.Column():
124
+ text_output = gr.Textbox(label="输出日志")
125
+ audio_output = gr.Audio(label="输出音频")
126
+
127
+ btn.click(tts_fn,
128
+ inputs=[text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale],
129
+ outputs=[text_output, audio_output])
130
+
131
+ app.launch(show_error=True)
attentions.py ADDED
@@ -0,0 +1,344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ import commons
8
+ import logging
9
+
10
+ logger = logging.getLogger(__name__)
11
+
12
+ class LayerNorm(nn.Module):
13
+ def __init__(self, channels, eps=1e-5):
14
+ super().__init__()
15
+ self.channels = channels
16
+ self.eps = eps
17
+
18
+ self.gamma = nn.Parameter(torch.ones(channels))
19
+ self.beta = nn.Parameter(torch.zeros(channels))
20
+
21
+ def forward(self, x):
22
+ x = x.transpose(1, -1)
23
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
24
+ return x.transpose(1, -1)
25
+
26
+
27
+
28
+ @torch.jit.script
29
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
30
+ n_channels_int = n_channels[0]
31
+ in_act = input_a + input_b
32
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
33
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
34
+ acts = t_act * s_act
35
+ return acts
36
+
37
+ class Encoder(nn.Module):
38
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, isflow = True, **kwargs):
39
+ super().__init__()
40
+ self.hidden_channels = hidden_channels
41
+ self.filter_channels = filter_channels
42
+ self.n_heads = n_heads
43
+ self.n_layers = n_layers
44
+ self.kernel_size = kernel_size
45
+ self.p_dropout = p_dropout
46
+ self.window_size = window_size
47
+ #if isflow:
48
+ # cond_layer = torch.nn.Conv1d(256, 2*hidden_channels*n_layers, 1)
49
+ # self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
50
+ # self.cond_layer = weight_norm(cond_layer, name='weight')
51
+ # self.gin_channels = 256
52
+ self.cond_layer_idx = self.n_layers
53
+ if 'gin_channels' in kwargs:
54
+ self.gin_channels = kwargs['gin_channels']
55
+ if self.gin_channels != 0:
56
+ self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels)
57
+ # vits2 says 3rd block, so idx is 2 by default
58
+ self.cond_layer_idx = kwargs['cond_layer_idx'] if 'cond_layer_idx' in kwargs else 2
59
+ logging.debug(self.gin_channels, self.cond_layer_idx)
60
+ assert self.cond_layer_idx < self.n_layers, 'cond_layer_idx should be less than n_layers'
61
+ self.drop = nn.Dropout(p_dropout)
62
+ self.attn_layers = nn.ModuleList()
63
+ self.norm_layers_1 = nn.ModuleList()
64
+ self.ffn_layers = nn.ModuleList()
65
+ self.norm_layers_2 = nn.ModuleList()
66
+ for i in range(self.n_layers):
67
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
68
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
69
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
70
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
71
+ def forward(self, x, x_mask, g=None):
72
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
73
+ x = x * x_mask
74
+ for i in range(self.n_layers):
75
+ if i == self.cond_layer_idx and g is not None:
76
+ g = self.spk_emb_linear(g.transpose(1, 2))
77
+ g = g.transpose(1, 2)
78
+ x = x + g
79
+ x = x * x_mask
80
+ y = self.attn_layers[i](x, x, attn_mask)
81
+ y = self.drop(y)
82
+ x = self.norm_layers_1[i](x + y)
83
+
84
+ y = self.ffn_layers[i](x, x_mask)
85
+ y = self.drop(y)
86
+ x = self.norm_layers_2[i](x + y)
87
+ x = x * x_mask
88
+ return x
89
+
90
+
91
+ class Decoder(nn.Module):
92
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
93
+ super().__init__()
94
+ self.hidden_channels = hidden_channels
95
+ self.filter_channels = filter_channels
96
+ self.n_heads = n_heads
97
+ self.n_layers = n_layers
98
+ self.kernel_size = kernel_size
99
+ self.p_dropout = p_dropout
100
+ self.proximal_bias = proximal_bias
101
+ self.proximal_init = proximal_init
102
+
103
+ self.drop = nn.Dropout(p_dropout)
104
+ self.self_attn_layers = nn.ModuleList()
105
+ self.norm_layers_0 = nn.ModuleList()
106
+ self.encdec_attn_layers = nn.ModuleList()
107
+ self.norm_layers_1 = nn.ModuleList()
108
+ self.ffn_layers = nn.ModuleList()
109
+ self.norm_layers_2 = nn.ModuleList()
110
+ for i in range(self.n_layers):
111
+ self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
112
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
113
+ self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
114
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
115
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
116
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
117
+
118
+ def forward(self, x, x_mask, h, h_mask):
119
+ """
120
+ x: decoder input
121
+ h: encoder output
122
+ """
123
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
124
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
125
+ x = x * x_mask
126
+ for i in range(self.n_layers):
127
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
128
+ y = self.drop(y)
129
+ x = self.norm_layers_0[i](x + y)
130
+
131
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
132
+ y = self.drop(y)
133
+ x = self.norm_layers_1[i](x + y)
134
+
135
+ y = self.ffn_layers[i](x, x_mask)
136
+ y = self.drop(y)
137
+ x = self.norm_layers_2[i](x + y)
138
+ x = x * x_mask
139
+ return x
140
+
141
+
142
+ class MultiHeadAttention(nn.Module):
143
+ def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
144
+ super().__init__()
145
+ assert channels % n_heads == 0
146
+
147
+ self.channels = channels
148
+ self.out_channels = out_channels
149
+ self.n_heads = n_heads
150
+ self.p_dropout = p_dropout
151
+ self.window_size = window_size
152
+ self.heads_share = heads_share
153
+ self.block_length = block_length
154
+ self.proximal_bias = proximal_bias
155
+ self.proximal_init = proximal_init
156
+ self.attn = None
157
+
158
+ self.k_channels = channels // n_heads
159
+ self.conv_q = nn.Conv1d(channels, channels, 1)
160
+ self.conv_k = nn.Conv1d(channels, channels, 1)
161
+ self.conv_v = nn.Conv1d(channels, channels, 1)
162
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
163
+ self.drop = nn.Dropout(p_dropout)
164
+
165
+ if window_size is not None:
166
+ n_heads_rel = 1 if heads_share else n_heads
167
+ rel_stddev = self.k_channels**-0.5
168
+ self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
169
+ self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
170
+
171
+ nn.init.xavier_uniform_(self.conv_q.weight)
172
+ nn.init.xavier_uniform_(self.conv_k.weight)
173
+ nn.init.xavier_uniform_(self.conv_v.weight)
174
+ if proximal_init:
175
+ with torch.no_grad():
176
+ self.conv_k.weight.copy_(self.conv_q.weight)
177
+ self.conv_k.bias.copy_(self.conv_q.bias)
178
+
179
+ def forward(self, x, c, attn_mask=None):
180
+ q = self.conv_q(x)
181
+ k = self.conv_k(c)
182
+ v = self.conv_v(c)
183
+
184
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
185
+
186
+ x = self.conv_o(x)
187
+ return x
188
+
189
+ def attention(self, query, key, value, mask=None):
190
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
191
+ b, d, t_s, t_t = (*key.size(), query.size(2))
192
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
193
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
194
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
195
+
196
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
197
+ if self.window_size is not None:
198
+ assert t_s == t_t, "Relative attention is only available for self-attention."
199
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
200
+ rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
201
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
202
+ scores = scores + scores_local
203
+ if self.proximal_bias:
204
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
205
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
206
+ if mask is not None:
207
+ scores = scores.masked_fill(mask == 0, -1e4)
208
+ if self.block_length is not None:
209
+ assert t_s == t_t, "Local attention is only available for self-attention."
210
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
211
+ scores = scores.masked_fill(block_mask == 0, -1e4)
212
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
213
+ p_attn = self.drop(p_attn)
214
+ output = torch.matmul(p_attn, value)
215
+ if self.window_size is not None:
216
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
217
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
218
+ output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
219
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
220
+ return output, p_attn
221
+
222
+ def _matmul_with_relative_values(self, x, y):
223
+ """
224
+ x: [b, h, l, m]
225
+ y: [h or 1, m, d]
226
+ ret: [b, h, l, d]
227
+ """
228
+ ret = torch.matmul(x, y.unsqueeze(0))
229
+ return ret
230
+
231
+ def _matmul_with_relative_keys(self, x, y):
232
+ """
233
+ x: [b, h, l, d]
234
+ y: [h or 1, m, d]
235
+ ret: [b, h, l, m]
236
+ """
237
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
238
+ return ret
239
+
240
+ def _get_relative_embeddings(self, relative_embeddings, length):
241
+ max_relative_position = 2 * self.window_size + 1
242
+ # Pad first before slice to avoid using cond ops.
243
+ pad_length = max(length - (self.window_size + 1), 0)
244
+ slice_start_position = max((self.window_size + 1) - length, 0)
245
+ slice_end_position = slice_start_position + 2 * length - 1
246
+ if pad_length > 0:
247
+ padded_relative_embeddings = F.pad(
248
+ relative_embeddings,
249
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
250
+ else:
251
+ padded_relative_embeddings = relative_embeddings
252
+ used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
253
+ return used_relative_embeddings
254
+
255
+ def _relative_position_to_absolute_position(self, x):
256
+ """
257
+ x: [b, h, l, 2*l-1]
258
+ ret: [b, h, l, l]
259
+ """
260
+ batch, heads, length, _ = x.size()
261
+ # Concat columns of pad to shift from relative to absolute indexing.
262
+ x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
263
+
264
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
265
+ x_flat = x.view([batch, heads, length * 2 * length])
266
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
267
+
268
+ # Reshape and slice out the padded elements.
269
+ x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
270
+ return x_final
271
+
272
+ def _absolute_position_to_relative_position(self, x):
273
+ """
274
+ x: [b, h, l, l]
275
+ ret: [b, h, l, 2*l-1]
276
+ """
277
+ batch, heads, length, _ = x.size()
278
+ # padd along column
279
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
280
+ x_flat = x.view([batch, heads, length**2 + length*(length -1)])
281
+ # add 0's in the beginning that will skew the elements after reshape
282
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
283
+ x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
284
+ return x_final
285
+
286
+ def _attention_bias_proximal(self, length):
287
+ """Bias for self-attention to encourage attention to close positions.
288
+ Args:
289
+ length: an integer scalar.
290
+ Returns:
291
+ a Tensor with shape [1, 1, length, length]
292
+ """
293
+ r = torch.arange(length, dtype=torch.float32)
294
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
295
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
296
+
297
+
298
+ class FFN(nn.Module):
299
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
300
+ super().__init__()
301
+ self.in_channels = in_channels
302
+ self.out_channels = out_channels
303
+ self.filter_channels = filter_channels
304
+ self.kernel_size = kernel_size
305
+ self.p_dropout = p_dropout
306
+ self.activation = activation
307
+ self.causal = causal
308
+
309
+ if causal:
310
+ self.padding = self._causal_padding
311
+ else:
312
+ self.padding = self._same_padding
313
+
314
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
315
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
316
+ self.drop = nn.Dropout(p_dropout)
317
+
318
+ def forward(self, x, x_mask):
319
+ x = self.conv_1(self.padding(x * x_mask))
320
+ if self.activation == "gelu":
321
+ x = x * torch.sigmoid(1.702 * x)
322
+ else:
323
+ x = torch.relu(x)
324
+ x = self.drop(x)
325
+ x = self.conv_2(self.padding(x * x_mask))
326
+ return x * x_mask
327
+
328
+ def _causal_padding(self, x):
329
+ if self.kernel_size == 1:
330
+ return x
331
+ pad_l = self.kernel_size - 1
332
+ pad_r = 0
333
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
334
+ x = F.pad(x, commons.convert_pad_shape(padding))
335
+ return x
336
+
337
+ def _same_padding(self, x):
338
+ if self.kernel_size == 1:
339
+ return x
340
+ pad_l = (self.kernel_size - 1) // 2
341
+ pad_r = self.kernel_size // 2
342
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
343
+ x = F.pad(x, commons.convert_pad_shape(padding))
344
+ return x
bert/chinese-roberta-wwm-ext-large/.gitattributes ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
2
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.h5 filter=lfs diff=lfs merge=lfs -text
5
+ *.tflite filter=lfs diff=lfs merge=lfs -text
6
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.ot filter=lfs diff=lfs merge=lfs -text
8
+ *.onnx filter=lfs diff=lfs merge=lfs -text
9
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
bert/chinese-roberta-wwm-ext-large/.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ *.bin
bert/chinese-roberta-wwm-ext-large/README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - zh
4
+ tags:
5
+ - bert
6
+ license: "apache-2.0"
7
+ ---
8
+
9
+ # Please use 'Bert' related functions to load this model!
10
+
11
+ ## Chinese BERT with Whole Word Masking
12
+ For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**.
13
+
14
+ **[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)**
15
+ Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu
16
+
17
+ This repository is developed based on:https://github.com/google-research/bert
18
+
19
+ You may also interested in,
20
+ - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm
21
+ - Chinese MacBERT: https://github.com/ymcui/MacBERT
22
+ - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA
23
+ - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet
24
+ - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer
25
+
26
+ More resources by HFL: https://github.com/ymcui/HFL-Anthology
27
+
28
+ ## Citation
29
+ If you find the technical report or resource is useful, please cite the following technical report in your paper.
30
+ - Primary: https://arxiv.org/abs/2004.13922
31
+ ```
32
+ @inproceedings{cui-etal-2020-revisiting,
33
+ title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing",
34
+ author = "Cui, Yiming and
35
+ Che, Wanxiang and
36
+ Liu, Ting and
37
+ Qin, Bing and
38
+ Wang, Shijin and
39
+ Hu, Guoping",
40
+ booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
41
+ month = nov,
42
+ year = "2020",
43
+ address = "Online",
44
+ publisher = "Association for Computational Linguistics",
45
+ url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58",
46
+ pages = "657--668",
47
+ }
48
+ ```
49
+ - Secondary: https://arxiv.org/abs/1906.08101
50
+ ```
51
+ @article{chinese-bert-wwm,
52
+ title={Pre-Training with Whole Word Masking for Chinese BERT},
53
+ author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},
54
+ journal={arXiv preprint arXiv:1906.08101},
55
+ year={2019}
56
+ }
57
+ ```
bert/chinese-roberta-wwm-ext-large/added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
bert/chinese-roberta-wwm-ext-large/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "directionality": "bidi",
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "output_past": true,
20
+ "pad_token_id": 0,
21
+ "pooler_fc_size": 768,
22
+ "pooler_num_attention_heads": 12,
23
+ "pooler_num_fc_layers": 3,
24
+ "pooler_size_per_head": 128,
25
+ "pooler_type": "first_token_transform",
26
+ "type_vocab_size": 2,
27
+ "vocab_size": 21128
28
+ }
bert/chinese-roberta-wwm-ext-large/flax_model.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a46a510fe646213c728b80c9d0d5691d05235523d67f9ac3c3ce4e67deabf926
3
+ size 1302196529
bert/chinese-roberta-wwm-ext-large/main ADDED
@@ -0,0 +1,449 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html class="">
3
+ <head>
4
+ <meta charset="utf-8" />
5
+ <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" />
6
+ <meta name="description" content="We’re on a journey to advance and democratize artificial intelligence through open source and open science." />
7
+ <meta property="fb:app_id" content="1321688464574422" />
8
+ <meta name="twitter:card" content="summary_large_image" />
9
+ <meta name="twitter:site" content="@huggingface" />
10
+ <meta property="og:title" content="cl-tohoku/bert-base-japanese-v3 at main" />
11
+ <meta property="og:type" content="website" />
12
+ <meta property="og:url" content="https://huggingface.co/cl-tohoku/bert-base-japanese-v3/tree/main" />
13
+ <meta property="og:image" content="https://cdn-thumbnails.huggingface.co/social-thumbnails/models/cl-tohoku/bert-base-japanese-v3.png" />
14
+
15
+ <link rel="stylesheet" href="/front/build/kube-1700e75/style.css" />
16
+
17
+ <link rel="preconnect" href="https://fonts.gstatic.com" />
18
+ <link
19
+ href="https://fonts.googleapis.com/css2?family=Source+Sans+Pro:ital,wght@0,200;0,300;0,400;0,600;0,700;0,900;1,200;1,300;1,400;1,600;1,700;1,900&display=swap"
20
+ rel="stylesheet"
21
+ />
22
+ <link
23
+ href="https://fonts.googleapis.com/css2?family=IBM+Plex+Mono:wght@400;600;700&display=swap"
24
+ rel="stylesheet"
25
+ />
26
+
27
+ <link
28
+ rel="preload"
29
+ href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.12.0/katex.min.css"
30
+ as="style"
31
+ onload="this.onload=null;this.rel='stylesheet'"
32
+ />
33
+ <noscript>
34
+ <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.12.0/katex.min.css" />
35
+ </noscript>
36
+
37
+
38
+
39
+ <title>cl-tohoku/bert-base-japanese-v3 at main</title>
40
+
41
+ <script defer data-domain="huggingface.co" src="/js/script.js"></script>
42
+ </head>
43
+ <body class="flex flex-col min-h-screen bg-white dark:bg-gray-950 text-black ViewerIndexTreePage">
44
+ <div class="flex min-h-screen flex-col">
45
+ <div class="SVELTE_HYDRATER contents" data-props="{&quot;classNames&quot;:&quot;&quot;,&quot;isWide&quot;:false,&quot;isZh&quot;:false}" data-target="MainHeader"><header class="border-b border-gray-100 "><div class="w-full px-4 container flex h-16 items-center"><div class="flex flex-1 items-center"><a class="mr-5 flex flex-none items-center lg:mr-6" href="/"><img alt="Hugging Face's logo" class="w-7 md:mr-2" src="/front/assets/huggingface_logo-noborder.svg">
46
+ <span class="hidden whitespace-nowrap text-lg font-bold md:block">Hugging Face</span></a>
47
+ <div class="relative flex-1 lg:max-w-sm mr-2 sm:mr-4 lg:mr-6"><input autocomplete="off" class="w-full dark:bg-gray-950 pl-8 form-input-alt h-9 pr-3 focus:shadow-xl" name="" placeholder="Search models, datasets, users..." spellcheck="false" type="text" value="">
48
+ <svg class="absolute left-2.5 text-gray-400 top-1/2 transform -translate-y-1/2" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><path d="M30 28.59L22.45 21A11 11 0 1 0 21 22.45L28.59 30zM5 14a9 9 0 1 1 9 9a9 9 0 0 1-9-9z" fill="currentColor"></path></svg>
49
+ </div>
50
+ <div class="flex flex-none items-center justify-center p-0.5 place-self-stretch lg:hidden"><button class="relative z-30 flex h-6 w-8 items-center justify-center" type="button"><svg width="1em" height="1em" viewBox="0 0 10 10" class="text-xl" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" preserveAspectRatio="xMidYMid meet" fill="currentColor"><path fill-rule="evenodd" clip-rule="evenodd" d="M1.65039 2.9999C1.65039 2.8066 1.80709 2.6499 2.00039 2.6499H8.00039C8.19369 2.6499 8.35039 2.8066 8.35039 2.9999C8.35039 3.1932 8.19369 3.3499 8.00039 3.3499H2.00039C1.80709 3.3499 1.65039 3.1932 1.65039 2.9999ZM1.65039 4.9999C1.65039 4.8066 1.80709 4.6499 2.00039 4.6499H8.00039C8.19369 4.6499 8.35039 4.8066 8.35039 4.9999C8.35039 5.1932 8.19369 5.3499 8.00039 5.3499H2.00039C1.80709 5.3499 1.65039 5.1932 1.65039 4.9999ZM2.00039 6.6499C1.80709 6.6499 1.65039 6.8066 1.65039 6.9999C1.65039 7.1932 1.80709 7.3499 2.00039 7.3499H8.00039C8.19369 7.3499 8.35039 7.1932 8.35039 6.9999C8.35039 6.8066 8.19369 6.6499 8.00039 6.6499H2.00039Z"></path></svg>
51
+ </button>
52
+
53
+ </div></div>
54
+ <nav aria-label="Main" class="ml-auto hidden lg:block"><ul class="flex items-center space-x-2"><li><a class="group flex items-center px-2 py-0.5 dark:hover:text-gray-400 hover:text-indigo-700" href="/models"><svg class="mr-1.5 text-gray-400 group-hover:text-indigo-500" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 24 24"><path class="uim-quaternary" d="M20.23 7.24L12 12L3.77 7.24a1.98 1.98 0 0 1 .7-.71L11 2.76c.62-.35 1.38-.35 2 0l6.53 3.77c.29.173.531.418.7.71z" opacity=".25" fill="currentColor"></path><path class="uim-tertiary" d="M12 12v9.5a2.09 2.09 0 0 1-.91-.21L4.5 17.48a2.003 2.003 0 0 1-1-1.73v-7.5a2.06 2.06 0 0 1 .27-1.01L12 12z" opacity=".5" fill="currentColor"></path><path class="uim-primary" d="M20.5 8.25v7.5a2.003 2.003 0 0 1-1 1.73l-6.62 3.82c-.275.13-.576.198-.88.2V12l8.23-4.76c.175.308.268.656.27 1.01z" fill="currentColor"></path></svg>
55
+ Models</a>
56
+ </li><li><a class="group flex items-center px-2 py-0.5 dark:hover:text-gray-400 hover:text-red-700" href="/datasets"><svg class="mr-1.5 text-gray-400 group-hover:text-red-500" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 25 25"><ellipse cx="12.5" cy="5" fill="currentColor" fill-opacity="0.25" rx="7.5" ry="2"></ellipse><path d="M12.5 15C16.6421 15 20 14.1046 20 13V20C20 21.1046 16.6421 22 12.5 22C8.35786 22 5 21.1046 5 20V13C5 14.1046 8.35786 15 12.5 15Z" fill="currentColor" opacity="0.5"></path><path d="M12.5 7C16.6421 7 20 6.10457 20 5V11.5C20 12.6046 16.6421 13.5 12.5 13.5C8.35786 13.5 5 12.6046 5 11.5V5C5 6.10457 8.35786 7 12.5 7Z" fill="currentColor" opacity="0.5"></path><path d="M5.23628 12C5.08204 12.1598 5 12.8273 5 13C5 14.1046 8.35786 15 12.5 15C16.6421 15 20 14.1046 20 13C20 12.8273 19.918 12.1598 19.7637 12C18.9311 12.8626 15.9947 13.5 12.5 13.5C9.0053 13.5 6.06886 12.8626 5.23628 12Z" fill="currentColor"></path></svg>
57
+ Datasets</a>
58
+ </li><li><a class="group flex items-center px-2 py-0.5 dark:hover:text-gray-400 hover:text-blue-700" href="/spaces"><svg class="mr-1.5 text-gray-400 group-hover:text-blue-500" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" viewBox="0 0 25 25"><path opacity=".5" d="M6.016 14.674v4.31h4.31v-4.31h-4.31ZM14.674 14.674v4.31h4.31v-4.31h-4.31ZM6.016 6.016v4.31h4.31v-4.31h-4.31Z" fill="currentColor"></path><path opacity=".75" fill-rule="evenodd" clip-rule="evenodd" d="M3 4.914C3 3.857 3.857 3 4.914 3h6.514c.884 0 1.628.6 1.848 1.414a5.171 5.171 0 0 1 7.31 7.31c.815.22 1.414.964 1.414 1.848v6.514A1.914 1.914 0 0 1 20.086 22H4.914A1.914 1.914 0 0 1 3 20.086V4.914Zm3.016 1.102v4.31h4.31v-4.31h-4.31Zm0 12.968v-4.31h4.31v4.31h-4.31Zm8.658 0v-4.31h4.31v4.31h-4.31Zm0-10.813a2.155 2.155 0 1 1 4.31 0 2.155 2.155 0 0 1-4.31 0Z" fill="currentColor"></path><path opacity=".25" d="M16.829 6.016a2.155 2.155 0 1 0 0 4.31 2.155 2.155 0 0 0 0-4.31Z" fill="currentColor"></path></svg>
59
+ Spaces</a>
60
+ </li><li><a class="group flex items-center px-2 py-0.5 dark:hover:text-gray-400 hover:text-yellow-700" href="/docs"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" class="mr-1.5 text-gray-400 group-hover:text-yellow-500" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><path opacity="0.5" d="M20.9022 5.10334L10.8012 10.8791L7.76318 9.11193C8.07741 8.56791 8.5256 8.11332 9.06512 7.7914L15.9336 3.73907C17.0868 3.08811 18.5002 3.26422 19.6534 3.91519L19.3859 3.73911C19.9253 4.06087 20.5879 4.56025 20.9022 5.10334Z" fill="currentColor"></path><path d="M10.7999 10.8792V28.5483C10.2136 28.5475 9.63494 28.4139 9.10745 28.1578C8.5429 27.8312 8.074 27.3621 7.74761 26.7975C7.42122 26.2327 7.24878 25.5923 7.24756 24.9402V10.9908C7.25062 10.3319 7.42358 9.68487 7.74973 9.1123L10.7999 10.8792Z" fill="currentColor" fill-opacity="0.75"></path><path fill-rule="evenodd" clip-rule="evenodd" d="M21.3368 10.8499V6.918C21.3331 6.25959 21.16 5.61234 20.8346 5.03949L10.7971 10.8727L10.8046 10.874L21.3368 10.8499Z" fill="currentColor"></path><path opacity="0.5" d="M21.7937 10.8488L10.7825 10.8741V28.5486L21.7937 28.5234C23.3344 28.5234 24.5835 27.2743 24.5835 25.7335V13.6387C24.5835 12.0979 23.4365 11.1233 21.7937 10.8488Z" fill="currentColor"></path></svg>
61
+ Docs</a>
62
+ </li>
63
+ <li><div class="relative ">
64
+ <button class="px-2 py-0.5 group hover:text-green-700 dark:hover:text-gray-400 flex items-center " type="button">
65
+ <svg class="mr-1.5 text-gray-400 group-hover:text-green-500" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 24 24"><path class="uim-tertiary" d="M19 6H5a3 3 0 0 0-3 3v2.72L8.837 14h6.326L22 11.72V9a3 3 0 0 0-3-3z" opacity=".5" fill="currentColor"></path><path class="uim-primary" d="M10 6V5h4v1h2V5a2.002 2.002 0 0 0-2-2h-4a2.002 2.002 0 0 0-2 2v1h2zm-1.163 8L2 11.72V18a3.003 3.003 0 0 0 3 3h14a3.003 3.003 0 0 0 3-3v-6.28L15.163 14H8.837z" fill="currentColor"></path></svg>
66
+ Solutions
67
+ </button>
68
+
69
+
70
+
71
+ </div></li>
72
+ <li><a class="group flex items-center px-2 py-0.5 hover:text-gray-500 dark:hover:text-gray-400" href="/pricing">Pricing
73
+ </a></li>
74
+
75
+ <li><div class="relative group">
76
+ <button class="px-2 py-0.5 hover:text-gray-500 dark:hover:text-gray-600 flex items-center " type="button">
77
+ <svg class="mr-1.5 text-gray-500 w-5 group-hover:text-gray-400 dark:text-gray-300 dark:group-hover:text-gray-400" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" viewBox="0 0 32 18" preserveAspectRatio="xMidYMid meet"><path fill-rule="evenodd" clip-rule="evenodd" d="M14.4504 3.30221C14.4504 2.836 14.8284 2.45807 15.2946 2.45807H28.4933C28.9595 2.45807 29.3374 2.836 29.3374 3.30221C29.3374 3.76842 28.9595 4.14635 28.4933 4.14635H15.2946C14.8284 4.14635 14.4504 3.76842 14.4504 3.30221Z" fill="currentColor"></path><path fill-rule="evenodd" clip-rule="evenodd" d="M14.4504 9.00002C14.4504 8.53382 14.8284 8.15588 15.2946 8.15588H28.4933C28.9595 8.15588 29.3374 8.53382 29.3374 9.00002C29.3374 9.46623 28.9595 9.84417 28.4933 9.84417H15.2946C14.8284 9.84417 14.4504 9.46623 14.4504 9.00002Z" fill="currentColor"></path><path fill-rule="evenodd" clip-rule="evenodd" d="M14.4504 14.6978C14.4504 14.2316 14.8284 13.8537 15.2946 13.8537H28.4933C28.9595 13.8537 29.3374 14.2316 29.3374 14.6978C29.3374 15.164 28.9595 15.542 28.4933 15.542H15.2946C14.8284 15.542 14.4504 15.164 14.4504 14.6978Z" fill="currentColor"></path><path fill-rule="evenodd" clip-rule="evenodd" d="M1.94549 6.87377C2.27514 6.54411 2.80962 6.54411 3.13928 6.87377L6.23458 9.96907L9.32988 6.87377C9.65954 6.54411 10.194 6.54411 10.5237 6.87377C10.8533 7.20343 10.8533 7.73791 10.5237 8.06756L6.23458 12.3567L1.94549 8.06756C1.61583 7.73791 1.61583 7.20343 1.94549 6.87377Z" fill="currentColor"></path></svg>
78
+
79
+ </button>
80
+
81
+
82
+
83
+ </div></li>
84
+ <li><hr class="h-5 w-0.5 border-none bg-gray-100 dark:bg-gray-800"></li>
85
+ <li><a class="block cursor-pointer px-2 py-0.5 hover:text-gray-500 dark:hover:text-gray-400" href="/login">Log In
86
+ </a></li>
87
+ <li><a class="rounded-full border border-transparent bg-gray-900 px-3 py-1 leading-none text-white hover:border-black hover:bg-white hover:text-black" href="/join">Sign Up
88
+ </a></li></ul></nav></div></header></div>
89
+
90
+ <div class="SVELTE_HYDRATER contents" data-props="{}" data-target="GoogleAnalyticsTracker"></div>
91
+
92
+
93
+ <div class="SVELTE_HYDRATER contents" data-props="{}" data-target="SSOBanner"></div>
94
+
95
+ <main class="flex flex-1 flex-col "><div class="SVELTE_HYDRATER contents" data-props="{&quot;activeTab&quot;:&quot;files&quot;,&quot;author&quot;:{&quot;avatarUrl&quot;:&quot;/avatars/4550666e229421f4c5932aaf3f23068b.svg&quot;,&quot;fullname&quot;:&quot;Tohoku University&quot;,&quot;name&quot;:&quot;cl-tohoku&quot;,&quot;type&quot;:&quot;user&quot;,&quot;isPro&quot;:false,&quot;isHf&quot;:false},&quot;canReadRepoSettings&quot;:false,&quot;canWriteRepoContent&quot;:false,&quot;canDisable&quot;:false,&quot;model&quot;:{&quot;author&quot;:&quot;cl-tohoku&quot;,&quot;cardData&quot;:{&quot;license&quot;:&quot;apache-2.0&quot;,&quot;datasets&quot;:[&quot;cc100&quot;,&quot;wikipedia&quot;],&quot;language&quot;:[&quot;ja&quot;],&quot;widget&quot;:[{&quot;text&quot;:&quot;東北大学で[MASK]の研究をしています。&quot;}]},&quot;cardExists&quot;:true,&quot;config&quot;:{&quot;architectures&quot;:[&quot;BertForPreTraining&quot;],&quot;model_type&quot;:&quot;bert&quot;},&quot;discussionsDisabled&quot;:false,&quot;downloads&quot;:24835,&quot;downloadsAllTime&quot;:66924,&quot;id&quot;:&quot;cl-tohoku/bert-base-japanese-v3&quot;,&quot;isLikedByUser&quot;:false,&quot;isWatchedByUser&quot;:false,&quot;inference&quot;:true,&quot;lastModified&quot;:&quot;2023-05-19T00:31:53.000Z&quot;,&quot;likes&quot;:9,&quot;library_name&quot;:&quot;transformers&quot;,&quot;mask_token&quot;:&quot;[MASK]&quot;,&quot;model-index&quot;:null,&quot;private&quot;:false,&quot;repoType&quot;:&quot;model&quot;,&quot;gated&quot;:false,&quot;pwcLink&quot;:{&quot;error&quot;:&quot;Unknown error, can't generate link to Papers With Code.&quot;},&quot;tags&quot;:[&quot;transformers&quot;,&quot;pytorch&quot;,&quot;tf&quot;,&quot;jax&quot;,&quot;bert&quot;,&quot;pretraining&quot;,&quot;ja&quot;,&quot;dataset:cc100&quot;,&quot;dataset:wikipedia&quot;,&quot;license:apache-2.0&quot;,&quot;region:us&quot;],&quot;tag_objs&quot;:[{&quot;id&quot;:&quot;transformers&quot;,&quot;label&quot;:&quot;Transformers&quot;,&quot;type&quot;:&quot;library&quot;},{&quot;id&quot;:&quot;pytorch&quot;,&quot;label&quot;:&quot;PyTorch&quot;,&quot;type&quot;:&quot;library&quot;},{&quot;id&quot;:&quot;tf&quot;,&quot;label&quot;:&quot;TensorFlow&quot;,&quot;type&quot;:&quot;library&quot;},{&quot;id&quot;:&quot;jax&quot;,&quot;label&quot;:&quot;JAX&quot;,&quot;type&quot;:&quot;library&quot;},{&quot;id&quot;:&quot;dataset:cc100&quot;,&quot;label&quot;:&quot;cc100&quot;,&quot;type&quot;:&quot;dataset&quot;,&quot;disabled&quot;:false},{&quot;id&quot;:&quot;dataset:wikipedia&quot;,&quot;label&quot;:&quot;wikipedia&quot;,&quot;type&quot;:&quot;dataset&quot;,&quot;disabled&quot;:false},{&quot;id&quot;:&quot;ja&quot;,&quot;label&quot;:&quot;ja&quot;,&quot;type&quot;:&quot;language&quot;},{&quot;id&quot;:&quot;bert&quot;,&quot;label&quot;:&quot;bert&quot;,&quot;type&quot;:&quot;other&quot;},{&quot;id&quot;:&quot;pretraining&quot;,&quot;label&quot;:&quot;pretraining&quot;,&quot;type&quot;:&quot;other&quot;},{&quot;id&quot;:&quot;license:apache-2.0&quot;,&quot;label&quot;:&quot;apache-2.0&quot;,&quot;type&quot;:&quot;license&quot;},{&quot;type&quot;:&quot;region&quot;,&quot;label&quot;:&quot;🇺🇸 Region: US&quot;,&quot;id&quot;:&quot;region:us&quot;}],&quot;hasHandlerPy&quot;:false,&quot;transformersInfo&quot;:{&quot;auto_model&quot;:&quot;AutoModelForPreTraining&quot;,&quot;pipeline_tag&quot;:&quot;pretraining&quot;,&quot;processor&quot;:&quot;AutoTokenizer&quot;},&quot;widgetData&quot;:[{&quot;text&quot;:&quot;東北大学で[MASK]の研究をしています。&quot;}]},&quot;discussionsStats&quot;:{&quot;closed&quot;:0,&quot;open&quot;:0,&quot;total&quot;:0}}" data-target="ModelHeader"><header class="from-gray-50-to-white border-b border-gray-100 bg-gradient-to-t via-white dark:via-gray-950 pt-6 sm:pt-9"><div class="container relative "><h1 class="flex flex-wrap items-center leading-tight mb-3 text-lg md:text-xl">
96
+ <div class="group flex flex-none items-center"><div class="relative mr-1.5 flex items-center">
97
+
98
+ <img alt="" class="w-3.5 h-3.5 rounded-full " src="/avatars/4550666e229421f4c5932aaf3f23068b.svg" crossorigin="anonymous"></div>
99
+ <a href="/cl-tohoku" class="text-gray-400 hover:text-blue-600">cl-tohoku</a>
100
+ <div class="mx-0.5 text-gray-300">/</div></div>
101
+
102
+ <div class="max-w-full "><a class="break-words font-mono font-semibold hover:text-blue-600 " href="/cl-tohoku/bert-base-japanese-v3">bert-base-japanese-v3</a>
103
+ <button class="relative text-sm mr-4 inline-flex cursor-pointer items-center text-sm focus:outline-none mx-0.5 text-gray-600 " title="Copy model name to clipboard" type="button"><svg class="" xmlns="http://www.w3.org/2000/svg" aria-hidden="true" fill="currentColor" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><path d="M28,10V28H10V10H28m0-2H10a2,2,0,0,0-2,2V28a2,2,0,0,0,2,2H28a2,2,0,0,0,2-2V10a2,2,0,0,0-2-2Z" transform="translate(0)"></path><path d="M4,18H2V4A2,2,0,0,1,4,2H18V4H4Z" transform="translate(0)"></path><rect fill="none" width="32" height="32"></rect></svg>
104
+
105
+ </button></div>
106
+ <div class="inline-flex items-center overflow-hidden whitespace-nowrap rounded-md border bg-white text-sm leading-none text-gray-500 mr-2"><button class="relative flex items-center px-1.5 py-1 hover:bg-gradient-to-t focus:outline-none overflow-hidden from-red-50 to-transparent dark:from-red-900 dark:to-red-800" title="Like"><svg class="left-1.5 absolute" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32" fill="currentColor"><path d="M22.45,6a5.47,5.47,0,0,1,3.91,1.64,5.7,5.7,0,0,1,0,8L16,26.13,5.64,15.64a5.7,5.7,0,0,1,0-8,5.48,5.48,0,0,1,7.82,0L16,10.24l2.53-2.58A5.44,5.44,0,0,1,22.45,6m0-2a7.47,7.47,0,0,0-5.34,2.24L16,7.36,14.89,6.24a7.49,7.49,0,0,0-10.68,0,7.72,7.72,0,0,0,0,10.82L16,29,27.79,17.06a7.72,7.72,0,0,0,0-10.82A7.49,7.49,0,0,0,22.45,4Z"></path></svg>
107
+
108
+
109
+ <span class="ml-4 pl-0.5">like</span></button>
110
+ <button class="flex items-center border-l px-1.5 py-1 text-gray-400 hover:bg-gray-50 focus:bg-gray-100 focus:outline-none dark:hover:bg-gray-900 dark:focus:bg-gray-800" title="See users who liked this repository">9</button></div>
111
+
112
+ </h1>
113
+ <div class="mb-3 flex flex-wrap md:mb-4"><a class="tag tag-white" href="/models?library=transformers"><svg class="text-black inline-block ml-2 text-sm" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" preserveAspectRatio="xMidYMid meet" width="1em" height="1em" viewBox="0 0 95 88"><path fill="#fff" d="M94.25 70.08a8.28 8.28 0 0 1-.43 6.46 10.57 10.57 0 0 1-3 3.6 25.18 25.18 0 0 1-5.7 3.2 65.74 65.74 0 0 1-7.56 2.65 46.67 46.67 0 0 1-11.42 1.68c-5.42.05-10.09-1.23-13.4-4.5a40.4 40.4 0 0 1-10.14.03c-3.34 3.25-7.99 4.52-13.39 4.47a46.82 46.82 0 0 1-11.43-1.68 66.37 66.37 0 0 1-7.55-2.65c-2.28-.98-4.17-2-5.68-3.2a10.5 10.5 0 0 1-3.02-3.6c-.99-2-1.18-4.3-.42-6.46a8.54 8.54 0 0 1-.33-5.63c.25-.95.66-1.83 1.18-2.61a8.67 8.67 0 0 1 2.1-8.47 8.23 8.23 0 0 1 2.82-2.07 41.75 41.75 0 1 1 81.3-.12 8.27 8.27 0 0 1 3.11 2.19 8.7 8.7 0 0 1 2.1 8.47c.52.78.93 1.66 1.18 2.61a8.61 8.61 0 0 1-.32 5.63Z"></path><path fill="#FFD21E" d="M47.21 76.5a34.75 34.75 0 1 0 0-69.5 34.75 34.75 0 0 0 0 69.5Z"></path><path fill="#FF9D0B" d="M81.96 41.75a34.75 34.75 0 1 0-69.5 0 34.75 34.75 0 0 0 69.5 0Zm-73.5 0a38.75 38.75 0 1 1 77.5 0 38.75 38.75 0 0 1-77.5 0Z"></path><path fill="#3A3B45" d="M58.5 32.3c1.28.44 1.78 3.06 3.07 2.38a5 5 0 1 0-6.76-2.07c.61 1.15 2.55-.72 3.7-.32ZM34.95 32.3c-1.28.44-1.79 3.06-3.07 2.38a5 5 0 1 1 6.76-2.07c-.61 1.15-2.56-.72-3.7-.32Z"></path><path fill="#FF323D" d="M46.96 56.29c9.83 0 13-8.76 13-13.26 0-2.34-1.57-1.6-4.09-.36-2.33 1.15-5.46 2.74-8.9 2.74-7.19 0-13-6.88-13-2.38s3.16 13.26 13 13.26Z"></path><path fill="#3A3B45" fill-rule="evenodd" d="M39.43 54a8.7 8.7 0 0 1 5.3-4.49c.4-.12.81.57 1.24 1.28.4.68.82 1.37 1.24 1.37.45 0 .9-.68 1.33-1.35.45-.7.89-1.38 1.32-1.25a8.61 8.61 0 0 1 5 4.17c3.73-2.94 5.1-7.74 5.1-10.7 0-2.34-1.57-1.6-4.09-.36l-.14.07c-2.31 1.15-5.39 2.67-8.77 2.67s-6.45-1.52-8.77-2.67c-2.6-1.29-4.23-2.1-4.23.29 0 3.05 1.46 8.06 5.47 10.97Z" clip-rule="evenodd"></path><path fill="#FF9D0B" d="M70.71 37a3.25 3.25 0 1 0 0-6.5 3.25 3.25 0 0 0 0 6.5ZM24.21 37a3.25 3.25 0 1 0 0-6.5 3.25 3.25 0 0 0 0 6.5ZM17.52 48c-1.62 0-3.06.66-4.07 1.87a5.97 5.97 0 0 0-1.33 3.76 7.1 7.1 0 0 0-1.94-.3c-1.55 0-2.95.59-3.94 1.66a5.8 5.8 0 0 0-.8 7 5.3 5.3 0 0 0-1.79 2.82c-.24.9-.48 2.8.8 4.74a5.22 5.22 0 0 0-.37 5.02c1.02 2.32 3.57 4.14 8.52 6.1 3.07 1.22 5.89 2 5.91 2.01a44.33 44.33 0 0 0 10.93 1.6c5.86 0 10.05-1.8 12.46-5.34 3.88-5.69 3.33-10.9-1.7-15.92-2.77-2.78-4.62-6.87-5-7.77-.78-2.66-2.84-5.62-6.25-5.62a5.7 5.7 0 0 0-4.6 2.46c-1-1.26-1.98-2.25-2.86-2.82A7.4 7.4 0 0 0 17.52 48Zm0 4c.51 0 1.14.22 1.82.65 2.14 1.36 6.25 8.43 7.76 11.18.5.92 1.37 1.31 2.14 1.31 1.55 0 2.75-1.53.15-3.48-3.92-2.93-2.55-7.72-.68-8.01.08-.02.17-.02.24-.02 1.7 0 2.45 2.93 2.45 2.93s2.2 5.52 5.98 9.3c3.77 3.77 3.97 6.8 1.22 10.83-1.88 2.75-5.47 3.58-9.16 3.58-3.81 0-7.73-.9-9.92-1.46-.11-.03-13.45-3.8-11.76-7 .28-.54.75-.76 1.34-.76 2.38 0 6.7 3.54 8.57 3.54.41 0 .7-.17.83-.6.79-2.85-12.06-4.05-10.98-8.17.2-.73.71-1.02 1.44-1.02 3.14 0 10.2 5.53 11.68 5.53.11 0 .2-.03.24-.1.74-1.2.33-2.04-4.9-5.2-5.21-3.16-8.88-5.06-6.8-7.33.24-.26.58-.38 1-.38 3.17 0 10.66 6.82 10.66 6.82s2.02 2.1 3.25 2.1c.28 0 .52-.1.68-.38.86-1.46-8.06-8.22-8.56-11.01-.34-1.9.24-2.85 1.31-2.85Z"></path><path fill="#FFD21E" d="M38.6 76.69c2.75-4.04 2.55-7.07-1.22-10.84-3.78-3.77-5.98-9.3-5.98-9.3s-.82-3.2-2.69-2.9c-1.87.3-3.24 5.08.68 8.01 3.91 2.93-.78 4.92-2.29 2.17-1.5-2.75-5.62-9.82-7.76-11.18-2.13-1.35-3.63-.6-3.13 2.2.5 2.79 9.43 9.55 8.56 11-.87 1.47-3.93-1.71-3.93-1.71s-9.57-8.71-11.66-6.44c-2.08 2.27 1.59 4.17 6.8 7.33 5.23 3.16 5.64 4 4.9 5.2-.75 1.2-12.28-8.53-13.36-4.4-1.08 4.11 11.77 5.3 10.98 8.15-.8 2.85-9.06-5.38-10.74-2.18-1.7 3.21 11.65 6.98 11.76 7.01 4.3 1.12 15.25 3.49 19.08-2.12Z"></path><path fill="#FF9D0B" d="M77.4 48c1.62 0 3.07.66 4.07 1.87a5.97 5.97 0 0 1 1.33 3.76 7.1 7.1 0 0 1 1.95-.3c1.55 0 2.95.59 3.94 1.66a5.8 5.8 0 0 1 .8 7 5.3 5.3 0 0 1 1.78 2.82c.24.9.48 2.8-.8 4.74a5.22 5.22 0 0 1 .37 5.02c-1.02 2.32-3.57 4.14-8.51 6.1-3.08 1.22-5.9 2-5.92 2.01a44.33 44.33 0 0 1-10.93 1.6c-5.86 0-10.05-1.8-12.46-5.34-3.88-5.69-3.33-10.9 1.7-15.92 2.78-2.78 4.63-6.87 5.01-7.77.78-2.66 2.83-5.62 6.24-5.62a5.7 5.7 0 0 1 4.6 2.46c1-1.26 1.98-2.25 2.87-2.82A7.4 7.4 0 0 1 77.4 48Zm0 4c-.51 0-1.13.22-1.82.65-2.13 1.36-6.25 8.43-7.76 11.18a2.43 2.43 0 0 1-2.14 1.31c-1.54 0-2.75-1.53-.14-3.48 3.91-2.93 2.54-7.72.67-8.01a1.54 1.54 0 0 0-.24-.02c-1.7 0-2.45 2.93-2.45 2.93s-2.2 5.52-5.97 9.3c-3.78 3.77-3.98 6.8-1.22 10.83 1.87 2.75 5.47 3.58 9.15 3.58 3.82 0 7.73-.9 9.93-1.46.1-.03 13.45-3.8 11.76-7-.29-.54-.75-.76-1.34-.76-2.38 0-6.71 3.54-8.57 3.54-.42 0-.71-.17-.83-.6-.8-2.85 12.05-4.05 10.97-8.17-.19-.73-.7-1.02-1.44-1.02-3.14 0-10.2 5.53-11.68 5.53-.1 0-.19-.03-.23-.1-.74-1.2-.34-2.04 4.88-5.2 5.23-3.16 8.9-5.06 6.8-7.33-.23-.26-.57-.38-.98-.38-3.18 0-10.67 6.82-10.67 6.82s-2.02 2.1-3.24 2.1a.74.74 0 0 1-.68-.38c-.87-1.46 8.05-8.22 8.55-11.01.34-1.9-.24-2.85-1.31-2.85Z"></path><path fill="#FFD21E" d="M56.33 76.69c-2.75-4.04-2.56-7.07 1.22-10.84 3.77-3.77 5.97-9.3 5.97-9.3s.82-3.2 2.7-2.9c1.86.3 3.23 5.08-.68 8.01-3.92 2.93.78 4.92 2.28 2.17 1.51-2.75 5.63-9.82 7.76-11.18 2.13-1.35 3.64-.6 3.13 2.2-.5 2.79-9.42 9.55-8.55 11 .86 1.47 3.92-1.71 3.92-1.71s9.58-8.71 11.66-6.44c2.08 2.27-1.58 4.17-6.8 7.33-5.23 3.16-5.63 4-4.9 5.2.75 1.2 12.28-8.53 13.36-4.4 1.08 4.11-11.76 5.3-10.97 8.15.8 2.85 9.05-5.38 10.74-2.18 1.69 3.21-11.65 6.98-11.76 7.01-4.31 1.12-15.26 3.49-19.08-2.12Z"></path></svg>
114
+ <span>Transformers</span>
115
+ </a><a class="tag tag-white" href="/models?library=pytorch"><svg class="text-black inline-block ml-2 text-sm" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><defs><clipPath id="a"><rect x="3.05" y="0.5" width="25.73" height="31" fill="none"></rect></clipPath></defs><g clip-path="url(#a)"><path d="M24.94,9.51a12.81,12.81,0,0,1,0,18.16,12.68,12.68,0,0,1-18,0,12.81,12.81,0,0,1,0-18.16l9-9V5l-.84.83-6,6a9.58,9.58,0,1,0,13.55,0ZM20.44,9a1.68,1.68,0,1,1,1.67-1.67A1.68,1.68,0,0,1,20.44,9Z" fill="#ee4c2c"></path></g></svg>
116
+ <span>PyTorch</span>
117
+ </a><a class="tag tag-white" href="/models?library=tf"><svg class="text-black inline-block ml-2 text-sm" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 534.01 508.99"><defs><style>.cls-1 {
118
+ fill: none;
119
+ }
120
+ .cls-2 {
121
+ clip-path: url(#clip-path);
122
+ }
123
+ .cls-3 {
124
+ fill: url(#linear-gradient);
125
+ }
126
+ .cls-4 {
127
+ clip-path: url(#clip-path-2);
128
+ }
129
+ .cls-5 {
130
+ fill: url(#linear-gradient-2);
131
+ }
132
+ </style><clipPath id="clip-path" transform="translate(23.09 1.92)"><polygon class="cls-1" points="452.23 123.16 235.73 0 235.73 506.11 322.33 456.07 322.33 313.67 387.76 351.2 386.8 254.02 322.33 216.49 322.33 159.72 452.23 235.73 452.23 123.16"></polygon></clipPath><linearGradient id="linear-gradient" x1="-20.21" y1="-48.36" x2="510.92" y2="-48.36" gradientTransform="matrix(1, 0, 0, -1, 0, 204.21)" gradientUnits="userSpaceOnUse"><stop offset="0" stop-color="#ff6f00"></stop><stop offset="1" stop-color="#ffa800"></stop></linearGradient><clipPath id="clip-path-2" transform="translate(23.09 1.92)"><polygon class="cls-1" points="0 123.16 216.49 0 216.49 506.11 129.89 456.07 129.89 159.72 0 235.73 0 123.16"></polygon></clipPath><linearGradient id="linear-gradient-2" x1="-23.09" y1="-48.36" x2="508.03" y2="-48.36" xlink:href="#linear-gradient"></linearGradient></defs><title>google-tensorflow</title><g class="cls-2"><path class="cls-3" d="M-20.21-1.92H510.92v509H-20.21Z" transform="translate(23.09 1.92)"></path></g><g class="cls-4"><path class="cls-5" d="M-23.09-1.92H508v509H-23.09Z" transform="translate(23.09 1.92)"></path></g></svg>
133
+ <span>TensorFlow</span>
134
+ </a><a class="tag tag-white" href="/models?library=jax"><svg class="text-black inline-block ml-2 text-sm" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1.73em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 451 260.81"><style>.J {
135
+ stroke: #dce0df;
136
+ }
137
+ .K {
138
+ stroke-linejoin: round;
139
+ }
140
+ </style><g fill="#5e97f6" class="J K"><path d="M50.5 130.4l-25 43.31h50l25-43.31h-50z"></path><path d="M.5 217.01l25-43.3h50l-25 43.3H.5z"></path><path d="M125.5 173.71h-50l-25 43.3h50l25-43.3z"></path><path d="M175.5 173.71h-50l-25 43.3h50l25-43.3z"></path><path d="M150.5 130.4l-25 43.31h50l25-43.31h-50z"></path><path d="M175.5 87.1l-25 43.3h50l25-43.3h-50z"></path><path d="M200.5 43.8l-25 43.3h50l25-43.3h-50z"></path><path d="M225.5.5l-25 43.3h50l25-43.3h-50z"></path></g><g fill="#2a56c6" class="J K"><path d="M.5 217.01l25 43.3h50l-25-43.3H.5z"></path><path d="M125.5 260.31h-50l-25-43.3h50l25 43.3z"></path><path d="M175.5 260.31h-50l-25-43.3h50l25 43.3z"></path></g><g fill="#00796b" class="J K"><path d="M200.5 217.01l-25-43.3-25 43.3 25 43.3 25-43.3zm50-86.61l-25-43.3-25 43.3h50z"></path><path d="M250.5 43.8l-25 43.3 25 43.3 25-43.3-25-43.3z"></path></g><path d="M125.5 173.71l-25-43.31-25 43.31h50z" fill="#3367d6" class="J K"></path><g fill="#26a69a" class="J K"><path d="M250.5 130.4h-50l-25 43.31h50l25-43.31z"></path><path d="M300.5 130.4h-50l-25 43.31h50l25-43.31z"></path></g><g fill="#9c27b0" class="J K"><path d="M350.5 43.8L325.5.5l-25 43.3 25 43.3 25-43.3z"></path><path d="M375.5 87.1l-25-43.3-25 43.3 25 43.3 25-43.3z"></path><path d="M400.5 130.4l-25-43.3-25 43.3 25 43.31 25-43.31z"></path><path d="M425.5 173.71l-25-43.31-25 43.31 25 43.3 25-43.3z"></path><path d="M450.5 217.01l-25-43.3-25 43.3 25 43.3 25-43.3zM425.5.5l-25 43.3 25 43.3 25-43.3-25-43.3z"></path><path d="M375.5 87.1l25-43.3 25 43.3-25 43.3-25-43.3zm-25 43.3l-25 43.31 25 43.3 25-43.3-25-43.31z"></path><path d="M325.5 260.31l-25-43.3 25-43.3 25 43.3-25 43.3z"></path></g><path d="M275.5 260.31l-25-43.3h50l25 43.3h-50z" fill="#6a1b9a" class="J K"></path><g fill="#00695c" class="J K"><path d="M225.5 173.71h-50l25 43.3h50l-25-43.3z"></path><path d="M275.5 173.71h-50l25 43.3 25-43.3zm0-86.61l25 43.3h50l-25-43.3h-50z"></path><path d="M300.5 43.8h-50l25 43.3h50l-25-43.3zm125 216.51l-25-43.3h-50l25 43.3h50z"></path><path d="M375.5 173.71l-25 43.3h50l-25-43.3z"></path></g><g fill="#ea80fc" class="J K"><path d="M325.5.5h-50l-25 43.3h50l25-43.3zm0 173.21h-50l-25 43.3h50l25-43.3z"></path><path d="M350.5 130.4h-50l-25 43.31h50l25-43.31zM425.5.5h-50l-25 43.3h50l25-43.3z"></path><path d="M375.5 87.1l-25-43.3h50l-25 43.3z"></path></g></svg>
141
+ <span>JAX</span>
142
+ </a><div class="relative inline-block mr-1 mb-1 md:mr-1.5 md:mb-1.5">
143
+ <button class=" " type="button">
144
+
145
+ <a class="tag mr-0 mb-0 md:mr-0 md:mb-0 tag-indigo" href="/models?dataset=dataset%3Acc100"><svg class="flex-none ml-2 -mr-1 opacity-40" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 25 25"><ellipse cx="12.5" cy="5" fill="currentColor" fill-opacity="0.25" rx="7.5" ry="2"></ellipse><path d="M12.5 15C16.6421 15 20 14.1046 20 13V20C20 21.1046 16.6421 22 12.5 22C8.35786 22 5 21.1046 5 20V13C5 14.1046 8.35786 15 12.5 15Z" fill="currentColor" opacity="0.5"></path><path d="M12.5 7C16.6421 7 20 6.10457 20 5V11.5C20 12.6046 16.6421 13.5 12.5 13.5C8.35786 13.5 5 12.6046 5 11.5V5C5 6.10457 8.35786 7 12.5 7Z" fill="currentColor" opacity="0.5"></path><path d="M5.23628 12C5.08204 12.1598 5 12.8273 5 13C5 14.1046 8.35786 15 12.5 15C16.6421 15 20 14.1046 20 13C20 12.8273 19.918 12.1598 19.7637 12C18.9311 12.8626 15.9947 13.5 12.5 13.5C9.0053 13.5 6.06886 12.8626 5.23628 12Z" fill="currentColor"></path></svg>
146
+ <span>cc100</span>
147
+ </a>
148
+
149
+
150
+ </button>
151
+
152
+
153
+
154
+ </div><div class="relative inline-block mr-1 mb-1 md:mr-1.5 md:mb-1.5">
155
+ <button class=" " type="button">
156
+
157
+ <a class="tag mr-0 mb-0 md:mr-0 md:mb-0 tag-indigo" href="/models?dataset=dataset%3Awikipedia"><svg class="flex-none ml-2 -mr-1 opacity-40" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 25 25"><ellipse cx="12.5" cy="5" fill="currentColor" fill-opacity="0.25" rx="7.5" ry="2"></ellipse><path d="M12.5 15C16.6421 15 20 14.1046 20 13V20C20 21.1046 16.6421 22 12.5 22C8.35786 22 5 21.1046 5 20V13C5 14.1046 8.35786 15 12.5 15Z" fill="currentColor" opacity="0.5"></path><path d="M12.5 7C16.6421 7 20 6.10457 20 5V11.5C20 12.6046 16.6421 13.5 12.5 13.5C8.35786 13.5 5 12.6046 5 11.5V5C5 6.10457 8.35786 7 12.5 7Z" fill="currentColor" opacity="0.5"></path><path d="M5.23628 12C5.08204 12.1598 5 12.8273 5 13C5 14.1046 8.35786 15 12.5 15C16.6421 15 20 14.1046 20 13C20 12.8273 19.918 12.1598 19.7637 12C18.9311 12.8626 15.9947 13.5 12.5 13.5C9.0053 13.5 6.06886 12.8626 5.23628 12Z" fill="currentColor"></path></svg>
158
+ <span>wikipedia</span>
159
+ </a>
160
+
161
+
162
+ </button>
163
+
164
+
165
+
166
+ </div><a class="tag tag-green" href="/models?language=ja"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" class="ml-2 text-green-600/80" preserveAspectRatio="xMidYMid meet" width="1em" height="1em" viewBox="0 0 10 10"><path fill-rule="evenodd" clip-rule="evenodd" d="M0.625 5C0.625 6.16032 1.08594 7.27312 1.90641 8.09359C2.72688 8.91406 3.83968 9.375 5 9.375C6.16032 9.375 7.27312 8.91406 8.09359 8.09359C8.91406 7.27312 9.375 6.16032 9.375 5C9.375 3.83968 8.91406 2.72688 8.09359 1.90641C7.27312 1.08594 6.16032 0.625 5 0.625C3.83968 0.625 2.72688 1.08594 1.90641 1.90641C1.08594 2.72688 0.625 3.83968 0.625 5ZM7.64365 7.48027C7.61734 7.50832 7.59054 7.53598 7.56326 7.56326C7.13828 7.98824 6.61864 8.2968 6.0539 8.46842C6.29802 8.11949 6.49498 7.64804 6.63475 7.09483C7.00845 7.18834 7.35014 7.3187 7.64365 7.48027ZM8.10076 6.87776C8.37677 6.42196 8.55005 5.90894 8.60556 5.37499H6.86808C6.85542 5.71597 6.82551 6.04557 6.77971 6.35841C7.25309 6.47355 7.68808 6.6414 8.062 6.85549C8.07497 6.86283 8.08789 6.87025 8.10076 6.87776ZM6.03795 6.22536C6.07708 5.95737 6.1044 5.67232 6.11705 5.37499H3.88295C3.89666 5.69742 3.92764 6.00542 3.9722 6.29287C4.37075 6.21726 4.79213 6.17749 5.224 6.17749C5.50054 6.17749 5.77294 6.19376 6.03795 6.22536ZM4.1261 7.02673C4.34894 7.84835 4.68681 8.375 5 8.375C5.32122 8.375 5.66839 7.82101 5.8908 6.963C5.67389 6.93928 5.45082 6.92699 5.224 6.92699C4.84316 6.92699 4.47332 6.96176 4.1261 7.02673ZM3.39783 7.21853C3.53498 7.71842 3.72038 8.14579 3.9461 8.46842C3.42141 8.30898 2.93566 8.03132 2.52857 7.65192C2.77253 7.48017 3.06711 7.33382 3.39783 7.21853ZM3.23916 6.48077C3.18263 6.13193 3.14625 5.76074 3.13192 5.37499H1.39444C1.4585 5.99112 1.67936 6.57938 2.03393 7.08403C2.3706 6.83531 2.78055 6.63162 3.23916 6.48077ZM1.39444 4.62499H3.13192C3.14615 4.24204 3.18211 3.87344 3.23794 3.52681C2.77814 3.37545 2.36731 3.17096 2.03024 2.92123C1.67783 3.42469 1.45828 4.011 1.39444 4.62499ZM2.5237 2.35262C2.76812 2.52552 3.06373 2.67281 3.39584 2.78875C3.53318 2.28573 3.71928 1.85578 3.9461 1.53158C3.41932 1.69166 2.93178 1.97089 2.5237 2.35262ZM3.97101 3.71489C3.92709 4.00012 3.89654 4.30547 3.88295 4.62499H6.11705C6.10453 4.33057 6.07761 4.04818 6.03909 3.78248C5.77372 3.81417 5.50093 3.83049 5.224 3.83049C4.79169 3.83049 4.3699 3.79065 3.97101 3.71489ZM5.8928 3.04476C5.67527 3.06863 5.45151 3.08099 5.224 3.08099C4.84241 3.08099 4.47186 3.04609 4.12405 2.98086C4.34686 2.1549 4.68584 1.625 5 1.625C5.32218 1.625 5.67048 2.18233 5.8928 3.04476ZM6.78083 3.6493C6.826 3.95984 6.85552 4.28682 6.86808 4.62499H8.60556C8.55029 4.09337 8.37827 3.58251 8.10436 3.1282C8.0903 3.1364 8.07618 3.14449 8.062 3.15249C7.68838 3.36641 7.25378 3.53417 6.78083 3.6493ZM7.64858 2.52499C7.35446 2.68754 7.0117 2.81868 6.63664 2.91268C6.49676 2.35623 6.29913 1.88209 6.0539 1.53158C6.61864 1.7032 7.13828 2.01176 7.56326 2.43674C7.59224 2.46572 7.62068 2.49514 7.64858 2.52499Z" fill="currentColor"></path></svg>
167
+ <span>Japanese</span>
168
+ </a><a class="tag tag-purple" href="/models?other=bert">
169
+ <span>bert</span>
170
+ </a><a class="tag tag-purple" href="/models?other=pretraining">
171
+ <span>pretraining</span>
172
+ </a><a class="tag tag-white rounded-full" href="/models?license=license%3Aapache-2.0"><svg class="ml-2 text-xs text-gray-900" width="1em" height="1em" viewBox="0 0 10 10" fill="none" xmlns="http://www.w3.org/2000/svg"><path d="M1.46009 5.0945V6.88125C1.46009 7.25201 1.75937 7.55129 2.13012 7.55129C2.50087 7.55129 2.80016 7.25201 2.80016 6.88125V5.0945C2.80016 4.72375 2.50087 4.42446 2.13012 4.42446C1.75937 4.42446 1.46009 4.72375 1.46009 5.0945ZM4.14022 5.0945V6.88125C4.14022 7.25201 4.4395 7.55129 4.81026 7.55129C5.18101 7.55129 5.48029 7.25201 5.48029 6.88125V5.0945C5.48029 4.72375 5.18101 4.42446 4.81026 4.42446C4.4395 4.42446 4.14022 4.72375 4.14022 5.0945ZM1.23674 9.78473H8.38377C8.75452 9.78473 9.0538 9.48545 9.0538 9.1147C9.0538 8.74395 8.75452 8.44466 8.38377 8.44466H1.23674C0.865993 8.44466 0.566711 8.74395 0.566711 9.1147C0.566711 9.48545 0.865993 9.78473 1.23674 9.78473ZM6.82036 5.0945V6.88125C6.82036 7.25201 7.11964 7.55129 7.49039 7.55129C7.86114 7.55129 8.16042 7.25201 8.16042 6.88125V5.0945C8.16042 4.72375 7.86114 4.42446 7.49039 4.42446C7.11964 4.42446 6.82036 4.72375 6.82036 5.0945ZM4.39484 0.623142L0.865993 2.48137C0.682851 2.57517 0.566711 2.76725 0.566711 2.97273C0.566711 3.28094 0.816857 3.53109 1.12507 3.53109H8.49991C8.80365 3.53109 9.0538 3.28094 9.0538 2.97273C9.0538 2.76725 8.93766 2.57517 8.75452 2.48137L5.22568 0.623142C4.9666 0.484669 4.65391 0.484669 4.39484 0.623142V0.623142Z" fill="currentColor"></path></svg>
173
+ <span class="-mr-1 !pr-0 text-gray-400">License: </span>
174
+ <span>apache-2.0</span>
175
+ </a></div>
176
+
177
+ <div class="flex flex-col-reverse lg:flex-row lg:items-center lg:justify-between"><div class="-mb-px flex h-12 items-center overflow-x-auto overflow-y-hidden "><a class="tab-alternate " href="/cl-tohoku/bert-base-japanese-v3"><svg class="mr-1.5 text-gray-400 flex-none" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 24 24"><path class="uim-quaternary" d="M20.23 7.24L12 12L3.77 7.24a1.98 1.98 0 0 1 .7-.71L11 2.76c.62-.35 1.38-.35 2 0l6.53 3.77c.29.173.531.418.7.71z" opacity=".25" fill="currentColor"></path><path class="uim-tertiary" d="M12 12v9.5a2.09 2.09 0 0 1-.91-.21L4.5 17.48a2.003 2.003 0 0 1-1-1.73v-7.5a2.06 2.06 0 0 1 .27-1.01L12 12z" opacity=".5" fill="currentColor"></path><path class="uim-primary" d="M20.5 8.25v7.5a2.003 2.003 0 0 1-1 1.73l-6.62 3.82c-.275.13-.576.198-.88.2V12l8.23-4.76c.175.308.268.656.27 1.01z" fill="currentColor"></path></svg>
178
+ Model card
179
+
180
+
181
+ </a><a class="tab-alternate active" href="/cl-tohoku/bert-base-japanese-v3/tree/main"><svg class="mr-1.5 text-gray-400 flex-none" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 24 24"><path class="uim-tertiary" d="M21 19h-8a1 1 0 0 1 0-2h8a1 1 0 0 1 0 2zm0-4h-8a1 1 0 0 1 0-2h8a1 1 0 0 1 0 2zm0-8h-8a1 1 0 0 1 0-2h8a1 1 0 0 1 0 2zm0 4h-8a1 1 0 0 1 0-2h8a1 1 0 0 1 0 2z" opacity=".5" fill="currentColor"></path><path class="uim-primary" d="M9 19a1 1 0 0 1-1-1V6a1 1 0 0 1 2 0v12a1 1 0 0 1-1 1zm-6-4.333a1 1 0 0 1-.64-1.769L3.438 12l-1.078-.898a1 1 0 0 1 1.28-1.538l2 1.667a1 1 0 0 1 0 1.538l-2 1.667a.999.999 0 0 1-.64.231z" fill="currentColor"></path></svg>
182
+ <span class="xl:hidden">Files</span>
183
+ <span class="hidden xl:inline">Files and versions</span>
184
+
185
+
186
+ </a><a class="tab-alternate " href="/cl-tohoku/bert-base-japanese-v3/discussions"><svg class="mr-1.5 text-gray-400 flex-none" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><path d="M20.6081 3C21.7684 3 22.8053 3.49196 23.5284 4.38415C23.9756 4.93678 24.4428 5.82749 24.4808 7.16133C24.9674 7.01707 25.4353 6.93643 25.8725 6.93643C26.9833 6.93643 27.9865 7.37587 28.696 8.17411C29.6075 9.19872 30.0124 10.4579 29.8361 11.7177C29.7523 12.3177 29.5581 12.8555 29.2678 13.3534C29.8798 13.8646 30.3306 14.5763 30.5485 15.4322C30.719 16.1032 30.8939 17.5006 29.9808 18.9403C30.0389 19.0342 30.0934 19.1319 30.1442 19.2318C30.6932 20.3074 30.7283 21.5229 30.2439 22.6548C29.5093 24.3704 27.6841 25.7219 24.1397 27.1727C21.9347 28.0753 19.9174 28.6523 19.8994 28.6575C16.9842 29.4379 14.3477 29.8345 12.0653 29.8345C7.87017 29.8345 4.8668 28.508 3.13831 25.8921C0.356375 21.6797 0.754104 17.8269 4.35369 14.1131C6.34591 12.058 7.67023 9.02782 7.94613 8.36275C8.50224 6.39343 9.97271 4.20438 12.4172 4.20438H12.4179C12.6236 4.20438 12.8314 4.2214 13.0364 4.25468C14.107 4.42854 15.0428 5.06476 15.7115 6.02205C16.4331 5.09583 17.134 4.359 17.7682 3.94323C18.7242 3.31737 19.6794 3 20.6081 3ZM20.6081 5.95917C20.2427 5.95917 19.7963 6.1197 19.3039 6.44225C17.7754 7.44319 14.8258 12.6772 13.7458 14.7131C13.3839 15.3952 12.7655 15.6837 12.2086 15.6837C11.1036 15.6837 10.2408 14.5497 12.1076 13.1085C14.9146 10.9402 13.9299 7.39584 12.5898 7.1776C12.5311 7.16799 12.4731 7.16355 12.4172 7.16355C11.1989 7.16355 10.6615 9.33114 10.6615 9.33114C10.6615 9.33114 9.0863 13.4148 6.38031 16.206C3.67434 18.998 3.5346 21.2388 5.50675 24.2246C6.85185 26.2606 9.42666 26.8753 12.0653 26.8753C14.8021 26.8753 17.6077 26.2139 19.1799 25.793C19.2574 25.7723 28.8193 22.984 27.6081 20.6107C27.4046 20.212 27.0693 20.0522 26.6471 20.0522C24.9416 20.0522 21.8393 22.6726 20.5057 22.6726C20.2076 22.6726 19.9976 22.5416 19.9116 22.222C19.3433 20.1173 28.552 19.2325 27.7758 16.1839C27.639 15.6445 27.2677 15.4256 26.746 15.4263C24.4923 15.4263 19.4358 19.5181 18.3759 19.5181C18.2949 19.5181 18.2368 19.4937 18.2053 19.4419C17.6743 18.557 17.9653 17.9394 21.7082 15.6009C25.4511 13.2617 28.0783 11.8545 26.5841 10.1752C26.4121 9.98141 26.1684 9.8956 25.8725 9.8956C23.6001 9.89634 18.2311 14.9403 18.2311 14.9403C18.2311 14.9403 16.7821 16.496 15.9057 16.496C15.7043 16.496 15.533 16.4139 15.4169 16.2112C14.7956 15.1296 21.1879 10.1286 21.5484 8.06535C21.7928 6.66715 21.3771 5.95917 20.6081 5.95917Z" fill="#FF9D00"></path><path d="M5.50686 24.2246C3.53472 21.2387 3.67446 18.9979 6.38043 16.206C9.08641 13.4147 10.6615 9.33111 10.6615 9.33111C10.6615 9.33111 11.2499 6.95933 12.59 7.17757C13.93 7.39581 14.9139 10.9401 12.1069 13.1084C9.29997 15.276 12.6659 16.7489 13.7459 14.713C14.8258 12.6772 17.7747 7.44316 19.304 6.44221C20.8326 5.44128 21.9089 6.00204 21.5484 8.06532C21.188 10.1286 14.795 15.1295 15.4171 16.2118C16.0391 17.2934 18.2312 14.9402 18.2312 14.9402C18.2312 14.9402 25.0907 8.49588 26.5842 10.1752C28.0776 11.8545 25.4512 13.2616 21.7082 15.6008C17.9646 17.9393 17.6744 18.557 18.2054 19.4418C18.7372 20.3266 26.9998 13.1351 27.7759 16.1838C28.5513 19.2324 19.3434 20.1173 19.9117 22.2219C20.48 24.3274 26.3979 18.2382 27.6082 20.6107C28.8193 22.9839 19.2574 25.7722 19.18 25.7929C16.0914 26.62 8.24723 28.3726 5.50686 24.2246Z" fill="#FFD21E"></path></svg>
187
+ Community
188
+
189
+
190
+ </a>
191
+ </div>
192
+
193
+
194
+
195
+
196
+ <div class="relative mb-1.5 flex flex-wrap gap-1.5 sm:flex-nowrap lg:mb-0">
197
+
198
+ <div class="order-last sm:order-first"><div class="relative ">
199
+ <button class="btn px-1.5 py-1.5 " type="button">
200
+
201
+ <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" class="p-0.5" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><circle cx="16" cy="7" r="3" fill="currentColor"></circle><circle cx="16" cy="16" r="3" fill="currentColor"></circle><circle cx="16" cy="25" r="3" fill="currentColor"></circle></svg>
202
+
203
+ </button>
204
+
205
+
206
+
207
+ </div></div>
208
+
209
+
210
+
211
+
212
+
213
+
214
+
215
+
216
+
217
+ <div class="flex-none w-full sm:w-auto"><div class="relative ">
218
+ <button class="text-sm btn btn w-full cursor-pointer text-sm" type="button">
219
+ <svg class="mr-1.5 " xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><path d="M12.1 2a9.8 9.8 0 0 0-5.4 1.6l6.4 6.4a2.1 2.1 0 0 1 .2 3a2.1 2.1 0 0 1-3-.2L3.7 6.4A9.84 9.84 0 0 0 2 12.1a10.14 10.14 0 0 0 10.1 10.1a10.9 10.9 0 0 0 2.6-.3l6.7 6.7a5 5 0 0 0 7.1-7.1l-6.7-6.7a10.9 10.9 0 0 0 .3-2.6A10 10 0 0 0 12.1 2zm8 10.1a7.61 7.61 0 0 1-.3 2.1l-.3 1.1l.8.8l6.7 6.7a2.88 2.88 0 0 1 .9 2.1A2.72 2.72 0 0 1 27 27a2.9 2.9 0 0 1-4.2 0l-6.7-6.7l-.8-.8l-1.1.3a7.61 7.61 0 0 1-2.1.3a8.27 8.27 0 0 1-5.7-2.3A7.63 7.63 0 0 1 4 12.1a8.33 8.33 0 0 1 .3-2.2l4.4 4.4a4.14 4.14 0 0 0 5.9.2a4.14 4.14 0 0 0-.2-5.9L10 4.2a6.45 6.45 0 0 1 2-.3a8.27 8.27 0 0 1 5.7 2.3a8.49 8.49 0 0 1 2.4 5.9z" fill="currentColor"></path></svg>
220
+ Train
221
+ <svg class="-mr-1 text-gray-500" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 24 24" style="transform: rotate(360deg);"><path d="M7 10l5 5l5-5z" fill="currentColor"></path></svg></button>
222
+
223
+
224
+
225
+ </div>
226
+ </div>
227
+ <div class="flex-none w-full sm:w-auto"><div class="relative ">
228
+ <button class="text-sm btn btn w-full cursor-pointer text-sm" type="button">
229
+ <svg class="mr-1.5 " xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" fill="currentColor" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><rect x="6.34" y="19" width="11.31" height="2" transform="translate(-10.63 14.34) rotate(-45)"></rect><path d="M17,30a1,1,0,0,1-.37-.07,1,1,0,0,1-.62-.79l-1-7,2-.28.75,5.27L21,24.52V17a1,1,0,0,1,.29-.71l4.07-4.07A8.94,8.94,0,0,0,28,5.86V4H26.14a8.94,8.94,0,0,0-6.36,2.64l-4.07,4.07A1,1,0,0,1,15,11H7.48L4.87,14.26l5.27.75-.28,2-7-1a1,1,0,0,1-.79-.62,1,1,0,0,1,.15-1l4-5A1,1,0,0,1,7,9h7.59l3.77-3.78A10.92,10.92,0,0,1,26.14,2H28a2,2,0,0,1,2,2V5.86a10.92,10.92,0,0,1-3.22,7.78L23,17.41V25a1,1,0,0,1-.38.78l-5,4A1,1,0,0,1,17,30Z"></path></svg>
230
+ Deploy
231
+ <svg class="-mr-1 text-gray-500" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 24 24" style="transform: rotate(360deg);"><path d="M7 10l5 5l5-5z" fill="currentColor"></path></svg></button>
232
+
233
+
234
+
235
+ </div>
236
+ </div>
237
+ <div class="flex-auto sm:flex-none"><button class="w-full cursor-pointer btn text-sm" type="button" ><svg class="mr-1.5 " xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32" style="transform: rotate(360deg);"><path d="M31 16l-7 7l-1.41-1.41L28.17 16l-5.58-5.59L24 9l7 7z" fill="currentColor"></path><path d="M1 16l7-7l1.41 1.41L3.83 16l5.58 5.59L8 23l-7-7z" fill="currentColor"></path><path d="M12.419 25.484L17.639 6l1.932.518L14.35 26z" fill="currentColor"></path></svg>
238
+ Use in Transformers</button>
239
+ </div></div>
240
+ </div></div></header></div>
241
+
242
+
243
+ <div class="container relative flex flex-col md:grid md:space-y-0 w-full md:grid-cols-12 space-y-4 md:gap-6 mb-16"><section class="pt-8 border-gray-100 col-span-full"><header class="flex flex-wrap items-center justify-start pb-2 md:justify-end lg:flex-nowrap"><div class="mr-4 flex min-w-0 basis-auto flex-wrap items-center md:flex-grow md:basis-full lg:basis-auto lg:flex-nowrap"><div class="SVELTE_HYDRATER contents" data-props="{&quot;repoName&quot;:&quot;cl-tohoku/bert-base-japanese-v3&quot;,&quot;repoType&quot;:&quot;model&quot;,&quot;rev&quot;:&quot;main&quot;,&quot;refs&quot;:{&quot;branches&quot;:[{&quot;name&quot;:&quot;main&quot;,&quot;ref&quot;:&quot;refs/heads/main&quot;,&quot;targetCommit&quot;:&quot;65243d6e5629b969c77309f217bd7b1a79d43c7e&quot;}],&quot;tags&quot;:[],&quot;converts&quot;:[]},&quot;view&quot;:&quot;tree&quot;}" data-target="BranchSelector"><div class="relative mr-4 mb-2">
244
+ <button class="text-sm md:text-base btn w-full cursor-pointer text-sm" type="button">
245
+ <svg class="mr-1.5 text-gray-700 dark:text-gray-400" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 24 24" style="transform: rotate(360deg);"><path d="M13 14c-3.36 0-4.46 1.35-4.82 2.24C9.25 16.7 10 17.76 10 19a3 3 0 0 1-3 3a3 3 0 0 1-3-3c0-1.31.83-2.42 2-2.83V7.83A2.99 2.99 0 0 1 4 5a3 3 0 0 1 3-3a3 3 0 0 1 3 3c0 1.31-.83 2.42-2 2.83v5.29c.88-.65 2.16-1.12 4-1.12c2.67 0 3.56-1.34 3.85-2.23A3.006 3.006 0 0 1 14 7a3 3 0 0 1 3-3a3 3 0 0 1 3 3c0 1.34-.88 2.5-2.09 2.86C17.65 11.29 16.68 14 13 14m-6 4a1 1 0 0 0-1 1a1 1 0 0 0 1 1a1 1 0 0 0 1-1a1 1 0 0 0-1-1M7 4a1 1 0 0 0-1 1a1 1 0 0 0 1 1a1 1 0 0 0 1-1a1 1 0 0 0-1-1m10 2a1 1 0 0 0-1 1a1 1 0 0 0 1 1a1 1 0 0 0 1-1a1 1 0 0 0-1-1z" fill="currentColor"></path></svg>
246
+ main
247
+ <svg class="-mr-1 text-gray-500" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 24 24" style="transform: rotate(360deg);"><path d="M7 10l5 5l5-5z" fill="currentColor"></path></svg></button>
248
+
249
+
250
+
251
+ </div></div>
252
+ <div class="mb-2 flex items-center overflow-hidden"><a class="truncate text-gray-800 hover:underline" href="/cl-tohoku/bert-base-japanese-v3/tree/main">bert-base-japanese-v3</a>
253
+ </div></div>
254
+
255
+ <div class="mb-2 flex w-full items-center md:w-auto"><a class="mr-2 flex-grow overflow-hidden md:mr-6" href="/cl-tohoku/bert-base-japanese-v3/commits/main"><ul class="flex items-center overflow-hidden justify-start md:justify-end flex-row-reverse text-sm "><li class=" -mr-2 h-4 w-4 md:h-5 md:w-5 block flex-none rounded-full border-2 border-white bg-gradient-to-br from-gray-300 to-gray-100 dark:border-gray-900 dark:from-gray-600 dark:to-gray-800" title="cl-tohoku" style="content-visibility:auto;"><img class="overflow-hidden rounded-full" alt="" src="/avatars/4550666e229421f4c5932aaf3f23068b.svg">
256
+ </li>
257
+
258
+ <li class="text-gray-600 hover:text-gray-700 order-first ml-3"><span>1 contributor</span></li></ul></a>
259
+ <a class="btn group mr-0 flex-grow-0 cursor-pointer rounded-full text-sm md:px-4 md:text-base" href="/cl-tohoku/bert-base-japanese-v3/commits/main"><svg class="mr-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32" style="transform: rotate(360deg);"><path d="M16 4C9.383 4 4 9.383 4 16s5.383 12 12 12s12-5.383 12-12S22.617 4 16 4zm0 2c5.535 0 10 4.465 10 10s-4.465 10-10 10S6 21.535 6 16S10.465 6 16 6zm-1 2v9h7v-2h-5V8z" fill="currentColor"></path></svg>
260
+ <span class="mr-1 text-gray-600">History:</span>
261
+ <span class="group-hover:underline">3 commits</span></a></div>
262
+ </header>
263
+
264
+ <div class="SVELTE_HYDRATER contents" data-props="{&quot;classNames&quot;:&quot;mb-3&quot;,&quot;repoId&quot;:&quot;cl-tohoku/bert-base-japanese-v3&quot;,&quot;repoType&quot;:&quot;model&quot;,&quot;revision&quot;:&quot;main&quot;,&quot;isUnsafe&quot;:false,&quot;infectedFiles&quot;:[]}" data-target="UnsafeBanner"></div>
265
+
266
+ <div class="SVELTE_HYDRATER contents" data-props="{&quot;commitLast&quot;:{&quot;date&quot;:&quot;2023-05-19T00:31:53.000Z&quot;,&quot;subject&quot;:&quot;Add model files&quot;,&quot;authors&quot;:[{&quot;_id&quot;:&quot;5dd9d59b66059660ed1ee415&quot;,&quot;avatar&quot;:&quot;/avatars/4550666e229421f4c5932aaf3f23068b.svg&quot;,&quot;isHf&quot;:false,&quot;user&quot;:&quot;cl-tohoku&quot;}],&quot;commit&quot;:{&quot;id&quot;:&quot;65243d6e5629b969c77309f217bd7b1a79d43c7e&quot;,&quot;parentIds&quot;:[&quot;f58f6fcbc7b241abfe48906986700b39272fcce3&quot;]},&quot;title&quot;:&quot;Add model files&quot;},&quot;repo&quot;:{&quot;name&quot;:&quot;cl-tohoku/bert-base-japanese-v3&quot;,&quot;type&quot;:&quot;model&quot;}}" data-target="LastCommit"><div class="from-gray-100-to-white flex items-baseline rounded-t-lg border border-b-0 bg-gradient-to-t px-3 py-2 dark:border-gray-800"><img class="mt-0.5 mr-2.5 h-4 w-4 self-center rounded-full" alt="cl-tohoku's picture" src="/avatars/4550666e229421f4c5932aaf3f23068b.svg">
267
+ <div class="mr-5 flex flex-none items-center truncate"><a class="hover:underline" href="/cl-tohoku">cl-tohoku
268
+ </a>
269
+
270
+ </div>
271
+ <div class="mr-4 truncate font-mono text-sm text-gray-500 hover:prose-a:underline"><!-- HTML_TAG_START -->Add model files<!-- HTML_TAG_END --></div>
272
+ <a class="rounded border bg-gray-50 px-1.5 text-sm hover:underline dark:border-gray-800 dark:bg-gray-900" href="/cl-tohoku/bert-base-japanese-v3/commit/65243d6e5629b969c77309f217bd7b1a79d43c7e">65243d6</a>
273
+
274
+ <time class="ml-auto hidden flex-none truncate pl-2 text-gray-500 dark:text-gray-400 lg:block" datetime="2023-05-19T00:31:53" title="Fri, 19 May 2023 00:31:53 GMT">4 months ago</time></div></div>
275
+ <div class="SVELTE_HYDRATER contents" data-props="{&quot;context&quot;:{&quot;rev&quot;:&quot;main&quot;,&quot;repo&quot;:{&quot;_id&quot;:&quot;6466bf416c080f37e25767d3&quot;,&quot;gitalyUid&quot;:&quot;4c88375ccabf6c7d262df5cfed1e7bcdcb362ef06f50a3a62e381bc3bf3f6bc6&quot;,&quot;type&quot;:&quot;model&quot;,&quot;name&quot;:&quot;cl-tohoku/bert-base-japanese-v3&quot;,&quot;config&quot;:{&quot;private&quot;:false,&quot;gated&quot;:false,&quot;discussionsDisabled&quot;:false,&quot;duplicationDisabled&quot;:false,&quot;region&quot;:&quot;us&quot;,&quot;gitaly&quot;:{&quot;storage&quot;:&quot;default&quot;,&quot;repoUid&quot;:&quot;4c88375ccabf6c7d262df5cfed1e7bcdcb362ef06f50a3a62e381bc3bf3f6bc6&quot;,&quot;region&quot;:&quot;us&quot;},&quot;lfs&quot;:{&quot;bucket&quot;:&quot;lfs.huggingface.co&quot;,&quot;prefix&quot;:&quot;repos/4c/88/4c88375ccabf6c7d262df5cfed1e7bcdcb362ef06f50a3a62e381bc3bf3f6bc6&quot;}},&quot;updatedAt&quot;:&quot;2023-05-19T00:13:53.386Z&quot;,&quot;authorId&quot;:&quot;5dd9d59b66059660ed1ee415&quot;,&quot;creatorId&quot;:&quot;5dd9d59b66059660ed1ee415&quot;},&quot;commit&quot;:{&quot;id&quot;:&quot;65243d6e5629b969c77309f217bd7b1a79d43c7e&quot;,&quot;subject&quot;:&quot;Add model files&quot;,&quot;body&quot;:&quot;Add model files&quot;,&quot;author&quot;:{&quot;name&quot;:&quot;Tohoku University&quot;,&quot;date&quot;:&quot;2023-05-19T00:31:53.000Z&quot;,&quot;email&quot;:&quot;cl-tohoku@users.noreply.huggingface.co&quot;,&quot;timezone&quot;:&quot;+0000&quot;},&quot;committer&quot;:{&quot;name&quot;:&quot;huggingface-web&quot;,&quot;date&quot;:&quot;2023-05-19T00:31:53.000Z&quot;,&quot;email&quot;:&quot;noreply@huggingface.co&quot;,&quot;timezone&quot;:&quot;+0000&quot;},&quot;parentIds&quot;:[&quot;f58f6fcbc7b241abfe48906986700b39272fcce3&quot;],&quot;bodySize&quot;:15,&quot;signatureType&quot;:0,&quot;treeId&quot;:&quot;0a17f3920927e1cbeb35e7cac8084d7278ee181e&quot;,&quot;trailers&quot;:[],&quot;referencedBy&quot;:[],&quot;encoding&quot;:&quot;&quot;}},&quot;entries&quot;:[{&quot;type&quot;:&quot;file&quot;,&quot;oid&quot;:&quot;c7d9f3332a950355d5a77d85000f05e6f45435ea&quot;,&quot;size&quot;:1477,&quot;path&quot;:&quot;.gitattributes&quot;,&quot;lastCommit&quot;:{&quot;id&quot;:&quot;686890ea5c494f9ef6f8e124a3b10a24f7e37123&quot;,&quot;title&quot;:&quot;initial commit&quot;,&quot;date&quot;:&quot;2023-05-19T00:13:53.000Z&quot;},&quot;security&quot;:{&quot;blobId&quot;:&quot;c7d9f3332a950355d5a77d85000f05e6f45435ea&quot;,&quot;name&quot;:&quot;.gitattributes&quot;,&quot;safe&quot;:true,&quot;avScan&quot;:{&quot;virusFound&quot;:false,&quot;virusNames&quot;:null},&quot;pickleImportScan&quot;:null}},{&quot;type&quot;:&quot;file&quot;,&quot;oid&quot;:&quot;630f3eca8d375fe0242a0b5c6d2686e2241a780f&quot;,&quot;size&quot;:2659,&quot;path&quot;:&quot;README.md&quot;,&quot;lastCommit&quot;:{&quot;id&quot;:&quot;f58f6fcbc7b241abfe48906986700b39272fcce3&quot;,&quot;title&quot;:&quot;Update README.md&quot;,&quot;date&quot;:&quot;2023-05-19T00:28:17.000Z&quot;}},{&quot;type&quot;:&quot;file&quot;,&quot;oid&quot;:&quot;65a2f332234197516eacda2fd4e50f542d7ed71d&quot;,&quot;size&quot;:472,&quot;path&quot;:&quot;config.json&quot;,&quot;lastCommit&quot;:{&quot;id&quot;:&quot;65243d6e5629b969c77309f217bd7b1a79d43c7e&quot;,&quot;title&quot;:&quot;Add model files&quot;,&quot;date&quot;:&quot;2023-05-19T00:31:53.000Z&quot;},&quot;security&quot;:{&quot;blobId&quot;:&quot;65a2f332234197516eacda2fd4e50f542d7ed71d&quot;,&quot;name&quot;:&quot;bert/bert-base-japanese-v3/config.json&quot;,&quot;safe&quot;:true,&quot;avScan&quot;:{&quot;virusFound&quot;:false,&quot;virusNames&quot;:null},&quot;pickleImportScan&quot;:null}},{&quot;type&quot;:&quot;file&quot;,&quot;oid&quot;:&quot;7bb6fe7d7b253aee66fe410a4dafb1072c6e8ba0&quot;,&quot;size&quot;:447341816,&quot;lfs&quot;:{&quot;oid&quot;:&quot;7dce0b8b350432362a184b9f8bb90ffb0f2ff0c394ab43b915e318926f4e7569&quot;,&quot;size&quot;:447341816,&quot;pointerSize&quot;:134},&quot;path&quot;:&quot;flax_model.msgpack&quot;,&quot;lastCommit&quot;:{&quot;id&quot;:&quot;65243d6e5629b969c77309f217bd7b1a79d43c7e&quot;,&quot;title&quot;:&quot;Add model files&quot;,&quot;date&quot;:&quot;2023-05-19T00:31:53.000Z&quot;}},{&quot;type&quot;:&quot;file&quot;,&quot;oid&quot;:&quot;2bb9d6f5e21642567ec04b098747647faa58eb00&quot;,&quot;size&quot;:447406217,&quot;lfs&quot;:{&quot;oid&quot;:&quot;e172862e0674054d65e0ba40d67df2a4687982f589db44aa27091c386e5450a4&quot;,&quot;size&quot;:447406217,&quot;pointerSize&quot;:134},&quot;path&quot;:&quot;pytorch_model.bin&quot;,&quot;lastCommit&quot;:{&quot;id&quot;:&quot;65243d6e5629b969c77309f217bd7b1a79d43c7e&quot;,&quot;title&quot;:&quot;Add model files&quot;,&quot;date&quot;:&quot;2023-05-19T00:31:53.000Z&quot;}},{&quot;type&quot;:&quot;file&quot;,&quot;oid&quot;:&quot;e862ccf264110a8b4f49bedb49b723b90f3bf6b7&quot;,&quot;size&quot;:549871840,&quot;lfs&quot;:{&quot;oid&quot;:&quot;71920d0dc0174d0a0ce32b934fe65f15320b2d53aa7e671718b33065748cb712&quot;,&quot;size&quot;:549871840,&quot;pointerSize&quot;:134},&quot;path&quot;:&quot;tf_model.h5&quot;,&quot;lastCommit&quot;:{&quot;id&quot;:&quot;65243d6e5629b969c77309f217bd7b1a79d43c7e&quot;,&quot;title&quot;:&quot;Add model files&quot;,&quot;date&quot;:&quot;2023-05-19T00:31:53.000Z&quot;}},{&quot;type&quot;:&quot;file&quot;,&quot;oid&quot;:&quot;dfbcc4690aaab4b44570ee05eb7fd09a10e5a7db&quot;,&quot;size&quot;:251,&quot;path&quot;:&quot;tokenizer_config.json&quot;,&quot;lastCommit&quot;:{&quot;id&quot;:&quot;65243d6e5629b969c77309f217bd7b1a79d43c7e&quot;,&quot;title&quot;:&quot;Add model files&quot;,&quot;date&quot;:&quot;2023-05-19T00:31:53.000Z&quot;}},{&quot;type&quot;:&quot;file&quot;,&quot;oid&quot;:&quot;421500f13b8d3fc8e962a4a9ecedf0d55ca14c89&quot;,&quot;size&quot;:231026,&quot;path&quot;:&quot;vocab.txt&quot;,&quot;lastCommit&quot;:{&quot;id&quot;:&quot;65243d6e5629b969c77309f217bd7b1a79d43c7e&quot;,&quot;title&quot;:&quot;Add model files&quot;,&quot;date&quot;:&quot;2023-05-19T00:31:53.000Z&quot;},&quot;security&quot;:{&quot;blobId&quot;:&quot;421500f13b8d3fc8e962a4a9ecedf0d55ca14c89&quot;,&quot;name&quot;:&quot;vocab.txt&quot;,&quot;safe&quot;:true,&quot;avScan&quot;:{&quot;virusFound&quot;:false,&quot;virusNames&quot;:null},&quot;pickleImportScan&quot;:null}}],&quot;nextURL&quot;:null}" data-target="ViewerIndexTreeList"><ul class="mb-8 rounded-b-lg border border-t-0 dark:border-gray-800 dark:bg-gray-900">
276
+
277
+ <li class="grid h-10 grid-cols-12 place-content-center gap-x-3 border-t px-3 dark:border-gray-800"><div class="col-span-8 flex items-center md:col-span-4 lg:col-span-3"><a class="group flex items-center truncate" href="/cl-tohoku/bert-base-japanese-v3/blob/main/.gitattributes"><svg class="flex-none mr-2 text-gray-300 fill-current" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><path d="M25.7 9.3l-7-7A.908.908 0 0 0 18 2H8a2.006 2.006 0 0 0-2 2v24a2.006 2.006 0 0 0 2 2h16a2.006 2.006 0 0 0 2-2V10a.908.908 0 0 0-.3-.7zM18 4.4l5.6 5.6H18zM24 28H8V4h8v6a2.006 2.006 0 0 0 2 2h6z" fill="currentColor"></path></svg>
278
+ <span class="truncate group-hover:underline">.gitattributes</span></a>
279
+ <div title="No virus"><svg class="text-gray-300 text-sm ml-1.5 translate-y-px" width="1em" height="1em" viewBox="0 0 22 28" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M15.3634 10.3639C15.8486 10.8491 15.8486 11.6357 15.3634 12.1209L10.9292 16.5551C10.6058 16.8785 10.0814 16.8785 9.7579 16.5551L7.03051 13.8277C6.54532 13.3425 6.54532 12.5558 7.03051 12.0707C7.51569 11.5855 8.30234 11.5855 8.78752 12.0707L9.7579 13.041C10.0814 13.3645 10.6058 13.3645 10.9292 13.041L13.6064 10.3639C14.0916 9.8787 14.8782 9.8787 15.3634 10.3639Z" fill="currentColor"></path><path fill-rule="evenodd" clip-rule="evenodd" d="M10.6666 27.12C4.93329 25.28 0 19.2267 0 12.7867V6.52001C0 5.40001 0.693334 4.41334 1.73333 4.01334L9.73333 1.01334C10.3333 0.786673 11 0.786673 11.6 1.02667L19.6 4.02667C20.1083 4.21658 20.5465 4.55701 20.8562 5.00252C21.1659 5.44803 21.3324 5.97742 21.3333 6.52001V12.7867C21.3333 19.24 16.4 25.28 10.6666 27.12Z" fill="currentColor" fill-opacity="0.22"></path><path d="M10.0845 1.94967L10.0867 1.94881C10.4587 1.8083 10.8666 1.81036 11.2286 1.95515L11.2387 1.95919L11.2489 1.963L19.2489 4.963L19.25 4.96342C19.5677 5.08211 19.8416 5.29488 20.0351 5.57333C20.2285 5.85151 20.3326 6.18203 20.3333 6.52082C20.3333 6.52113 20.3333 6.52144 20.3333 6.52176L20.3333 12.7867C20.3333 18.6535 15.8922 24.2319 10.6666 26.0652C5.44153 24.2316 1 18.6409 1 12.7867V6.52001C1 5.82357 1.42893 5.20343 2.08883 4.94803L10.0845 1.94967Z" stroke="currentColor" stroke-opacity="0.30" stroke-width="2"></path></svg>
280
+
281
+ </div>
282
+ </div>
283
+ <a class="group col-span-4 flex items-center justify-self-end truncate text-right font-mono text-[0.8rem] leading-6 text-gray-400 md:col-span-2 xl:pr-10" title="Download file" download=".gitattributes" href="/cl-tohoku/bert-base-japanese-v3/resolve/main/.gitattributes">1.48 kB
284
+
285
+
286
+ <div class="ml-2 flex h-5 w-5 items-center justify-center rounded border text-gray-500 group-hover:bg-gray-50 group-hover:text-gray-800 group-hover:shadow-sm dark:border-gray-800 dark:group-hover:bg-gray-800 dark:group-hover:text-gray-300 xl:ml-4"><svg class="" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" viewBox="0 0 32 32"><path fill="currentColor" d="M26 24v4H6v-4H4v4a2 2 0 0 0 2 2h20a2 2 0 0 0 2-2v-4zm0-10l-1.41-1.41L17 20.17V2h-2v18.17l-7.59-7.58L6 14l10 10l10-10z"></path></svg>
287
+ </div></a>
288
+ <a class="col-span-4 hidden items-center truncate font-mono text-sm text-gray-400 hover:underline md:flex lg:col-span-5" href="/cl-tohoku/bert-base-japanese-v3/commit/686890ea5c494f9ef6f8e124a3b10a24f7e37123">initial commit</a>
289
+ <a class="col-span-2 hidden truncate text-right text-gray-400 md:block" href="/cl-tohoku/bert-base-japanese-v3/commit/686890ea5c494f9ef6f8e124a3b10a24f7e37123"><time datetime="2023-05-19T00:13:53" title="Fri, 19 May 2023 00:13:53 GMT">4 months ago</time>
290
+ </a>
291
+ </li><li class="grid h-10 grid-cols-12 place-content-center gap-x-3 border-t px-3 dark:border-gray-800"><div class="col-span-8 flex items-center md:col-span-4 lg:col-span-3"><a class="group flex items-center truncate" href="/cl-tohoku/bert-base-japanese-v3/blob/main/README.md"><svg class="flex-none mr-2 text-gray-300 fill-current" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><path d="M25.7 9.3l-7-7A.908.908 0 0 0 18 2H8a2.006 2.006 0 0 0-2 2v24a2.006 2.006 0 0 0 2 2h16a2.006 2.006 0 0 0 2-2V10a.908.908 0 0 0-.3-.7zM18 4.4l5.6 5.6H18zM24 28H8V4h8v6a2.006 2.006 0 0 0 2 2h6z" fill="currentColor"></path></svg>
292
+ <span class="truncate group-hover:underline">README.md</span></a>
293
+
294
+ </div>
295
+ <a class="group col-span-4 flex items-center justify-self-end truncate text-right font-mono text-[0.8rem] leading-6 text-gray-400 md:col-span-2 xl:pr-10" title="Download file" download="README.md" href="/cl-tohoku/bert-base-japanese-v3/resolve/main/README.md">2.66 kB
296
+
297
+
298
+ <div class="ml-2 flex h-5 w-5 items-center justify-center rounded border text-gray-500 group-hover:bg-gray-50 group-hover:text-gray-800 group-hover:shadow-sm dark:border-gray-800 dark:group-hover:bg-gray-800 dark:group-hover:text-gray-300 xl:ml-4"><svg class="" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" viewBox="0 0 32 32"><path fill="currentColor" d="M26 24v4H6v-4H4v4a2 2 0 0 0 2 2h20a2 2 0 0 0 2-2v-4zm0-10l-1.41-1.41L17 20.17V2h-2v18.17l-7.59-7.58L6 14l10 10l10-10z"></path></svg>
299
+ </div></a>
300
+ <a class="col-span-4 hidden items-center truncate font-mono text-sm text-gray-400 hover:underline md:flex lg:col-span-5" href="/cl-tohoku/bert-base-japanese-v3/commit/f58f6fcbc7b241abfe48906986700b39272fcce3">Update README.md</a>
301
+ <a class="col-span-2 hidden truncate text-right text-gray-400 md:block" href="/cl-tohoku/bert-base-japanese-v3/commit/f58f6fcbc7b241abfe48906986700b39272fcce3"><time datetime="2023-05-19T00:28:17" title="Fri, 19 May 2023 00:28:17 GMT">4 months ago</time>
302
+ </a>
303
+ </li><li class="grid h-10 grid-cols-12 place-content-center gap-x-3 border-t px-3 dark:border-gray-800"><div class="col-span-8 flex items-center md:col-span-4 lg:col-span-3"><a class="group flex items-center truncate" href="/cl-tohoku/bert-base-japanese-v3/blob/main/config.json"><svg class="flex-none mr-2 text-gray-300 fill-current" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><path d="M25.7 9.3l-7-7A.908.908 0 0 0 18 2H8a2.006 2.006 0 0 0-2 2v24a2.006 2.006 0 0 0 2 2h16a2.006 2.006 0 0 0 2-2V10a.908.908 0 0 0-.3-.7zM18 4.4l5.6 5.6H18zM24 28H8V4h8v6a2.006 2.006 0 0 0 2 2h6z" fill="currentColor"></path></svg>
304
+ <span class="truncate group-hover:underline">config.json</span></a>
305
+ <div title="No virus"><svg class="text-gray-300 text-sm ml-1.5 translate-y-px" width="1em" height="1em" viewBox="0 0 22 28" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M15.3634 10.3639C15.8486 10.8491 15.8486 11.6357 15.3634 12.1209L10.9292 16.5551C10.6058 16.8785 10.0814 16.8785 9.7579 16.5551L7.03051 13.8277C6.54532 13.3425 6.54532 12.5558 7.03051 12.0707C7.51569 11.5855 8.30234 11.5855 8.78752 12.0707L9.7579 13.041C10.0814 13.3645 10.6058 13.3645 10.9292 13.041L13.6064 10.3639C14.0916 9.8787 14.8782 9.8787 15.3634 10.3639Z" fill="currentColor"></path><path fill-rule="evenodd" clip-rule="evenodd" d="M10.6666 27.12C4.93329 25.28 0 19.2267 0 12.7867V6.52001C0 5.40001 0.693334 4.41334 1.73333 4.01334L9.73333 1.01334C10.3333 0.786673 11 0.786673 11.6 1.02667L19.6 4.02667C20.1083 4.21658 20.5465 4.55701 20.8562 5.00252C21.1659 5.44803 21.3324 5.97742 21.3333 6.52001V12.7867C21.3333 19.24 16.4 25.28 10.6666 27.12Z" fill="currentColor" fill-opacity="0.22"></path><path d="M10.0845 1.94967L10.0867 1.94881C10.4587 1.8083 10.8666 1.81036 11.2286 1.95515L11.2387 1.95919L11.2489 1.963L19.2489 4.963L19.25 4.96342C19.5677 5.08211 19.8416 5.29488 20.0351 5.57333C20.2285 5.85151 20.3326 6.18203 20.3333 6.52082C20.3333 6.52113 20.3333 6.52144 20.3333 6.52176L20.3333 12.7867C20.3333 18.6535 15.8922 24.2319 10.6666 26.0652C5.44153 24.2316 1 18.6409 1 12.7867V6.52001C1 5.82357 1.42893 5.20343 2.08883 4.94803L10.0845 1.94967Z" stroke="currentColor" stroke-opacity="0.30" stroke-width="2"></path></svg>
306
+
307
+ </div>
308
+ </div>
309
+ <a class="group col-span-4 flex items-center justify-self-end truncate text-right font-mono text-[0.8rem] leading-6 text-gray-400 md:col-span-2 xl:pr-10" title="Download file" download="config.json" href="/cl-tohoku/bert-base-japanese-v3/resolve/main/config.json">472 Bytes
310
+
311
+
312
+ <div class="ml-2 flex h-5 w-5 items-center justify-center rounded border text-gray-500 group-hover:bg-gray-50 group-hover:text-gray-800 group-hover:shadow-sm dark:border-gray-800 dark:group-hover:bg-gray-800 dark:group-hover:text-gray-300 xl:ml-4"><svg class="" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" viewBox="0 0 32 32"><path fill="currentColor" d="M26 24v4H6v-4H4v4a2 2 0 0 0 2 2h20a2 2 0 0 0 2-2v-4zm0-10l-1.41-1.41L17 20.17V2h-2v18.17l-7.59-7.58L6 14l10 10l10-10z"></path></svg>
313
+ </div></a>
314
+ <a class="col-span-4 hidden items-center truncate font-mono text-sm text-gray-400 hover:underline md:flex lg:col-span-5" href="/cl-tohoku/bert-base-japanese-v3/commit/65243d6e5629b969c77309f217bd7b1a79d43c7e">Add model files</a>
315
+ <a class="col-span-2 hidden truncate text-right text-gray-400 md:block" href="/cl-tohoku/bert-base-japanese-v3/commit/65243d6e5629b969c77309f217bd7b1a79d43c7e"><time datetime="2023-05-19T00:31:53" title="Fri, 19 May 2023 00:31:53 GMT">4 months ago</time>
316
+ </a>
317
+ </li><li class="grid h-10 grid-cols-12 place-content-center gap-x-3 border-t px-3 dark:border-gray-800"><div class="col-span-8 flex items-center md:col-span-4 lg:col-span-3"><a class="group flex items-center truncate" href="/cl-tohoku/bert-base-japanese-v3/blob/main/flax_model.msgpack"><svg class="flex-none mr-2 text-gray-300 fill-current" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><path d="M25.7 9.3l-7-7A.908.908 0 0 0 18 2H8a2.006 2.006 0 0 0-2 2v24a2.006 2.006 0 0 0 2 2h16a2.006 2.006 0 0 0 2-2V10a.908.908 0 0 0-.3-.7zM18 4.4l5.6 5.6H18zM24 28H8V4h8v6a2.006 2.006 0 0 0 2 2h6z" fill="currentColor"></path></svg>
318
+ <span class="truncate group-hover:underline">flax_model.msgpack</span></a>
319
+
320
+ </div>
321
+ <a class="group col-span-4 flex items-center justify-self-end truncate text-right font-mono text-[0.8rem] leading-6 text-gray-400 md:col-span-2 xl:pr-10" title="Download file" download="flax_model.msgpack" href="/cl-tohoku/bert-base-japanese-v3/resolve/main/flax_model.msgpack">447 MB
322
+ <div class="ml-1.5 inline-flex flex-none items-center rounded-md border px-1 py-0.5 font-sans text-xs font-semibold leading-none text-gray-700 dark:border-gray-700"><svg class="mr-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><path d="M1.7012 10.1313L16 1.91513L30.2988 10.1313L16 18.3475V30.0849L1.7012 21.8687V10.1313Z" fill="#EF4C36"></path><path d="M16 18.3475L30.2988 10.1313V21.8687L16 30.0849V18.3475Z" fill="#AC3026"></path><path d="M7.16565 13.2674L21.4644 5.05121L24.818 6.97731L10.5192 15.1935V19.8723L7.16565 17.9462V13.2674Z" fill="white"></path></svg>
323
+ LFS
324
+ </div>
325
+
326
+ <div class="ml-2 flex h-5 w-5 items-center justify-center rounded border text-gray-500 group-hover:bg-gray-50 group-hover:text-gray-800 group-hover:shadow-sm dark:border-gray-800 dark:group-hover:bg-gray-800 dark:group-hover:text-gray-300 xl:ml-4"><svg class="" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" viewBox="0 0 32 32"><path fill="currentColor" d="M26 24v4H6v-4H4v4a2 2 0 0 0 2 2h20a2 2 0 0 0 2-2v-4zm0-10l-1.41-1.41L17 20.17V2h-2v18.17l-7.59-7.58L6 14l10 10l10-10z"></path></svg>
327
+ </div></a>
328
+ <a class="col-span-4 hidden items-center truncate font-mono text-sm text-gray-400 hover:underline md:flex lg:col-span-5" href="/cl-tohoku/bert-base-japanese-v3/commit/65243d6e5629b969c77309f217bd7b1a79d43c7e">Add model files</a>
329
+ <a class="col-span-2 hidden truncate text-right text-gray-400 md:block" href="/cl-tohoku/bert-base-japanese-v3/commit/65243d6e5629b969c77309f217bd7b1a79d43c7e"><time datetime="2023-05-19T00:31:53" title="Fri, 19 May 2023 00:31:53 GMT">4 months ago</time>
330
+ </a>
331
+ </li><li class="grid h-10 grid-cols-12 place-content-center gap-x-3 border-t px-3 dark:border-gray-800"><div class="col-span-8 flex items-center md:col-span-4 lg:col-span-3"><a class="group flex items-center truncate" href="/cl-tohoku/bert-base-japanese-v3/blob/main/pytorch_model.bin"><svg class="flex-none mr-2 text-gray-300 fill-current" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><path d="M25.7 9.3l-7-7A.908.908 0 0 0 18 2H8a2.006 2.006 0 0 0-2 2v24a2.006 2.006 0 0 0 2 2h16a2.006 2.006 0 0 0 2-2V10a.908.908 0 0 0-.3-.7zM18 4.4l5.6 5.6H18zM24 28H8V4h8v6a2.006 2.006 0 0 0 2 2h6z" fill="currentColor"></path></svg>
332
+ <span class="truncate group-hover:underline">pytorch_model.bin</span></a>
333
+
334
+ </div>
335
+ <a class="group col-span-4 flex items-center justify-self-end truncate text-right font-mono text-[0.8rem] leading-6 text-gray-400 md:col-span-2 xl:pr-10" title="Download file" download="pytorch_model.bin" href="/cl-tohoku/bert-base-japanese-v3/resolve/main/pytorch_model.bin">447 MB
336
+ <div class="ml-1.5 inline-flex flex-none items-center rounded-md border px-1 py-0.5 font-sans text-xs font-semibold leading-none text-gray-700 dark:border-gray-700"><svg class="mr-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><path d="M1.7012 10.1313L16 1.91513L30.2988 10.1313L16 18.3475V30.0849L1.7012 21.8687V10.1313Z" fill="#EF4C36"></path><path d="M16 18.3475L30.2988 10.1313V21.8687L16 30.0849V18.3475Z" fill="#AC3026"></path><path d="M7.16565 13.2674L21.4644 5.05121L24.818 6.97731L10.5192 15.1935V19.8723L7.16565 17.9462V13.2674Z" fill="white"></path></svg>
337
+ LFS
338
+ </div>
339
+
340
+ <div class="ml-2 flex h-5 w-5 items-center justify-center rounded border text-gray-500 group-hover:bg-gray-50 group-hover:text-gray-800 group-hover:shadow-sm dark:border-gray-800 dark:group-hover:bg-gray-800 dark:group-hover:text-gray-300 xl:ml-4"><svg class="" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" viewBox="0 0 32 32"><path fill="currentColor" d="M26 24v4H6v-4H4v4a2 2 0 0 0 2 2h20a2 2 0 0 0 2-2v-4zm0-10l-1.41-1.41L17 20.17V2h-2v18.17l-7.59-7.58L6 14l10 10l10-10z"></path></svg>
341
+ </div></a>
342
+ <a class="col-span-4 hidden items-center truncate font-mono text-sm text-gray-400 hover:underline md:flex lg:col-span-5" href="/cl-tohoku/bert-base-japanese-v3/commit/65243d6e5629b969c77309f217bd7b1a79d43c7e">Add model files</a>
343
+ <a class="col-span-2 hidden truncate text-right text-gray-400 md:block" href="/cl-tohoku/bert-base-japanese-v3/commit/65243d6e5629b969c77309f217bd7b1a79d43c7e"><time datetime="2023-05-19T00:31:53" title="Fri, 19 May 2023 00:31:53 GMT">4 months ago</time>
344
+ </a>
345
+ </li><li class="grid h-10 grid-cols-12 place-content-center gap-x-3 border-t px-3 dark:border-gray-800"><div class="col-span-8 flex items-center md:col-span-4 lg:col-span-3"><a class="group flex items-center truncate" href="/cl-tohoku/bert-base-japanese-v3/blob/main/tf_model.h5"><svg class="flex-none mr-2 text-gray-300 fill-current" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><path d="M25.7 9.3l-7-7A.908.908 0 0 0 18 2H8a2.006 2.006 0 0 0-2 2v24a2.006 2.006 0 0 0 2 2h16a2.006 2.006 0 0 0 2-2V10a.908.908 0 0 0-.3-.7zM18 4.4l5.6 5.6H18zM24 28H8V4h8v6a2.006 2.006 0 0 0 2 2h6z" fill="currentColor"></path></svg>
346
+ <span class="truncate group-hover:underline">tf_model.h5</span></a>
347
+
348
+ </div>
349
+ <a class="group col-span-4 flex items-center justify-self-end truncate text-right font-mono text-[0.8rem] leading-6 text-gray-400 md:col-span-2 xl:pr-10" title="Download file" download="tf_model.h5" href="/cl-tohoku/bert-base-japanese-v3/resolve/main/tf_model.h5">550 MB
350
+ <div class="ml-1.5 inline-flex flex-none items-center rounded-md border px-1 py-0.5 font-sans text-xs font-semibold leading-none text-gray-700 dark:border-gray-700"><svg class="mr-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><path d="M1.7012 10.1313L16 1.91513L30.2988 10.1313L16 18.3475V30.0849L1.7012 21.8687V10.1313Z" fill="#EF4C36"></path><path d="M16 18.3475L30.2988 10.1313V21.8687L16 30.0849V18.3475Z" fill="#AC3026"></path><path d="M7.16565 13.2674L21.4644 5.05121L24.818 6.97731L10.5192 15.1935V19.8723L7.16565 17.9462V13.2674Z" fill="white"></path></svg>
351
+ LFS
352
+ </div>
353
+
354
+ <div class="ml-2 flex h-5 w-5 items-center justify-center rounded border text-gray-500 group-hover:bg-gray-50 group-hover:text-gray-800 group-hover:shadow-sm dark:border-gray-800 dark:group-hover:bg-gray-800 dark:group-hover:text-gray-300 xl:ml-4"><svg class="" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" viewBox="0 0 32 32"><path fill="currentColor" d="M26 24v4H6v-4H4v4a2 2 0 0 0 2 2h20a2 2 0 0 0 2-2v-4zm0-10l-1.41-1.41L17 20.17V2h-2v18.17l-7.59-7.58L6 14l10 10l10-10z"></path></svg>
355
+ </div></a>
356
+ <a class="col-span-4 hidden items-center truncate font-mono text-sm text-gray-400 hover:underline md:flex lg:col-span-5" href="/cl-tohoku/bert-base-japanese-v3/commit/65243d6e5629b969c77309f217bd7b1a79d43c7e">Add model files</a>
357
+ <a class="col-span-2 hidden truncate text-right text-gray-400 md:block" href="/cl-tohoku/bert-base-japanese-v3/commit/65243d6e5629b969c77309f217bd7b1a79d43c7e"><time datetime="2023-05-19T00:31:53" title="Fri, 19 May 2023 00:31:53 GMT">4 months ago</time>
358
+ </a>
359
+ </li><li class="grid h-10 grid-cols-12 place-content-center gap-x-3 border-t px-3 dark:border-gray-800"><div class="col-span-8 flex items-center md:col-span-4 lg:col-span-3"><a class="group flex items-center truncate" href="/cl-tohoku/bert-base-japanese-v3/blob/main/tokenizer_config.json"><svg class="flex-none mr-2 text-gray-300 fill-current" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><path d="M25.7 9.3l-7-7A.908.908 0 0 0 18 2H8a2.006 2.006 0 0 0-2 2v24a2.006 2.006 0 0 0 2 2h16a2.006 2.006 0 0 0 2-2V10a.908.908 0 0 0-.3-.7zM18 4.4l5.6 5.6H18zM24 28H8V4h8v6a2.006 2.006 0 0 0 2 2h6z" fill="currentColor"></path></svg>
360
+ <span class="truncate group-hover:underline">tokenizer_config.json</span></a>
361
+
362
+ </div>
363
+ <a class="group col-span-4 flex items-center justify-self-end truncate text-right font-mono text-[0.8rem] leading-6 text-gray-400 md:col-span-2 xl:pr-10" title="Download file" download="tokenizer_config.json" href="/cl-tohoku/bert-base-japanese-v3/resolve/main/tokenizer_config.json">251 Bytes
364
+
365
+
366
+ <div class="ml-2 flex h-5 w-5 items-center justify-center rounded border text-gray-500 group-hover:bg-gray-50 group-hover:text-gray-800 group-hover:shadow-sm dark:border-gray-800 dark:group-hover:bg-gray-800 dark:group-hover:text-gray-300 xl:ml-4"><svg class="" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" viewBox="0 0 32 32"><path fill="currentColor" d="M26 24v4H6v-4H4v4a2 2 0 0 0 2 2h20a2 2 0 0 0 2-2v-4zm0-10l-1.41-1.41L17 20.17V2h-2v18.17l-7.59-7.58L6 14l10 10l10-10z"></path></svg>
367
+ </div></a>
368
+ <a class="col-span-4 hidden items-center truncate font-mono text-sm text-gray-400 hover:underline md:flex lg:col-span-5" href="/cl-tohoku/bert-base-japanese-v3/commit/65243d6e5629b969c77309f217bd7b1a79d43c7e">Add model files</a>
369
+ <a class="col-span-2 hidden truncate text-right text-gray-400 md:block" href="/cl-tohoku/bert-base-japanese-v3/commit/65243d6e5629b969c77309f217bd7b1a79d43c7e"><time datetime="2023-05-19T00:31:53" title="Fri, 19 May 2023 00:31:53 GMT">4 months ago</time>
370
+ </a>
371
+ </li><li class="grid h-10 grid-cols-12 place-content-center gap-x-3 border-t px-3 dark:border-gray-800"><div class="col-span-8 flex items-center md:col-span-4 lg:col-span-3"><a class="group flex items-center truncate" href="/cl-tohoku/bert-base-japanese-v3/blob/main/vocab.txt"><svg class="flex-none mr-2 text-gray-300 fill-current" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><path d="M25.7 9.3l-7-7A.908.908 0 0 0 18 2H8a2.006 2.006 0 0 0-2 2v24a2.006 2.006 0 0 0 2 2h16a2.006 2.006 0 0 0 2-2V10a.908.908 0 0 0-.3-.7zM18 4.4l5.6 5.6H18zM24 28H8V4h8v6a2.006 2.006 0 0 0 2 2h6z" fill="currentColor"></path></svg>
372
+ <span class="truncate group-hover:underline">vocab.txt</span></a>
373
+ <div title="No virus"><svg class="text-gray-300 text-sm ml-1.5 translate-y-px" width="1em" height="1em" viewBox="0 0 22 28" fill="none" xmlns="http://www.w3.org/2000/svg"><path fill-rule="evenodd" clip-rule="evenodd" d="M15.3634 10.3639C15.8486 10.8491 15.8486 11.6357 15.3634 12.1209L10.9292 16.5551C10.6058 16.8785 10.0814 16.8785 9.7579 16.5551L7.03051 13.8277C6.54532 13.3425 6.54532 12.5558 7.03051 12.0707C7.51569 11.5855 8.30234 11.5855 8.78752 12.0707L9.7579 13.041C10.0814 13.3645 10.6058 13.3645 10.9292 13.041L13.6064 10.3639C14.0916 9.8787 14.8782 9.8787 15.3634 10.3639Z" fill="currentColor"></path><path fill-rule="evenodd" clip-rule="evenodd" d="M10.6666 27.12C4.93329 25.28 0 19.2267 0 12.7867V6.52001C0 5.40001 0.693334 4.41334 1.73333 4.01334L9.73333 1.01334C10.3333 0.786673 11 0.786673 11.6 1.02667L19.6 4.02667C20.1083 4.21658 20.5465 4.55701 20.8562 5.00252C21.1659 5.44803 21.3324 5.97742 21.3333 6.52001V12.7867C21.3333 19.24 16.4 25.28 10.6666 27.12Z" fill="currentColor" fill-opacity="0.22"></path><path d="M10.0845 1.94967L10.0867 1.94881C10.4587 1.8083 10.8666 1.81036 11.2286 1.95515L11.2387 1.95919L11.2489 1.963L19.2489 4.963L19.25 4.96342C19.5677 5.08211 19.8416 5.29488 20.0351 5.57333C20.2285 5.85151 20.3326 6.18203 20.3333 6.52082C20.3333 6.52113 20.3333 6.52144 20.3333 6.52176L20.3333 12.7867C20.3333 18.6535 15.8922 24.2319 10.6666 26.0652C5.44153 24.2316 1 18.6409 1 12.7867V6.52001C1 5.82357 1.42893 5.20343 2.08883 4.94803L10.0845 1.94967Z" stroke="currentColor" stroke-opacity="0.30" stroke-width="2"></path></svg>
374
+
375
+ </div>
376
+ </div>
377
+ <a class="group col-span-4 flex items-center justify-self-end truncate text-right font-mono text-[0.8rem] leading-6 text-gray-400 md:col-span-2 xl:pr-10" title="Download file" download="vocab.txt" href="/cl-tohoku/bert-base-japanese-v3/resolve/main/vocab.txt">231 kB
378
+
379
+
380
+ <div class="ml-2 flex h-5 w-5 items-center justify-center rounded border text-gray-500 group-hover:bg-gray-50 group-hover:text-gray-800 group-hover:shadow-sm dark:border-gray-800 dark:group-hover:bg-gray-800 dark:group-hover:text-gray-300 xl:ml-4"><svg class="" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" viewBox="0 0 32 32"><path fill="currentColor" d="M26 24v4H6v-4H4v4a2 2 0 0 0 2 2h20a2 2 0 0 0 2-2v-4zm0-10l-1.41-1.41L17 20.17V2h-2v18.17l-7.59-7.58L6 14l10 10l10-10z"></path></svg>
381
+ </div></a>
382
+ <a class="col-span-4 hidden items-center truncate font-mono text-sm text-gray-400 hover:underline md:flex lg:col-span-5" href="/cl-tohoku/bert-base-japanese-v3/commit/65243d6e5629b969c77309f217bd7b1a79d43c7e">Add model files</a>
383
+ <a class="col-span-2 hidden truncate text-right text-gray-400 md:block" href="/cl-tohoku/bert-base-japanese-v3/commit/65243d6e5629b969c77309f217bd7b1a79d43c7e"><time datetime="2023-05-19T00:31:53" title="Fri, 19 May 2023 00:31:53 GMT">4 months ago</time>
384
+ </a>
385
+ </li>
386
+ </ul></div></section></div></main>
387
+ </div>
388
+
389
+ <script>
390
+ import("/front/build/kube-1700e75/index.js");
391
+ window.moonSha = "kube-1700e75/";
392
+ window.hubConfig = JSON.parse(`{"features":{"signupDisabled":false},"sshGitUrl":"git@hf.co","moonHttpUrl":"https://huggingface.co","captchaApiKey":"bd5f2066-93dc-4bdd-a64b-a24646ca3859","stripePublicKey":"pk_live_x2tdjFXBCvXo2FFmMybezpeM00J6gPCAAc","environment":"production","userAgent":"HuggingFace (production)"}`);
393
+ </script>
394
+
395
+ <!-- Stripe -->
396
+ <script>
397
+ if (["hf.co", "huggingface.co"].includes(window.location.hostname)) {
398
+ const script = document.createElement("script");
399
+ script.src = "https://js.stripe.com/v3/";
400
+ script.async = true;
401
+ document.head.appendChild(script);
402
+ }
403
+ </script>
404
+
405
+ <!-- Google analytics v4 -->
406
+ <script>
407
+ if (["hf.co", "huggingface.co"].includes(window.location.hostname)) {
408
+ const script = document.createElement("script");
409
+ script.src = "https://www.googletagmanager.com/gtag/js?id=G-8Q63TH4CSL";
410
+ script.async = true;
411
+ document.head.appendChild(script);
412
+
413
+ window.dataLayer = window.dataLayer || [];
414
+ function gtag() {
415
+ if (window.dataLayer !== undefined) {
416
+ window.dataLayer.push(arguments);
417
+ }
418
+ }
419
+ gtag("js", new Date());
420
+ gtag("config", "G-8Q63TH4CSL", { page_path: "/cl-tohoku/bert-base-japanese-v3/tree/main" });
421
+ /// ^ See https://developers.google.com/analytics/devguides/collection/gtagjs/pages
422
+ gtag("consent", "default", { ad_storage: "denied", analytics_storage: "denied" });
423
+ /// ^ See https://developers.google.com/tag-platform/gtagjs/reference#consent
424
+ /// TODO: ask the user for their consent and update this with gtag('consent', 'update')
425
+ }
426
+ </script>
427
+
428
+ <!-- Google Analytics v3 (deprecated) -->
429
+ <script>
430
+ if (["hf.co", "huggingface.co"].includes(window.location.hostname)) {
431
+ (function (i, s, o, g, r, a, m) {
432
+ i["GoogleAnalyticsObject"] = r;
433
+ (i[r] =
434
+ i[r] ||
435
+ function () {
436
+ (i[r].q = i[r].q || []).push(arguments);
437
+ }),
438
+ (i[r].l = 1 * new Date());
439
+ (a = s.createElement(o)), (m = s.getElementsByTagName(o)[0]);
440
+ a.async = 1;
441
+ a.src = g;
442
+ m.parentNode.insertBefore(a, m);
443
+ })(window, document, "script", "https://www.google-analytics.com/analytics.js", "ganalytics");
444
+ ganalytics("create", "UA-83738774-2", "auto");
445
+ ganalytics("send", "pageview", "/cl-tohoku/bert-base-japanese-v3/tree/main");
446
+ }
447
+ </script>
448
+ </body>
449
+ </html>
bert/chinese-roberta-wwm-ext-large/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ac62d49144d770c5ca9a5d1d3039c4995665a080febe63198189857c6bd11cd
3
+ size 1306484351
bert/chinese-roberta-wwm-ext-large/special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
bert/chinese-roberta-wwm-ext-large/tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72d18616fb285b720cb869c25aa9f4d7371033dfd5d8ba82aca448fdd28132bf
3
+ size 1302594480
bert/chinese-roberta-wwm-ext-large/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
bert/chinese-roberta-wwm-ext-large/tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"init_inputs": []}
bert/chinese-roberta-wwm-ext-large/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
bert_gen.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.utils.data import DataLoader
3
+ from multiprocessing import Pool
4
+ import commons
5
+ import utils
6
+ from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate
7
+ from tqdm import tqdm
8
+ import warnings
9
+
10
+ from text import cleaned_text_to_sequence, get_bert
11
+
12
+ config_path = 'configs/config.json'
13
+ hps = utils.get_hparams_from_file(config_path)
14
+
15
+ def process_line(line):
16
+ _id, spk, language_str, text, phones, tone, word2ph = line.strip().split("|")
17
+ phone = phones.split(" ")
18
+ tone = [int(i) for i in tone.split(" ")]
19
+ word2ph = [int(i) for i in word2ph.split(" ")]
20
+ w2pho = [i for i in word2ph]
21
+ word2ph = [i for i in word2ph]
22
+ phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
23
+
24
+ if hps.data.add_blank:
25
+ phone = commons.intersperse(phone, 0)
26
+ tone = commons.intersperse(tone, 0)
27
+ language = commons.intersperse(language, 0)
28
+ for i in range(len(word2ph)):
29
+ word2ph[i] = word2ph[i] * 2
30
+ word2ph[0] += 1
31
+ wav_path = f'{_id}'
32
+
33
+ bert_path = wav_path.replace(".wav", ".bert.pt")
34
+ try:
35
+ bert = torch.load(bert_path)
36
+ assert bert.shape[-1] == len(phone)
37
+ except:
38
+ bert = get_bert(text, word2ph, language_str)
39
+ assert bert.shape[-1] == len(phone)
40
+ torch.save(bert, bert_path)
41
+
42
+
43
+ if __name__ == '__main__':
44
+ lines = []
45
+ with open(hps.data.training_files, encoding='utf-8' ) as f:
46
+ lines.extend(f.readlines())
47
+
48
+ with open(hps.data.validation_files, encoding='utf-8' ) as f:
49
+ lines.extend(f.readlines())
50
+
51
+ with Pool(processes=6) as pool: #A100 40GB suitable config,if coom,please decrease the processess number.
52
+ for _ in tqdm(pool.imap_unordered(process_line, lines)):
53
+ pass
commons.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+
8
+ def init_weights(m, mean=0.0, std=0.01):
9
+ classname = m.__class__.__name__
10
+ if classname.find("Conv") != -1:
11
+ m.weight.data.normal_(mean, std)
12
+
13
+
14
+ def get_padding(kernel_size, dilation=1):
15
+ return int((kernel_size*dilation - dilation)/2)
16
+
17
+
18
+ def convert_pad_shape(pad_shape):
19
+ l = pad_shape[::-1]
20
+ pad_shape = [item for sublist in l for item in sublist]
21
+ return pad_shape
22
+
23
+
24
+ def intersperse(lst, item):
25
+ result = [item] * (len(lst) * 2 + 1)
26
+ result[1::2] = lst
27
+ return result
28
+
29
+
30
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
31
+ """KL(P||Q)"""
32
+ kl = (logs_q - logs_p) - 0.5
33
+ kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
34
+ return kl
35
+
36
+
37
+ def rand_gumbel(shape):
38
+ """Sample from the Gumbel distribution, protect from overflows."""
39
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
40
+ return -torch.log(-torch.log(uniform_samples))
41
+
42
+
43
+ def rand_gumbel_like(x):
44
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
45
+ return g
46
+
47
+
48
+ def slice_segments(x, ids_str, segment_size=4):
49
+ ret = torch.zeros_like(x[:, :, :segment_size])
50
+ for i in range(x.size(0)):
51
+ idx_str = ids_str[i]
52
+ idx_end = idx_str + segment_size
53
+ ret[i] = x[i, :, idx_str:idx_end]
54
+ return ret
55
+
56
+
57
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
58
+ b, d, t = x.size()
59
+ if x_lengths is None:
60
+ x_lengths = t
61
+ ids_str_max = x_lengths - segment_size + 1
62
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
63
+ ret = slice_segments(x, ids_str, segment_size)
64
+ return ret, ids_str
65
+
66
+
67
+ def get_timing_signal_1d(
68
+ length, channels, min_timescale=1.0, max_timescale=1.0e4):
69
+ position = torch.arange(length, dtype=torch.float)
70
+ num_timescales = channels // 2
71
+ log_timescale_increment = (
72
+ math.log(float(max_timescale) / float(min_timescale)) /
73
+ (num_timescales - 1))
74
+ inv_timescales = min_timescale * torch.exp(
75
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
76
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
77
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
78
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
79
+ signal = signal.view(1, channels, length)
80
+ return signal
81
+
82
+
83
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
84
+ b, channels, length = x.size()
85
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
86
+ return x + signal.to(dtype=x.dtype, device=x.device)
87
+
88
+
89
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
90
+ b, channels, length = x.size()
91
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
92
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
93
+
94
+
95
+ def subsequent_mask(length):
96
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
97
+ return mask
98
+
99
+
100
+ @torch.jit.script
101
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
102
+ n_channels_int = n_channels[0]
103
+ in_act = input_a + input_b
104
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
105
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
106
+ acts = t_act * s_act
107
+ return acts
108
+
109
+
110
+ def convert_pad_shape(pad_shape):
111
+ l = pad_shape[::-1]
112
+ pad_shape = [item for sublist in l for item in sublist]
113
+ return pad_shape
114
+
115
+
116
+ def shift_1d(x):
117
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
118
+ return x
119
+
120
+
121
+ def sequence_mask(length, max_length=None):
122
+ if max_length is None:
123
+ max_length = length.max()
124
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
125
+ return x.unsqueeze(0) < length.unsqueeze(1)
126
+
127
+
128
+ def generate_path(duration, mask):
129
+ """
130
+ duration: [b, 1, t_x]
131
+ mask: [b, 1, t_y, t_x]
132
+ """
133
+ device = duration.device
134
+
135
+ b, _, t_y, t_x = mask.shape
136
+ cum_duration = torch.cumsum(duration, -1)
137
+
138
+ cum_duration_flat = cum_duration.view(b * t_x)
139
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
140
+ path = path.view(b, t_x, t_y)
141
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
142
+ path = path.unsqueeze(1).transpose(2,3) * mask
143
+ return path
144
+
145
+
146
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
147
+ if isinstance(parameters, torch.Tensor):
148
+ parameters = [parameters]
149
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
150
+ norm_type = float(norm_type)
151
+ if clip_value is not None:
152
+ clip_value = float(clip_value)
153
+
154
+ total_norm = 0
155
+ for p in parameters:
156
+ param_norm = p.grad.data.norm(norm_type)
157
+ total_norm += param_norm.item() ** norm_type
158
+ if clip_value is not None:
159
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
160
+ total_norm = total_norm ** (1. / norm_type)
161
+ return total_norm
configs/config.json ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 1000,
5
+ "seed": 52,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0003,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 18,
14
+ "fp16_run": false,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 16384,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0
21
+ },
22
+ "data": {
23
+ "use_mel_posterior_encoder": false,
24
+ "training_files": "filelists/train.list",
25
+ "validation_files": "filelists/val.list",
26
+ "max_wav_value": 32768.0,
27
+ "sampling_rate": 44100,
28
+ "filter_length": 2048,
29
+ "hop_length": 512,
30
+ "win_length": 2048,
31
+ "n_mel_channels": 128,
32
+ "mel_fmin": 0.0,
33
+ "mel_fmax": null,
34
+ "add_blank": true,
35
+ "n_speakers": 256,
36
+ "cleaned_text": true,
37
+ "spk2id": {
38
+ "jiaran": 0
39
+ }
40
+ },
41
+ "model": {
42
+ "use_spk_conditioned_encoder": true,
43
+ "use_noise_scaled_mas": true,
44
+ "use_mel_posterior_encoder": false,
45
+ "use_duration_discriminator": true,
46
+ "inter_channels": 192,
47
+ "hidden_channels": 192,
48
+ "filter_channels": 768,
49
+ "n_heads": 2,
50
+ "n_layers": 6,
51
+ "kernel_size": 3,
52
+ "p_dropout": 0.1,
53
+ "resblock": "1",
54
+ "resblock_kernel_sizes": [
55
+ 3,
56
+ 7,
57
+ 11
58
+ ],
59
+ "resblock_dilation_sizes": [
60
+ [
61
+ 1,
62
+ 3,
63
+ 5
64
+ ],
65
+ [
66
+ 1,
67
+ 3,
68
+ 5
69
+ ],
70
+ [
71
+ 1,
72
+ 3,
73
+ 5
74
+ ]
75
+ ],
76
+ "upsample_rates": [
77
+ 8,
78
+ 8,
79
+ 2,
80
+ 2,
81
+ 2
82
+ ],
83
+ "upsample_initial_channel": 512,
84
+ "upsample_kernel_sizes": [
85
+ 16,
86
+ 16,
87
+ 8,
88
+ 2,
89
+ 2
90
+ ],
91
+ "n_layers_q": 3,
92
+ "use_spectral_norm": false,
93
+ "gin_channels": 256
94
+ }
95
+ }
data_utils.py ADDED
@@ -0,0 +1,321 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import os
3
+ import random
4
+ import numpy as np
5
+ import torch
6
+ import torch.utils.data
7
+ import commons
8
+ from mel_processing import spectrogram_torch, mel_spectrogram_torch, spec_to_mel_torch
9
+ from utils import load_wav_to_torch, load_filepaths_and_text
10
+ from text import cleaned_text_to_sequence, get_bert
11
+
12
+ """Multi speaker version"""
13
+
14
+
15
+ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
16
+ """
17
+ 1) loads audio, speaker_id, text pairs
18
+ 2) normalizes text and converts them to sequences of integers
19
+ 3) computes spectrograms from audio files.
20
+ """
21
+
22
+ def __init__(self, audiopaths_sid_text, hparams):
23
+ self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
24
+ self.max_wav_value = hparams.max_wav_value
25
+ self.sampling_rate = hparams.sampling_rate
26
+ self.filter_length = hparams.filter_length
27
+ self.hop_length = hparams.hop_length
28
+ self.win_length = hparams.win_length
29
+ self.sampling_rate = hparams.sampling_rate
30
+ self.spk_map = hparams.spk2id
31
+ self.hparams = hparams
32
+
33
+ self.use_mel_spec_posterior = getattr(hparams, "use_mel_posterior_encoder", False)
34
+ if self.use_mel_spec_posterior:
35
+ self.n_mel_channels = getattr(hparams, "n_mel_channels", 80)
36
+
37
+ self.cleaned_text = getattr(hparams, "cleaned_text", False)
38
+
39
+ self.add_blank = hparams.add_blank
40
+ self.min_text_len = getattr(hparams, "min_text_len", 1)
41
+ self.max_text_len = getattr(hparams, "max_text_len", 300)
42
+
43
+ random.seed(1234)
44
+ random.shuffle(self.audiopaths_sid_text)
45
+ self._filter()
46
+
47
+ def _filter(self):
48
+ """
49
+ Filter text & store spec lengths
50
+ """
51
+ # Store spectrogram lengths for Bucketing
52
+ # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
53
+ # spec_length = wav_length // hop_length
54
+
55
+ audiopaths_sid_text_new = []
56
+ lengths = []
57
+ skipped = 0
58
+ for _id, spk, language, text, phones, tone, word2ph in self.audiopaths_sid_text:
59
+ audiopath = f'{_id}'
60
+ if self.min_text_len <= len(phones) and len(phones) <= self.max_text_len:
61
+ phones = phones.split(" ")
62
+ tone = [int(i) for i in tone.split(" ")]
63
+ word2ph = [int(i) for i in word2ph.split(" ")]
64
+ audiopaths_sid_text_new.append([audiopath, spk, language, text, phones, tone, word2ph])
65
+ lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
66
+ else:
67
+ skipped += 1
68
+ print("skipped: ", skipped, ", total: ", len(self.audiopaths_sid_text))
69
+ self.audiopaths_sid_text = audiopaths_sid_text_new
70
+ self.lengths = lengths
71
+
72
+ def get_audio_text_speaker_pair(self, audiopath_sid_text):
73
+ # separate filename, speaker_id and text
74
+ audiopath, sid, language, text, phones, tone, word2ph = audiopath_sid_text
75
+
76
+ bert, phones, tone, language = self.get_text(text, word2ph, phones, tone, language, audiopath)
77
+
78
+ spec, wav = self.get_audio(audiopath)
79
+ sid = torch.LongTensor([int(self.spk_map[sid])])
80
+ return (phones, spec, wav, sid, tone, language, bert)
81
+
82
+ def get_audio(self, filename):
83
+ audio, sampling_rate = load_wav_to_torch(filename)
84
+ if sampling_rate != self.sampling_rate:
85
+ raise ValueError("{} {} SR doesn't match target {} SR".format(
86
+ sampling_rate, self.sampling_rate))
87
+ audio_norm = audio / self.max_wav_value
88
+ audio_norm = audio_norm.unsqueeze(0)
89
+ spec_filename = filename.replace(".wav", ".spec.pt")
90
+ if self.use_mel_spec_posterior:
91
+ spec_filename = spec_filename.replace(".spec.pt", ".mel.pt")
92
+ try:
93
+ spec = torch.load(spec_filename)
94
+ except:
95
+ if self.use_mel_spec_posterior:
96
+ spec = mel_spectrogram_torch(audio_norm, self.filter_length,
97
+ self.n_mel_channels, self.sampling_rate, self.hop_length,
98
+ self.win_length, self.hparams.mel_fmin, self.hparams.mel_fmax, center=False)
99
+ else:
100
+ spec = spectrogram_torch(audio_norm, self.filter_length,
101
+ self.sampling_rate, self.hop_length, self.win_length,
102
+ center=False)
103
+ spec = torch.squeeze(spec, 0)
104
+ torch.save(spec, spec_filename)
105
+ return spec, audio_norm
106
+
107
+ def get_text(self, text, word2ph, phone, tone, language_str, wav_path):
108
+ pold = phone
109
+ w2pho = [i for i in word2ph]
110
+ word2ph = [i for i in word2ph]
111
+ phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
112
+ pold2 = phone
113
+
114
+ if self.add_blank:
115
+ p1 = len(phone)
116
+ phone = commons.intersperse(phone, 0)
117
+ p2 = len(phone)
118
+ t1 = len(tone)
119
+ tone = commons.intersperse(tone, 0)
120
+ t2 = len(tone)
121
+ language = commons.intersperse(language, 0)
122
+ for i in range(len(word2ph)):
123
+ word2ph[i] = word2ph[i] * 2
124
+ word2ph[0] += 1
125
+ bert_path = wav_path.replace(".wav", ".bert.pt")
126
+ try:
127
+ bert = torch.load(bert_path)
128
+ assert bert.shape[-1] == len(phone)
129
+ except:
130
+ bert = get_bert(text, word2ph, language_str)
131
+ torch.save(bert, bert_path)
132
+ #print(bert.shape[-1], bert_path, text, pold)
133
+ assert bert.shape[-1] == len(phone)
134
+
135
+ assert bert.shape[-1] == len(phone), (
136
+ bert.shape, len(phone), sum(word2ph), p1, p2, t1, t2, pold, pold2, word2ph, text, w2pho)
137
+ phone = torch.LongTensor(phone)
138
+ tone = torch.LongTensor(tone)
139
+ language = torch.LongTensor(language)
140
+ return bert, phone, tone, language
141
+
142
+ def get_sid(self, sid):
143
+ sid = torch.LongTensor([int(sid)])
144
+ return sid
145
+
146
+ def __getitem__(self, index):
147
+ return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
148
+
149
+ def __len__(self):
150
+ return len(self.audiopaths_sid_text)
151
+
152
+
153
+ class TextAudioSpeakerCollate():
154
+ """ Zero-pads model inputs and targets
155
+ """
156
+
157
+ def __init__(self, return_ids=False):
158
+ self.return_ids = return_ids
159
+
160
+ def __call__(self, batch):
161
+ """Collate's training batch from normalized text, audio and speaker identities
162
+ PARAMS
163
+ ------
164
+ batch: [text_normalized, spec_normalized, wav_normalized, sid]
165
+ """
166
+ # Right zero-pad all one-hot text sequences to max input length
167
+ _, ids_sorted_decreasing = torch.sort(
168
+ torch.LongTensor([x[1].size(1) for x in batch]),
169
+ dim=0, descending=True)
170
+
171
+ max_text_len = max([len(x[0]) for x in batch])
172
+ max_spec_len = max([x[1].size(1) for x in batch])
173
+ max_wav_len = max([x[2].size(1) for x in batch])
174
+
175
+ text_lengths = torch.LongTensor(len(batch))
176
+ spec_lengths = torch.LongTensor(len(batch))
177
+ wav_lengths = torch.LongTensor(len(batch))
178
+ sid = torch.LongTensor(len(batch))
179
+
180
+ text_padded = torch.LongTensor(len(batch), max_text_len)
181
+ tone_padded = torch.LongTensor(len(batch), max_text_len)
182
+ language_padded = torch.LongTensor(len(batch), max_text_len)
183
+ bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len)
184
+
185
+ spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
186
+ wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
187
+ text_padded.zero_()
188
+ tone_padded.zero_()
189
+ language_padded.zero_()
190
+ spec_padded.zero_()
191
+ wav_padded.zero_()
192
+ bert_padded.zero_()
193
+ for i in range(len(ids_sorted_decreasing)):
194
+ row = batch[ids_sorted_decreasing[i]]
195
+
196
+ text = row[0]
197
+ text_padded[i, :text.size(0)] = text
198
+ text_lengths[i] = text.size(0)
199
+
200
+ spec = row[1]
201
+ spec_padded[i, :, :spec.size(1)] = spec
202
+ spec_lengths[i] = spec.size(1)
203
+
204
+ wav = row[2]
205
+ wav_padded[i, :, :wav.size(1)] = wav
206
+ wav_lengths[i] = wav.size(1)
207
+
208
+ sid[i] = row[3]
209
+
210
+ tone = row[4]
211
+ tone_padded[i, :tone.size(0)] = tone
212
+
213
+ language = row[5]
214
+ language_padded[i, :language.size(0)] = language
215
+
216
+ bert = row[6]
217
+ bert_padded[i, :, :bert.size(1)] = bert
218
+
219
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, tone_padded, language_padded, bert_padded
220
+
221
+
222
+ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
223
+ """
224
+ Maintain similar input lengths in a batch.
225
+ Length groups are specified by boundaries.
226
+ Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
227
+
228
+ It removes samples which are not included in the boundaries.
229
+ Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
230
+ """
231
+
232
+ def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
233
+ super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
234
+ self.lengths = dataset.lengths
235
+ self.batch_size = batch_size
236
+ self.boundaries = boundaries
237
+
238
+ self.buckets, self.num_samples_per_bucket = self._create_buckets()
239
+ self.total_size = sum(self.num_samples_per_bucket)
240
+ self.num_samples = self.total_size // self.num_replicas
241
+
242
+ def _create_buckets(self):
243
+ buckets = [[] for _ in range(len(self.boundaries) - 1)]
244
+ for i in range(len(self.lengths)):
245
+ length = self.lengths[i]
246
+ idx_bucket = self._bisect(length)
247
+ if idx_bucket != -1:
248
+ buckets[idx_bucket].append(i)
249
+
250
+ for i in range(len(buckets) - 1, 0, -1):
251
+ if len(buckets[i]) == 0:
252
+ buckets.pop(i)
253
+ self.boundaries.pop(i + 1)
254
+
255
+ num_samples_per_bucket = []
256
+ for i in range(len(buckets)):
257
+ len_bucket = len(buckets[i])
258
+ total_batch_size = self.num_replicas * self.batch_size
259
+ rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
260
+ num_samples_per_bucket.append(len_bucket + rem)
261
+ return buckets, num_samples_per_bucket
262
+
263
+ def __iter__(self):
264
+ # deterministically shuffle based on epoch
265
+ g = torch.Generator()
266
+ g.manual_seed(self.epoch)
267
+
268
+ indices = []
269
+ if self.shuffle:
270
+ for bucket in self.buckets:
271
+ indices.append(torch.randperm(len(bucket), generator=g).tolist())
272
+ else:
273
+ for bucket in self.buckets:
274
+ indices.append(list(range(len(bucket))))
275
+
276
+ batches = []
277
+ for i in range(len(self.buckets)):
278
+ bucket = self.buckets[i]
279
+ len_bucket = len(bucket)
280
+ if (len_bucket == 0):
281
+ continue
282
+ ids_bucket = indices[i]
283
+ num_samples_bucket = self.num_samples_per_bucket[i]
284
+
285
+ # add extra samples to make it evenly divisible
286
+ rem = num_samples_bucket - len_bucket
287
+ ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
288
+
289
+ # subsample
290
+ ids_bucket = ids_bucket[self.rank::self.num_replicas]
291
+
292
+ # batching
293
+ for j in range(len(ids_bucket) // self.batch_size):
294
+ batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size:(j + 1) * self.batch_size]]
295
+ batches.append(batch)
296
+
297
+ if self.shuffle:
298
+ batch_ids = torch.randperm(len(batches), generator=g).tolist()
299
+ batches = [batches[i] for i in batch_ids]
300
+ self.batches = batches
301
+
302
+ assert len(self.batches) * self.batch_size == self.num_samples
303
+ return iter(self.batches)
304
+
305
+ def _bisect(self, x, lo=0, hi=None):
306
+ if hi is None:
307
+ hi = len(self.boundaries) - 1
308
+
309
+ if hi > lo:
310
+ mid = (hi + lo) // 2
311
+ if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
312
+ return mid
313
+ elif x <= self.boundaries[mid]:
314
+ return self._bisect(x, lo, mid)
315
+ else:
316
+ return self._bisect(x, mid + 1, hi)
317
+ else:
318
+ return -1
319
+
320
+ def __len__(self):
321
+ return self.num_samples // self.batch_size
filelists/.ipynb_checkpoints/speaker-checkpoint.list ADDED
The diff for this file is too large to render. See raw diff
 
logs/mymodels/jiaran.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ac5cb4b630a046a1ea7d7be2ec6e9a2f424b037956d9b483c668577dc012567
3
+ size 621701531
losses.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import commons
5
+
6
+
7
+ def feature_loss(fmap_r, fmap_g):
8
+ loss = 0
9
+ for dr, dg in zip(fmap_r, fmap_g):
10
+ for rl, gl in zip(dr, dg):
11
+ rl = rl.float().detach()
12
+ gl = gl.float()
13
+ loss += torch.mean(torch.abs(rl - gl))
14
+
15
+ return loss * 2
16
+
17
+
18
+ def discriminator_loss(disc_real_outputs, disc_generated_outputs):
19
+ loss = 0
20
+ r_losses = []
21
+ g_losses = []
22
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
23
+ dr = dr.float()
24
+ dg = dg.float()
25
+ r_loss = torch.mean((1-dr)**2)
26
+ g_loss = torch.mean(dg**2)
27
+ loss += (r_loss + g_loss)
28
+ r_losses.append(r_loss.item())
29
+ g_losses.append(g_loss.item())
30
+
31
+ return loss, r_losses, g_losses
32
+
33
+
34
+ def generator_loss(disc_outputs):
35
+ loss = 0
36
+ gen_losses = []
37
+ for dg in disc_outputs:
38
+ dg = dg.float()
39
+ l = torch.mean((1-dg)**2)
40
+ gen_losses.append(l)
41
+ loss += l
42
+
43
+ return loss, gen_losses
44
+
45
+
46
+ def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
47
+ """
48
+ z_p, logs_q: [b, h, t_t]
49
+ m_p, logs_p: [b, h, t_t]
50
+ """
51
+ z_p = z_p.float()
52
+ logs_q = logs_q.float()
53
+ m_p = m_p.float()
54
+ logs_p = logs_p.float()
55
+ z_mask = z_mask.float()
56
+
57
+ kl = logs_p - logs_q - 0.5
58
+ kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
59
+ kl = torch.sum(kl * z_mask)
60
+ l = kl / torch.sum(z_mask)
61
+ return l
mel_processing.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import random
4
+ import torch
5
+ from torch import nn
6
+ import torch.nn.functional as F
7
+ import torch.utils.data
8
+ import numpy as np
9
+ import librosa
10
+ import librosa.util as librosa_util
11
+ from librosa.util import normalize, pad_center, tiny
12
+ from scipy.signal import get_window
13
+ from scipy.io.wavfile import read
14
+ from librosa.filters import mel as librosa_mel_fn
15
+
16
+ MAX_WAV_VALUE = 32768.0
17
+
18
+
19
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
20
+ """
21
+ PARAMS
22
+ ------
23
+ C: compression factor
24
+ """
25
+ return torch.log(torch.clamp(x, min=clip_val) * C)
26
+
27
+
28
+ def dynamic_range_decompression_torch(x, C=1):
29
+ """
30
+ PARAMS
31
+ ------
32
+ C: compression factor used to compress
33
+ """
34
+ return torch.exp(x) / C
35
+
36
+
37
+ def spectral_normalize_torch(magnitudes):
38
+ output = dynamic_range_compression_torch(magnitudes)
39
+ return output
40
+
41
+
42
+ def spectral_de_normalize_torch(magnitudes):
43
+ output = dynamic_range_decompression_torch(magnitudes)
44
+ return output
45
+
46
+
47
+ mel_basis = {}
48
+ hann_window = {}
49
+
50
+
51
+ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
52
+ if torch.min(y) < -1.:
53
+ print('min value is ', torch.min(y))
54
+ if torch.max(y) > 1.:
55
+ print('max value is ', torch.max(y))
56
+
57
+ global hann_window
58
+ dtype_device = str(y.dtype) + '_' + str(y.device)
59
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
60
+ if wnsize_dtype_device not in hann_window:
61
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
62
+
63
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
64
+ y = y.squeeze(1)
65
+
66
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
67
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
68
+
69
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
70
+ return spec
71
+
72
+
73
+ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
74
+ global mel_basis
75
+ dtype_device = str(spec.dtype) + '_' + str(spec.device)
76
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
77
+ if fmax_dtype_device not in mel_basis:
78
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
79
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
80
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
81
+ spec = spectral_normalize_torch(spec)
82
+ return spec
83
+
84
+
85
+ def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
86
+ if torch.min(y) < -1.:
87
+ print('min value is ', torch.min(y))
88
+ if torch.max(y) > 1.:
89
+ print('max value is ', torch.max(y))
90
+
91
+ global mel_basis, hann_window
92
+ dtype_device = str(y.dtype) + '_' + str(y.device)
93
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
94
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
95
+ if fmax_dtype_device not in mel_basis:
96
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
97
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
98
+ if wnsize_dtype_device not in hann_window:
99
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
100
+
101
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
102
+ y = y.squeeze(1)
103
+
104
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
105
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
106
+
107
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
108
+
109
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
110
+ spec = spectral_normalize_torch(spec)
111
+
112
+ return spec
models.py ADDED
@@ -0,0 +1,707 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ import commons
8
+ import modules
9
+ import attentions
10
+ import monotonic_align
11
+
12
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
13
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
14
+
15
+ from commons import init_weights, get_padding
16
+ from text import symbols, num_tones, num_languages
17
+ class DurationDiscriminator(nn.Module): #vits2
18
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
19
+ super().__init__()
20
+
21
+ self.in_channels = in_channels
22
+ self.filter_channels = filter_channels
23
+ self.kernel_size = kernel_size
24
+ self.p_dropout = p_dropout
25
+ self.gin_channels = gin_channels
26
+
27
+ self.drop = nn.Dropout(p_dropout)
28
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
29
+ self.norm_1 = modules.LayerNorm(filter_channels)
30
+ self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
31
+ self.norm_2 = modules.LayerNorm(filter_channels)
32
+ self.dur_proj = nn.Conv1d(1, filter_channels, 1)
33
+
34
+ self.pre_out_conv_1 = nn.Conv1d(2*filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
35
+ self.pre_out_norm_1 = modules.LayerNorm(filter_channels)
36
+ self.pre_out_conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
37
+ self.pre_out_norm_2 = modules.LayerNorm(filter_channels)
38
+
39
+ if gin_channels != 0:
40
+ self.cond = nn.Conv1d(gin_channels, in_channels, 1)
41
+
42
+ self.output_layer = nn.Sequential(
43
+ nn.Linear(filter_channels, 1),
44
+ nn.Sigmoid()
45
+ )
46
+
47
+ def forward_probability(self, x, x_mask, dur, g=None):
48
+ dur = self.dur_proj(dur)
49
+ x = torch.cat([x, dur], dim=1)
50
+ x = self.pre_out_conv_1(x * x_mask)
51
+ x = torch.relu(x)
52
+ x = self.pre_out_norm_1(x)
53
+ x = self.drop(x)
54
+ x = self.pre_out_conv_2(x * x_mask)
55
+ x = torch.relu(x)
56
+ x = self.pre_out_norm_2(x)
57
+ x = self.drop(x)
58
+ x = x * x_mask
59
+ x = x.transpose(1, 2)
60
+ output_prob = self.output_layer(x)
61
+ return output_prob
62
+
63
+ def forward(self, x, x_mask, dur_r, dur_hat, g=None):
64
+ x = torch.detach(x)
65
+ if g is not None:
66
+ g = torch.detach(g)
67
+ x = x + self.cond(g)
68
+ x = self.conv_1(x * x_mask)
69
+ x = torch.relu(x)
70
+ x = self.norm_1(x)
71
+ x = self.drop(x)
72
+ x = self.conv_2(x * x_mask)
73
+ x = torch.relu(x)
74
+ x = self.norm_2(x)
75
+ x = self.drop(x)
76
+
77
+ output_probs = []
78
+ for dur in [dur_r, dur_hat]:
79
+ output_prob = self.forward_probability(x, x_mask, dur, g)
80
+ output_probs.append(output_prob)
81
+
82
+ return output_probs
83
+
84
+ class TransformerCouplingBlock(nn.Module):
85
+ def __init__(self,
86
+ channels,
87
+ hidden_channels,
88
+ filter_channels,
89
+ n_heads,
90
+ n_layers,
91
+ kernel_size,
92
+ p_dropout,
93
+ n_flows=4,
94
+ gin_channels=0,
95
+ share_parameter=False
96
+ ):
97
+
98
+ super().__init__()
99
+ self.channels = channels
100
+ self.hidden_channels = hidden_channels
101
+ self.kernel_size = kernel_size
102
+ self.n_layers = n_layers
103
+ self.n_flows = n_flows
104
+ self.gin_channels = gin_channels
105
+
106
+ self.flows = nn.ModuleList()
107
+
108
+ self.wn = attentions.FFT(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, isflow = True, gin_channels = self.gin_channels) if share_parameter else None
109
+
110
+ for i in range(n_flows):
111
+ self.flows.append(
112
+ modules.TransformerCouplingLayer(channels, hidden_channels, kernel_size, n_layers, n_heads, p_dropout, filter_channels, mean_only=True, wn_sharing_parameter=self.wn, gin_channels = self.gin_channels))
113
+ self.flows.append(modules.Flip())
114
+
115
+ def forward(self, x, x_mask, g=None, reverse=False):
116
+ if not reverse:
117
+ for flow in self.flows:
118
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
119
+ else:
120
+ for flow in reversed(self.flows):
121
+ x = flow(x, x_mask, g=g, reverse=reverse)
122
+ return x
123
+
124
+ class StochasticDurationPredictor(nn.Module):
125
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
126
+ super().__init__()
127
+ filter_channels = in_channels # it needs to be removed from future version.
128
+ self.in_channels = in_channels
129
+ self.filter_channels = filter_channels
130
+ self.kernel_size = kernel_size
131
+ self.p_dropout = p_dropout
132
+ self.n_flows = n_flows
133
+ self.gin_channels = gin_channels
134
+
135
+ self.log_flow = modules.Log()
136
+ self.flows = nn.ModuleList()
137
+ self.flows.append(modules.ElementwiseAffine(2))
138
+ for i in range(n_flows):
139
+ self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
140
+ self.flows.append(modules.Flip())
141
+
142
+ self.post_pre = nn.Conv1d(1, filter_channels, 1)
143
+ self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
144
+ self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
145
+ self.post_flows = nn.ModuleList()
146
+ self.post_flows.append(modules.ElementwiseAffine(2))
147
+ for i in range(4):
148
+ self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
149
+ self.post_flows.append(modules.Flip())
150
+
151
+ self.pre = nn.Conv1d(in_channels, filter_channels, 1)
152
+ self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
153
+ self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
154
+ if gin_channels != 0:
155
+ self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
156
+
157
+ def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
158
+ x = torch.detach(x)
159
+ x = self.pre(x)
160
+ if g is not None:
161
+ g = torch.detach(g)
162
+ x = x + self.cond(g)
163
+ x = self.convs(x, x_mask)
164
+ x = self.proj(x) * x_mask
165
+
166
+ if not reverse:
167
+ flows = self.flows
168
+ assert w is not None
169
+
170
+ logdet_tot_q = 0
171
+ h_w = self.post_pre(w)
172
+ h_w = self.post_convs(h_w, x_mask)
173
+ h_w = self.post_proj(h_w) * x_mask
174
+ e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
175
+ z_q = e_q
176
+ for flow in self.post_flows:
177
+ z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
178
+ logdet_tot_q += logdet_q
179
+ z_u, z1 = torch.split(z_q, [1, 1], 1)
180
+ u = torch.sigmoid(z_u) * x_mask
181
+ z0 = (w - u) * x_mask
182
+ logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
183
+ logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q ** 2)) * x_mask, [1, 2]) - logdet_tot_q
184
+
185
+ logdet_tot = 0
186
+ z0, logdet = self.log_flow(z0, x_mask)
187
+ logdet_tot += logdet
188
+ z = torch.cat([z0, z1], 1)
189
+ for flow in flows:
190
+ z, logdet = flow(z, x_mask, g=x, reverse=reverse)
191
+ logdet_tot = logdet_tot + logdet
192
+ nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2]) - logdet_tot
193
+ return nll + logq # [b]
194
+ else:
195
+ flows = list(reversed(self.flows))
196
+ flows = flows[:-2] + [flows[-1]] # remove a useless vflow
197
+ z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
198
+ for flow in flows:
199
+ z = flow(z, x_mask, g=x, reverse=reverse)
200
+ z0, z1 = torch.split(z, [1, 1], 1)
201
+ logw = z0
202
+ return logw
203
+
204
+
205
+ class DurationPredictor(nn.Module):
206
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
207
+ super().__init__()
208
+
209
+ self.in_channels = in_channels
210
+ self.filter_channels = filter_channels
211
+ self.kernel_size = kernel_size
212
+ self.p_dropout = p_dropout
213
+ self.gin_channels = gin_channels
214
+
215
+ self.drop = nn.Dropout(p_dropout)
216
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
217
+ self.norm_1 = modules.LayerNorm(filter_channels)
218
+ self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
219
+ self.norm_2 = modules.LayerNorm(filter_channels)
220
+ self.proj = nn.Conv1d(filter_channels, 1, 1)
221
+
222
+ if gin_channels != 0:
223
+ self.cond = nn.Conv1d(gin_channels, in_channels, 1)
224
+
225
+ def forward(self, x, x_mask, g=None):
226
+ x = torch.detach(x)
227
+ if g is not None:
228
+ g = torch.detach(g)
229
+ x = x + self.cond(g)
230
+ x = self.conv_1(x * x_mask)
231
+ x = torch.relu(x)
232
+ x = self.norm_1(x)
233
+ x = self.drop(x)
234
+ x = self.conv_2(x * x_mask)
235
+ x = torch.relu(x)
236
+ x = self.norm_2(x)
237
+ x = self.drop(x)
238
+ x = self.proj(x * x_mask)
239
+ return x * x_mask
240
+
241
+
242
+ class TextEncoder(nn.Module):
243
+ def __init__(self,
244
+ n_vocab,
245
+ out_channels,
246
+ hidden_channels,
247
+ filter_channels,
248
+ n_heads,
249
+ n_layers,
250
+ kernel_size,
251
+ p_dropout,
252
+ gin_channels=0):
253
+ super().__init__()
254
+ self.n_vocab = n_vocab
255
+ self.out_channels = out_channels
256
+ self.hidden_channels = hidden_channels
257
+ self.filter_channels = filter_channels
258
+ self.n_heads = n_heads
259
+ self.n_layers = n_layers
260
+ self.kernel_size = kernel_size
261
+ self.p_dropout = p_dropout
262
+ self.gin_channels = gin_channels
263
+ self.emb = nn.Embedding(len(symbols), hidden_channels)
264
+ nn.init.normal_(self.emb.weight, 0.0, hidden_channels ** -0.5)
265
+ self.tone_emb = nn.Embedding(num_tones, hidden_channels)
266
+ nn.init.normal_(self.tone_emb.weight, 0.0, hidden_channels ** -0.5)
267
+ self.language_emb = nn.Embedding(num_languages, hidden_channels)
268
+ nn.init.normal_(self.language_emb.weight, 0.0, hidden_channels ** -0.5)
269
+ self.bert_proj = nn.Conv1d(1024, hidden_channels, 1)
270
+
271
+ self.encoder = attentions.Encoder(
272
+ hidden_channels,
273
+ filter_channels,
274
+ n_heads,
275
+ n_layers,
276
+ kernel_size,
277
+ p_dropout,
278
+ gin_channels=self.gin_channels)
279
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
280
+
281
+ def forward(self, x, x_lengths, tone, language, bert, g=None):
282
+ x = (self.emb(x)+ self.tone_emb(tone)+ self.language_emb(language)+self.bert_proj(bert).transpose(1,2)) * math.sqrt(self.hidden_channels) # [b, t, h]
283
+ x = torch.transpose(x, 1, -1) # [b, h, t]
284
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
285
+
286
+ x = self.encoder(x * x_mask, x_mask, g=g)
287
+ stats = self.proj(x) * x_mask
288
+
289
+ m, logs = torch.split(stats, self.out_channels, dim=1)
290
+ return x, m, logs, x_mask
291
+
292
+
293
+ class ResidualCouplingBlock(nn.Module):
294
+ def __init__(self,
295
+ channels,
296
+ hidden_channels,
297
+ kernel_size,
298
+ dilation_rate,
299
+ n_layers,
300
+ n_flows=4,
301
+ gin_channels=0):
302
+ super().__init__()
303
+ self.channels = channels
304
+ self.hidden_channels = hidden_channels
305
+ self.kernel_size = kernel_size
306
+ self.dilation_rate = dilation_rate
307
+ self.n_layers = n_layers
308
+ self.n_flows = n_flows
309
+ self.gin_channels = gin_channels
310
+
311
+ self.flows = nn.ModuleList()
312
+ for i in range(n_flows):
313
+ self.flows.append(
314
+ modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
315
+ gin_channels=gin_channels, mean_only=True))
316
+ self.flows.append(modules.Flip())
317
+
318
+ def forward(self, x, x_mask, g=None, reverse=False):
319
+ if not reverse:
320
+ for flow in self.flows:
321
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
322
+ else:
323
+ for flow in reversed(self.flows):
324
+ x = flow(x, x_mask, g=g, reverse=reverse)
325
+ return x
326
+
327
+
328
+ class PosteriorEncoder(nn.Module):
329
+ def __init__(self,
330
+ in_channels,
331
+ out_channels,
332
+ hidden_channels,
333
+ kernel_size,
334
+ dilation_rate,
335
+ n_layers,
336
+ gin_channels=0):
337
+ super().__init__()
338
+ self.in_channels = in_channels
339
+ self.out_channels = out_channels
340
+ self.hidden_channels = hidden_channels
341
+ self.kernel_size = kernel_size
342
+ self.dilation_rate = dilation_rate
343
+ self.n_layers = n_layers
344
+ self.gin_channels = gin_channels
345
+
346
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
347
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
348
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
349
+
350
+ def forward(self, x, x_lengths, g=None):
351
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
352
+ x = self.pre(x) * x_mask
353
+ x = self.enc(x, x_mask, g=g)
354
+ stats = self.proj(x) * x_mask
355
+ m, logs = torch.split(stats, self.out_channels, dim=1)
356
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
357
+ return z, m, logs, x_mask
358
+
359
+
360
+ class Generator(torch.nn.Module):
361
+ def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
362
+ upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
363
+ super(Generator, self).__init__()
364
+ self.num_kernels = len(resblock_kernel_sizes)
365
+ self.num_upsamples = len(upsample_rates)
366
+ self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
367
+ resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
368
+
369
+ self.ups = nn.ModuleList()
370
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
371
+ self.ups.append(weight_norm(
372
+ ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
373
+ k, u, padding=(k - u) // 2)))
374
+
375
+ self.resblocks = nn.ModuleList()
376
+ for i in range(len(self.ups)):
377
+ ch = upsample_initial_channel // (2 ** (i + 1))
378
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
379
+ self.resblocks.append(resblock(ch, k, d))
380
+
381
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
382
+ self.ups.apply(init_weights)
383
+
384
+ if gin_channels != 0:
385
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
386
+
387
+ def forward(self, x, g=None):
388
+ x = self.conv_pre(x)
389
+ if g is not None:
390
+ x = x + self.cond(g)
391
+
392
+ for i in range(self.num_upsamples):
393
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
394
+ x = self.ups[i](x)
395
+ xs = None
396
+ for j in range(self.num_kernels):
397
+ if xs is None:
398
+ xs = self.resblocks[i * self.num_kernels + j](x)
399
+ else:
400
+ xs += self.resblocks[i * self.num_kernels + j](x)
401
+ x = xs / self.num_kernels
402
+ x = F.leaky_relu(x)
403
+ x = self.conv_post(x)
404
+ x = torch.tanh(x)
405
+
406
+ return x
407
+
408
+ def remove_weight_norm(self):
409
+ print('Removing weight norm...')
410
+ for l in self.ups:
411
+ remove_weight_norm(l)
412
+ for l in self.resblocks:
413
+ l.remove_weight_norm()
414
+
415
+
416
+ class DiscriminatorP(torch.nn.Module):
417
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
418
+ super(DiscriminatorP, self).__init__()
419
+ self.period = period
420
+ self.use_spectral_norm = use_spectral_norm
421
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
422
+ self.convs = nn.ModuleList([
423
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
424
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
425
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
426
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
427
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
428
+ ])
429
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
430
+
431
+ def forward(self, x):
432
+ fmap = []
433
+
434
+ # 1d to 2d
435
+ b, c, t = x.shape
436
+ if t % self.period != 0: # pad first
437
+ n_pad = self.period - (t % self.period)
438
+ x = F.pad(x, (0, n_pad), "reflect")
439
+ t = t + n_pad
440
+ x = x.view(b, c, t // self.period, self.period)
441
+
442
+ for l in self.convs:
443
+ x = l(x)
444
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
445
+ fmap.append(x)
446
+ x = self.conv_post(x)
447
+ fmap.append(x)
448
+ x = torch.flatten(x, 1, -1)
449
+
450
+ return x, fmap
451
+
452
+
453
+ class DiscriminatorS(torch.nn.Module):
454
+ def __init__(self, use_spectral_norm=False):
455
+ super(DiscriminatorS, self).__init__()
456
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
457
+ self.convs = nn.ModuleList([
458
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
459
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
460
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
461
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
462
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
463
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
464
+ ])
465
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
466
+
467
+ def forward(self, x):
468
+ fmap = []
469
+
470
+ for l in self.convs:
471
+ x = l(x)
472
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
473
+ fmap.append(x)
474
+ x = self.conv_post(x)
475
+ fmap.append(x)
476
+ x = torch.flatten(x, 1, -1)
477
+
478
+ return x, fmap
479
+
480
+
481
+ class MultiPeriodDiscriminator(torch.nn.Module):
482
+ def __init__(self, use_spectral_norm=False):
483
+ super(MultiPeriodDiscriminator, self).__init__()
484
+ periods = [2, 3, 5, 7, 11]
485
+
486
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
487
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
488
+ self.discriminators = nn.ModuleList(discs)
489
+
490
+ def forward(self, y, y_hat):
491
+ y_d_rs = []
492
+ y_d_gs = []
493
+ fmap_rs = []
494
+ fmap_gs = []
495
+ for i, d in enumerate(self.discriminators):
496
+ y_d_r, fmap_r = d(y)
497
+ y_d_g, fmap_g = d(y_hat)
498
+ y_d_rs.append(y_d_r)
499
+ y_d_gs.append(y_d_g)
500
+ fmap_rs.append(fmap_r)
501
+ fmap_gs.append(fmap_g)
502
+
503
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
504
+
505
+ class ReferenceEncoder(nn.Module):
506
+ '''
507
+ inputs --- [N, Ty/r, n_mels*r] mels
508
+ outputs --- [N, ref_enc_gru_size]
509
+ '''
510
+
511
+ def __init__(self, spec_channels, gin_channels=0):
512
+
513
+ super().__init__()
514
+ self.spec_channels = spec_channels
515
+ ref_enc_filters = [32, 32, 64, 64, 128, 128]
516
+ K = len(ref_enc_filters)
517
+ filters = [1] + ref_enc_filters
518
+ convs = [weight_norm(nn.Conv2d(in_channels=filters[i],
519
+ out_channels=filters[i + 1],
520
+ kernel_size=(3, 3),
521
+ stride=(2, 2),
522
+ padding=(1, 1))) for i in range(K)]
523
+ self.convs = nn.ModuleList(convs)
524
+ # self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)])
525
+
526
+ out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
527
+ self.gru = nn.GRU(input_size=ref_enc_filters[-1] * out_channels,
528
+ hidden_size=256 // 2,
529
+ batch_first=True)
530
+ self.proj = nn.Linear(128, gin_channels)
531
+
532
+ def forward(self, inputs, mask=None):
533
+ N = inputs.size(0)
534
+ out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
535
+ for conv in self.convs:
536
+ out = conv(out)
537
+ # out = wn(out)
538
+ out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
539
+
540
+ out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
541
+ T = out.size(1)
542
+ N = out.size(0)
543
+ out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
544
+
545
+ self.gru.flatten_parameters()
546
+ memory, out = self.gru(out) # out --- [1, N, 128]
547
+
548
+ return self.proj(out.squeeze(0))
549
+
550
+ def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
551
+ for i in range(n_convs):
552
+ L = (L - kernel_size + 2 * pad) // stride + 1
553
+ return L
554
+
555
+
556
+ class SynthesizerTrn(nn.Module):
557
+ """
558
+ Synthesizer for Training
559
+ """
560
+
561
+ def __init__(self,
562
+ n_vocab,
563
+ spec_channels,
564
+ segment_size,
565
+ inter_channels,
566
+ hidden_channels,
567
+ filter_channels,
568
+ n_heads,
569
+ n_layers,
570
+ kernel_size,
571
+ p_dropout,
572
+ resblock,
573
+ resblock_kernel_sizes,
574
+ resblock_dilation_sizes,
575
+ upsample_rates,
576
+ upsample_initial_channel,
577
+ upsample_kernel_sizes,
578
+ n_speakers=256,
579
+ gin_channels=256,
580
+ use_sdp=True,
581
+ n_flow_layer = 4,
582
+ n_layers_trans_flow = 3,
583
+ flow_share_parameter = False,
584
+ use_transformer_flow = True,
585
+ **kwargs):
586
+
587
+ super().__init__()
588
+ self.n_vocab = n_vocab
589
+ self.spec_channels = spec_channels
590
+ self.inter_channels = inter_channels
591
+ self.hidden_channels = hidden_channels
592
+ self.filter_channels = filter_channels
593
+ self.n_heads = n_heads
594
+ self.n_layers = n_layers
595
+ self.kernel_size = kernel_size
596
+ self.p_dropout = p_dropout
597
+ self.resblock = resblock
598
+ self.resblock_kernel_sizes = resblock_kernel_sizes
599
+ self.resblock_dilation_sizes = resblock_dilation_sizes
600
+ self.upsample_rates = upsample_rates
601
+ self.upsample_initial_channel = upsample_initial_channel
602
+ self.upsample_kernel_sizes = upsample_kernel_sizes
603
+ self.segment_size = segment_size
604
+ self.n_speakers = n_speakers
605
+ self.gin_channels = gin_channels
606
+ self.n_layers_trans_flow = n_layers_trans_flow
607
+ self.use_spk_conditioned_encoder = kwargs.get("use_spk_conditioned_encoder", True)
608
+ self.use_sdp = use_sdp
609
+ self.use_noise_scaled_mas = kwargs.get("use_noise_scaled_mas", False)
610
+ self.mas_noise_scale_initial = kwargs.get("mas_noise_scale_initial", 0.01)
611
+ self.noise_scale_delta = kwargs.get("noise_scale_delta", 2e-6)
612
+ self.current_mas_noise_scale = self.mas_noise_scale_initial
613
+ if self.use_spk_conditioned_encoder and gin_channels > 0:
614
+ self.enc_gin_channels = gin_channels
615
+ self.enc_p = TextEncoder(n_vocab,
616
+ inter_channels,
617
+ hidden_channels,
618
+ filter_channels,
619
+ n_heads,
620
+ n_layers,
621
+ kernel_size,
622
+ p_dropout,
623
+ gin_channels=self.enc_gin_channels)
624
+ self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
625
+ upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
626
+ self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
627
+ gin_channels=gin_channels)
628
+ if use_transformer_flow:
629
+ self.flow = TransformerCouplingBlock(inter_channels, hidden_channels, filter_channels, n_heads, n_layers_trans_flow, 5, p_dropout, n_flow_layer, gin_channels=gin_channels,share_parameter= flow_share_parameter)
630
+ else:
631
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, n_flow_layer, gin_channels=gin_channels)
632
+ self.sdp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
633
+ self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
634
+
635
+ if n_speakers > 1:
636
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
637
+ else:
638
+ self.ref_enc = ReferenceEncoder(spec_channels, gin_channels)
639
+
640
+ def forward(self, x, x_lengths, y, y_lengths, sid, tone, language, bert):
641
+ if self.n_speakers > 0:
642
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
643
+ else:
644
+ g = self.ref_enc(y.transpose(1,2)).unsqueeze(-1)
645
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert,g=g)
646
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
647
+ z_p = self.flow(z, y_mask, g=g)
648
+
649
+ with torch.no_grad():
650
+ # negative cross-entropy
651
+ s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
652
+ neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
653
+ neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2),
654
+ s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
655
+ neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
656
+ neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
657
+ neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
658
+ if self.use_noise_scaled_mas:
659
+ epsilon = torch.std(neg_cent) * torch.randn_like(neg_cent) * self.current_mas_noise_scale
660
+ neg_cent = neg_cent + epsilon
661
+
662
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
663
+ attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
664
+
665
+ w = attn.sum(2)
666
+
667
+ l_length_sdp = self.sdp(x, x_mask, w, g=g)
668
+ l_length_sdp = l_length_sdp / torch.sum(x_mask)
669
+
670
+ logw_ = torch.log(w + 1e-6) * x_mask
671
+ logw = self.dp(x, x_mask, g=g)
672
+ l_length_dp = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(x_mask) # for averaging
673
+
674
+ l_length = l_length_dp + l_length_sdp
675
+
676
+ # expand prior
677
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
678
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
679
+
680
+ z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
681
+ o = self.dec(z_slice, g=g)
682
+ return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q), (x, logw, logw_)
683
+
684
+ def infer(self, x, x_lengths, sid, tone, language, bert, noise_scale=.667, length_scale=1, noise_scale_w=0.8, max_len=None, sdp_ratio=0,y=None):
685
+ #x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert)
686
+ # g = self.gst(y)
687
+ if self.n_speakers > 0:
688
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
689
+ else:
690
+ g = self.ref_enc(y.transpose(1,2)).unsqueeze(-1)
691
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert,g=g)
692
+ logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * (sdp_ratio) + self.dp(x, x_mask, g=g) * (1 - sdp_ratio)
693
+ w = torch.exp(logw) * x_mask * length_scale
694
+ w_ceil = torch.ceil(w)
695
+ y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
696
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
697
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
698
+ attn = commons.generate_path(w_ceil, attn_mask)
699
+
700
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
701
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1,
702
+ 2) # [b, t', t], [b, t, d] -> [b, d, t']
703
+
704
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
705
+ z = self.flow(z_p, y_mask, g=g, reverse=True)
706
+ o = self.dec((z * y_mask)[:, :, :max_len], g=g)
707
+ return o, attn, y_mask, (z, z_p, m_p, logs_p)
modules.py ADDED
@@ -0,0 +1,452 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import scipy
5
+ import torch
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10
+ from torch.nn.utils import weight_norm, remove_weight_norm
11
+
12
+ import commons
13
+ from commons import init_weights, get_padding
14
+ from transforms import piecewise_rational_quadratic_transform
15
+ from attentions import Encoder
16
+
17
+ LRELU_SLOPE = 0.1
18
+
19
+ class LayerNorm(nn.Module):
20
+ def __init__(self, channels, eps=1e-5):
21
+ super().__init__()
22
+ self.channels = channels
23
+ self.eps = eps
24
+
25
+ self.gamma = nn.Parameter(torch.ones(channels))
26
+ self.beta = nn.Parameter(torch.zeros(channels))
27
+
28
+ def forward(self, x):
29
+ x = x.transpose(1, -1)
30
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
31
+ return x.transpose(1, -1)
32
+
33
+ class ConvReluNorm(nn.Module):
34
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
35
+ super().__init__()
36
+ self.in_channels = in_channels
37
+ self.hidden_channels = hidden_channels
38
+ self.out_channels = out_channels
39
+ self.kernel_size = kernel_size
40
+ self.n_layers = n_layers
41
+ self.p_dropout = p_dropout
42
+ assert n_layers > 1, "Number of layers should be larger than 0."
43
+
44
+ self.conv_layers = nn.ModuleList()
45
+ self.norm_layers = nn.ModuleList()
46
+ self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
47
+ self.norm_layers.append(LayerNorm(hidden_channels))
48
+ self.relu_drop = nn.Sequential(
49
+ nn.ReLU(),
50
+ nn.Dropout(p_dropout))
51
+ for _ in range(n_layers-1):
52
+ self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
53
+ self.norm_layers.append(LayerNorm(hidden_channels))
54
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
55
+ self.proj.weight.data.zero_()
56
+ self.proj.bias.data.zero_()
57
+
58
+ def forward(self, x, x_mask):
59
+ x_org = x
60
+ for i in range(self.n_layers):
61
+ x = self.conv_layers[i](x * x_mask)
62
+ x = self.norm_layers[i](x)
63
+ x = self.relu_drop(x)
64
+ x = x_org + self.proj(x)
65
+ return x * x_mask
66
+
67
+
68
+ class DDSConv(nn.Module):
69
+ """
70
+ Dialted and Depth-Separable Convolution
71
+ """
72
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
73
+ super().__init__()
74
+ self.channels = channels
75
+ self.kernel_size = kernel_size
76
+ self.n_layers = n_layers
77
+ self.p_dropout = p_dropout
78
+
79
+ self.drop = nn.Dropout(p_dropout)
80
+ self.convs_sep = nn.ModuleList()
81
+ self.convs_1x1 = nn.ModuleList()
82
+ self.norms_1 = nn.ModuleList()
83
+ self.norms_2 = nn.ModuleList()
84
+ for i in range(n_layers):
85
+ dilation = kernel_size ** i
86
+ padding = (kernel_size * dilation - dilation) // 2
87
+ self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
88
+ groups=channels, dilation=dilation, padding=padding
89
+ ))
90
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
91
+ self.norms_1.append(LayerNorm(channels))
92
+ self.norms_2.append(LayerNorm(channels))
93
+
94
+ def forward(self, x, x_mask, g=None):
95
+ if g is not None:
96
+ x = x + g
97
+ for i in range(self.n_layers):
98
+ y = self.convs_sep[i](x * x_mask)
99
+ y = self.norms_1[i](y)
100
+ y = F.gelu(y)
101
+ y = self.convs_1x1[i](y)
102
+ y = self.norms_2[i](y)
103
+ y = F.gelu(y)
104
+ y = self.drop(y)
105
+ x = x + y
106
+ return x * x_mask
107
+
108
+
109
+ class WN(torch.nn.Module):
110
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
111
+ super(WN, self).__init__()
112
+ assert(kernel_size % 2 == 1)
113
+ self.hidden_channels =hidden_channels
114
+ self.kernel_size = kernel_size,
115
+ self.dilation_rate = dilation_rate
116
+ self.n_layers = n_layers
117
+ self.gin_channels = gin_channels
118
+ self.p_dropout = p_dropout
119
+
120
+ self.in_layers = torch.nn.ModuleList()
121
+ self.res_skip_layers = torch.nn.ModuleList()
122
+ self.drop = nn.Dropout(p_dropout)
123
+
124
+ if gin_channels != 0:
125
+ cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
126
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
127
+
128
+ for i in range(n_layers):
129
+ dilation = dilation_rate ** i
130
+ padding = int((kernel_size * dilation - dilation) / 2)
131
+ in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
132
+ dilation=dilation, padding=padding)
133
+ in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
134
+ self.in_layers.append(in_layer)
135
+
136
+ # last one is not necessary
137
+ if i < n_layers - 1:
138
+ res_skip_channels = 2 * hidden_channels
139
+ else:
140
+ res_skip_channels = hidden_channels
141
+
142
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
143
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
144
+ self.res_skip_layers.append(res_skip_layer)
145
+
146
+ def forward(self, x, x_mask, g=None, **kwargs):
147
+ output = torch.zeros_like(x)
148
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
149
+
150
+ if g is not None:
151
+ g = self.cond_layer(g)
152
+
153
+ for i in range(self.n_layers):
154
+ x_in = self.in_layers[i](x)
155
+ if g is not None:
156
+ cond_offset = i * 2 * self.hidden_channels
157
+ g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
158
+ else:
159
+ g_l = torch.zeros_like(x_in)
160
+
161
+ acts = commons.fused_add_tanh_sigmoid_multiply(
162
+ x_in,
163
+ g_l,
164
+ n_channels_tensor)
165
+ acts = self.drop(acts)
166
+
167
+ res_skip_acts = self.res_skip_layers[i](acts)
168
+ if i < self.n_layers - 1:
169
+ res_acts = res_skip_acts[:,:self.hidden_channels,:]
170
+ x = (x + res_acts) * x_mask
171
+ output = output + res_skip_acts[:,self.hidden_channels:,:]
172
+ else:
173
+ output = output + res_skip_acts
174
+ return output * x_mask
175
+
176
+ def remove_weight_norm(self):
177
+ if self.gin_channels != 0:
178
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
179
+ for l in self.in_layers:
180
+ torch.nn.utils.remove_weight_norm(l)
181
+ for l in self.res_skip_layers:
182
+ torch.nn.utils.remove_weight_norm(l)
183
+
184
+
185
+ class ResBlock1(torch.nn.Module):
186
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
187
+ super(ResBlock1, self).__init__()
188
+ self.convs1 = nn.ModuleList([
189
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
190
+ padding=get_padding(kernel_size, dilation[0]))),
191
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
192
+ padding=get_padding(kernel_size, dilation[1]))),
193
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
194
+ padding=get_padding(kernel_size, dilation[2])))
195
+ ])
196
+ self.convs1.apply(init_weights)
197
+
198
+ self.convs2 = nn.ModuleList([
199
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
200
+ padding=get_padding(kernel_size, 1))),
201
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
202
+ padding=get_padding(kernel_size, 1))),
203
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
204
+ padding=get_padding(kernel_size, 1)))
205
+ ])
206
+ self.convs2.apply(init_weights)
207
+
208
+ def forward(self, x, x_mask=None):
209
+ for c1, c2 in zip(self.convs1, self.convs2):
210
+ xt = F.leaky_relu(x, LRELU_SLOPE)
211
+ if x_mask is not None:
212
+ xt = xt * x_mask
213
+ xt = c1(xt)
214
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
215
+ if x_mask is not None:
216
+ xt = xt * x_mask
217
+ xt = c2(xt)
218
+ x = xt + x
219
+ if x_mask is not None:
220
+ x = x * x_mask
221
+ return x
222
+
223
+ def remove_weight_norm(self):
224
+ for l in self.convs1:
225
+ remove_weight_norm(l)
226
+ for l in self.convs2:
227
+ remove_weight_norm(l)
228
+
229
+
230
+ class ResBlock2(torch.nn.Module):
231
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
232
+ super(ResBlock2, self).__init__()
233
+ self.convs = nn.ModuleList([
234
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
235
+ padding=get_padding(kernel_size, dilation[0]))),
236
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
237
+ padding=get_padding(kernel_size, dilation[1])))
238
+ ])
239
+ self.convs.apply(init_weights)
240
+
241
+ def forward(self, x, x_mask=None):
242
+ for c in self.convs:
243
+ xt = F.leaky_relu(x, LRELU_SLOPE)
244
+ if x_mask is not None:
245
+ xt = xt * x_mask
246
+ xt = c(xt)
247
+ x = xt + x
248
+ if x_mask is not None:
249
+ x = x * x_mask
250
+ return x
251
+
252
+ def remove_weight_norm(self):
253
+ for l in self.convs:
254
+ remove_weight_norm(l)
255
+
256
+
257
+ class Log(nn.Module):
258
+ def forward(self, x, x_mask, reverse=False, **kwargs):
259
+ if not reverse:
260
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
261
+ logdet = torch.sum(-y, [1, 2])
262
+ return y, logdet
263
+ else:
264
+ x = torch.exp(x) * x_mask
265
+ return x
266
+
267
+
268
+ class Flip(nn.Module):
269
+ def forward(self, x, *args, reverse=False, **kwargs):
270
+ x = torch.flip(x, [1])
271
+ if not reverse:
272
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
273
+ return x, logdet
274
+ else:
275
+ return x
276
+
277
+
278
+ class ElementwiseAffine(nn.Module):
279
+ def __init__(self, channels):
280
+ super().__init__()
281
+ self.channels = channels
282
+ self.m = nn.Parameter(torch.zeros(channels,1))
283
+ self.logs = nn.Parameter(torch.zeros(channels,1))
284
+
285
+ def forward(self, x, x_mask, reverse=False, **kwargs):
286
+ if not reverse:
287
+ y = self.m + torch.exp(self.logs) * x
288
+ y = y * x_mask
289
+ logdet = torch.sum(self.logs * x_mask, [1,2])
290
+ return y, logdet
291
+ else:
292
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
293
+ return x
294
+
295
+
296
+ class ResidualCouplingLayer(nn.Module):
297
+ def __init__(self,
298
+ channels,
299
+ hidden_channels,
300
+ kernel_size,
301
+ dilation_rate,
302
+ n_layers,
303
+ p_dropout=0,
304
+ gin_channels=0,
305
+ mean_only=False):
306
+ assert channels % 2 == 0, "channels should be divisible by 2"
307
+ super().__init__()
308
+ self.channels = channels
309
+ self.hidden_channels = hidden_channels
310
+ self.kernel_size = kernel_size
311
+ self.dilation_rate = dilation_rate
312
+ self.n_layers = n_layers
313
+ self.half_channels = channels // 2
314
+ self.mean_only = mean_only
315
+
316
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
317
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
318
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
319
+ self.post.weight.data.zero_()
320
+ self.post.bias.data.zero_()
321
+
322
+ def forward(self, x, x_mask, g=None, reverse=False):
323
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
324
+ h = self.pre(x0) * x_mask
325
+ h = self.enc(h, x_mask, g=g)
326
+ stats = self.post(h) * x_mask
327
+ if not self.mean_only:
328
+ m, logs = torch.split(stats, [self.half_channels]*2, 1)
329
+ else:
330
+ m = stats
331
+ logs = torch.zeros_like(m)
332
+
333
+ if not reverse:
334
+ x1 = m + x1 * torch.exp(logs) * x_mask
335
+ x = torch.cat([x0, x1], 1)
336
+ logdet = torch.sum(logs, [1,2])
337
+ return x, logdet
338
+ else:
339
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
340
+ x = torch.cat([x0, x1], 1)
341
+ return x
342
+
343
+
344
+ class ConvFlow(nn.Module):
345
+ def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
346
+ super().__init__()
347
+ self.in_channels = in_channels
348
+ self.filter_channels = filter_channels
349
+ self.kernel_size = kernel_size
350
+ self.n_layers = n_layers
351
+ self.num_bins = num_bins
352
+ self.tail_bound = tail_bound
353
+ self.half_channels = in_channels // 2
354
+
355
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
356
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
357
+ self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
358
+ self.proj.weight.data.zero_()
359
+ self.proj.bias.data.zero_()
360
+
361
+ def forward(self, x, x_mask, g=None, reverse=False):
362
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
363
+ h = self.pre(x0)
364
+ h = self.convs(h, x_mask, g=g)
365
+ h = self.proj(h) * x_mask
366
+
367
+ b, c, t = x0.shape
368
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
369
+
370
+ unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
371
+ unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
372
+ unnormalized_derivatives = h[..., 2 * self.num_bins:]
373
+
374
+ x1, logabsdet = piecewise_rational_quadratic_transform(x1,
375
+ unnormalized_widths,
376
+ unnormalized_heights,
377
+ unnormalized_derivatives,
378
+ inverse=reverse,
379
+ tails='linear',
380
+ tail_bound=self.tail_bound
381
+ )
382
+
383
+ x = torch.cat([x0, x1], 1) * x_mask
384
+ logdet = torch.sum(logabsdet * x_mask, [1,2])
385
+ if not reverse:
386
+ return x, logdet
387
+ else:
388
+ return x
389
+ class TransformerCouplingLayer(nn.Module):
390
+ def __init__(self,
391
+ channels,
392
+ hidden_channels,
393
+ kernel_size,
394
+ n_layers,
395
+ n_heads,
396
+ p_dropout=0,
397
+ filter_channels=0,
398
+ mean_only=False,
399
+ wn_sharing_parameter=None,
400
+ gin_channels = 0
401
+ ):
402
+ assert channels % 2 == 0, "channels should be divisible by 2"
403
+ super().__init__()
404
+ self.channels = channels
405
+ self.hidden_channels = hidden_channels
406
+ self.kernel_size = kernel_size
407
+ self.n_layers = n_layers
408
+ self.half_channels = channels // 2
409
+ self.mean_only = mean_only
410
+
411
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
412
+ self.enc = Encoder(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, isflow = True, gin_channels = gin_channels) if wn_sharing_parameter is None else wn_sharing_parameter
413
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
414
+ self.post.weight.data.zero_()
415
+ self.post.bias.data.zero_()
416
+
417
+ def forward(self, x, x_mask, g=None, reverse=False):
418
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
419
+ h = self.pre(x0) * x_mask
420
+ h = self.enc(h, x_mask, g=g)
421
+ stats = self.post(h) * x_mask
422
+ if not self.mean_only:
423
+ m, logs = torch.split(stats, [self.half_channels]*2, 1)
424
+ else:
425
+ m = stats
426
+ logs = torch.zeros_like(m)
427
+
428
+ if not reverse:
429
+ x1 = m + x1 * torch.exp(logs) * x_mask
430
+ x = torch.cat([x0, x1], 1)
431
+ logdet = torch.sum(logs, [1,2])
432
+ return x, logdet
433
+ else:
434
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
435
+ x = torch.cat([x0, x1], 1)
436
+ return x
437
+
438
+ x1, logabsdet = piecewise_rational_quadratic_transform(x1,
439
+ unnormalized_widths,
440
+ unnormalized_heights,
441
+ unnormalized_derivatives,
442
+ inverse=reverse,
443
+ tails='linear',
444
+ tail_bound=self.tail_bound
445
+ )
446
+
447
+ x = torch.cat([x0, x1], 1) * x_mask
448
+ logdet = torch.sum(logabsdet * x_mask, [1,2])
449
+ if not reverse:
450
+ return x, logdet
451
+ else:
452
+ return x
monotonic_align/__init__.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numpy import zeros, int32, float32
2
+ from torch import from_numpy
3
+
4
+ from .core import maximum_path_jit
5
+
6
+ def maximum_path(neg_cent, mask):
7
+ device = neg_cent.device
8
+ dtype = neg_cent.dtype
9
+ neg_cent = neg_cent.data.cpu().numpy().astype(float32)
10
+ path = zeros(neg_cent.shape, dtype=int32)
11
+
12
+ t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(int32)
13
+ t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(int32)
14
+ maximum_path_jit(path, neg_cent, t_t_max, t_s_max)
15
+ return from_numpy(path).to(device=device, dtype=dtype)
monotonic_align/core.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numba
2
+
3
+
4
+ @numba.jit(numba.void(numba.int32[:,:,::1], numba.float32[:,:,::1], numba.int32[::1], numba.int32[::1]), nopython=True, nogil=True)
5
+ def maximum_path_jit(paths, values, t_ys, t_xs):
6
+ b = paths.shape[0]
7
+ max_neg_val=-1e9
8
+ for i in range(int(b)):
9
+ path = paths[i]
10
+ value = values[i]
11
+ t_y = t_ys[i]
12
+ t_x = t_xs[i]
13
+
14
+ v_prev = v_cur = 0.0
15
+ index = t_x - 1
16
+
17
+ for y in range(t_y):
18
+ for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
19
+ if x == y:
20
+ v_cur = max_neg_val
21
+ else:
22
+ v_cur = value[y-1, x]
23
+ if x == 0:
24
+ if y == 0:
25
+ v_prev = 0.
26
+ else:
27
+ v_prev = max_neg_val
28
+ else:
29
+ v_prev = value[y-1, x-1]
30
+ value[y, x] += max(v_prev, v_cur)
31
+
32
+ for y in range(t_y - 1, -1, -1):
33
+ path[y, index] = 1
34
+ if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]):
35
+ index = index - 1
preprocess_text.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from random import shuffle
3
+
4
+ import tqdm
5
+ from text.cleaner import clean_text
6
+ from collections import defaultdict
7
+ stage = [1,2,3]
8
+
9
+ transcription_path = 'filelists/speaker.list'
10
+ train_path = 'filelists/train.list'
11
+ val_path = 'filelists/val.list'
12
+ config_path = "configs/config.json"
13
+ val_per_spk = 4
14
+ max_val_total = 8
15
+
16
+ if 1 in stage:
17
+ with open( transcription_path+'.cleaned', 'w', encoding='utf-8') as f:
18
+ for line in tqdm.tqdm(open(transcription_path, encoding='utf-8').readlines()):
19
+ try:
20
+ utt, spk, language, text = line.strip().split('|')
21
+ norm_text, phones, tones, word2ph = clean_text(text, language)
22
+ f.write('{}|{}|{}|{}|{}|{}|{}\n'.format(utt, spk, language, norm_text, ' '.join(phones),
23
+ " ".join([str(i) for i in tones]),
24
+ " ".join([str(i) for i in word2ph])))
25
+ except Exception as error :
26
+ print("err!", utt, error)
27
+
28
+ if 2 in stage:
29
+ spk_utt_map = defaultdict(list)
30
+ spk_id_map = {}
31
+ current_sid = 0
32
+
33
+ with open( transcription_path+'.cleaned', encoding='utf-8') as f:
34
+ for line in f.readlines():
35
+ utt, spk, language, text, phones, tones, word2ph = line.strip().split('|')
36
+ spk_utt_map[spk].append(line)
37
+ if spk not in spk_id_map.keys():
38
+ spk_id_map[spk] = current_sid
39
+ current_sid += 1
40
+ train_list = []
41
+ val_list = []
42
+
43
+ for spk, utts in spk_utt_map.items():
44
+ shuffle(utts)
45
+ val_list+=utts[:val_per_spk]
46
+ train_list+=utts[val_per_spk:]
47
+ if len(val_list) > max_val_total:
48
+ train_list+=val_list[max_val_total:]
49
+ val_list = val_list[:max_val_total]
50
+
51
+ with open( train_path,"w", encoding='utf-8') as f:
52
+ for line in train_list:
53
+ f.write(line)
54
+
55
+ with open(val_path, "w", encoding='utf-8') as f:
56
+ for line in val_list:
57
+ f.write(line)
58
+
59
+ if 3 in stage:
60
+ assert 2 in stage
61
+ config = json.load(open(config_path, encoding='utf-8'))
62
+ config["data"]['spk2id'] = spk_id_map
63
+ with open(config_path, 'w', encoding='utf-8') as f:
64
+ json.dump(config, f, indent=2, ensure_ascii=False)
requirements.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ librosa==0.9.1
2
+ matplotlib
3
+ numpy
4
+ numba
5
+ phonemizer
6
+ scipy
7
+ tensorboard
8
+ torch
9
+ torchvision
10
+ Unidecode
11
+ amfm_decompy
12
+ jieba
13
+ transformers
14
+ pypinyin
15
+ cn2an
16
+ gradio
17
+ av
resample.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ import librosa
4
+ import numpy as np
5
+ from multiprocessing import Pool, cpu_count
6
+
7
+ import soundfile
8
+ from scipy.io import wavfile
9
+ from tqdm import tqdm
10
+
11
+
12
+ def process(item):
13
+ spkdir, wav_name, args = item
14
+ speaker = spkdir.replace("\\", "/").split("/")[-1]
15
+ wav_path = os.path.join(args.in_dir, speaker, wav_name)
16
+ if os.path.exists(wav_path) and '.wav' in wav_path:
17
+ os.makedirs(os.path.join(args.out_dir, speaker), exist_ok=True)
18
+ wav, sr = librosa.load(wav_path, sr=args.sr)
19
+ soundfile.write(
20
+ os.path.join(args.out_dir, speaker, wav_name),
21
+ wav,
22
+ sr
23
+ )
24
+
25
+
26
+
27
+ if __name__ == "__main__":
28
+ parser = argparse.ArgumentParser()
29
+ parser.add_argument("--sr", type=int, default=44100, help="sampling rate")
30
+ parser.add_argument("--in_dir", type=str, default="./dataset_raw", help="path to source dir")
31
+ parser.add_argument("--out_dir", type=str, default="./dataset", help="path to target dir")
32
+ args = parser.parse_args()
33
+ # processs = 8
34
+ processs = cpu_count()-2 if cpu_count() >4 else 1
35
+ pool = Pool(processes=processs)
36
+
37
+ for speaker in os.listdir(args.in_dir):
38
+ spk_dir = os.path.join(args.in_dir, speaker)
39
+ if os.path.isdir(spk_dir):
40
+ print(spk_dir)
41
+ for _ in tqdm(pool.imap_unordered(process, [(spk_dir, i, args) for i in os.listdir(spk_dir) if i.endswith("wav")])):
42
+ pass
server.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, Response
2
+ from io import BytesIO
3
+ import torch
4
+ from av import open as avopen
5
+
6
+ import commons
7
+ import utils
8
+ from models import SynthesizerTrn
9
+ from text.symbols import symbols
10
+ from text import cleaned_text_to_sequence, get_bert
11
+ from text.cleaner import clean_text
12
+ from scipy.io import wavfile
13
+
14
+ # Flask Init
15
+ app = Flask(__name__)
16
+ app.config['JSON_AS_ASCII'] = False
17
+ def get_text(text, language_str, hps):
18
+ norm_text, phone, tone, word2ph = clean_text(text, language_str)
19
+ print([f"{p}{t}" for p, t in zip(phone, tone)])
20
+ phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
21
+
22
+ if hps.data.add_blank:
23
+ phone = commons.intersperse(phone, 0)
24
+ tone = commons.intersperse(tone, 0)
25
+ language = commons.intersperse(language, 0)
26
+ for i in range(len(word2ph)):
27
+ word2ph[i] = word2ph[i] * 2
28
+ word2ph[0] += 1
29
+ bert = get_bert(norm_text, word2ph, language_str)
30
+
31
+ assert bert.shape[-1] == len(phone)
32
+
33
+ phone = torch.LongTensor(phone)
34
+ tone = torch.LongTensor(tone)
35
+ language = torch.LongTensor(language)
36
+
37
+ return bert, phone, tone, language
38
+
39
+ def infer(text, sdp_ratio, noise_scale, noise_scale_w,length_scale,sid):
40
+ bert, phones, tones, lang_ids = get_text(text,"ZH", hps,)
41
+ with torch.no_grad():
42
+ x_tst=phones.to(dev).unsqueeze(0)
43
+ tones=tones.to(dev).unsqueeze(0)
44
+ lang_ids=lang_ids.to(dev).unsqueeze(0)
45
+ bert = bert.to(dev).unsqueeze(0)
46
+ x_tst_lengths = torch.LongTensor([phones.size(0)]).to(dev)
47
+ speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(dev)
48
+ audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids,bert, sdp_ratio=sdp_ratio
49
+ , noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
50
+ return audio
51
+
52
+ def replace_punctuation(text, i=2):
53
+ punctuation = ",。?!"
54
+ for char in punctuation:
55
+ text = text.replace(char, char * i)
56
+ return text
57
+
58
+ def wav2(i, o, format):
59
+ inp = avopen(i, 'rb')
60
+ out = avopen(o, 'wb', format=format)
61
+ if format == "ogg": format = "libvorbis"
62
+
63
+ ostream = out.add_stream(format)
64
+
65
+ for frame in inp.decode(audio=0):
66
+ for p in ostream.encode(frame): out.mux(p)
67
+
68
+ for p in ostream.encode(None): out.mux(p)
69
+
70
+ out.close()
71
+ inp.close()
72
+
73
+ # Load Generator
74
+ hps = utils.get_hparams_from_file("./configs/config.json")
75
+
76
+ dev='cuda'
77
+ net_g = SynthesizerTrn(
78
+ len(symbols),
79
+ hps.data.filter_length // 2 + 1,
80
+ hps.train.segment_size // hps.data.hop_length,
81
+ n_speakers=hps.data.n_speakers,
82
+ **hps.model).to(dev)
83
+ _ = net_g.eval()
84
+
85
+ _ = utils.load_checkpoint("logs/G_649000.pth", net_g, None,skip_optimizer=True)
86
+
87
+ @app.route("/",methods=['GET','POST'])
88
+ def main():
89
+ if request.method == 'GET':
90
+ try:
91
+ speaker = request.args.get('speaker')
92
+ text = request.args.get('text').replace("/n","")
93
+ sdp_ratio = float(request.args.get("sdp_ratio", 0.2))
94
+ noise = float(request.args.get("noise", 0.5))
95
+ noisew = float(request.args.get("noisew", 0.6))
96
+ length = float(request.args.get("length", 1.2))
97
+ if length >= 2:
98
+ return "Too big length"
99
+ if len(text) >=200:
100
+ return "Too long text"
101
+ fmt = request.args.get("format", "wav")
102
+ if None in (speaker, text):
103
+ return "Missing Parameter"
104
+ if fmt not in ("mp3", "wav", "ogg"):
105
+ return "Invalid Format"
106
+ except:
107
+ return "Invalid Parameter"
108
+
109
+ with torch.no_grad():
110
+ audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise, noise_scale_w=noisew, length_scale=length, sid=speaker)
111
+
112
+ with BytesIO() as wav:
113
+ wavfile.write(wav, hps.data.sampling_rate, audio)
114
+ torch.cuda.empty_cache()
115
+ if fmt == "wav":
116
+ return Response(wav.getvalue(), mimetype="audio/wav")
117
+ wav.seek(0, 0)
118
+ with BytesIO() as ofp:
119
+ wav2(wav, ofp, fmt)
120
+ return Response(
121
+ ofp.getvalue(),
122
+ mimetype="audio/mpeg" if fmt == "mp3" else "audio/ogg"
123
+ )
text/__init__.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from text.symbols import *
2
+
3
+
4
+ _symbol_to_id = {s: i for i, s in enumerate(symbols)}
5
+
6
+ def cleaned_text_to_sequence(cleaned_text, tones, language):
7
+ '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
8
+ Args:
9
+ text: string to convert to a sequence
10
+ Returns:
11
+ List of integers corresponding to the symbols in the text
12
+ '''
13
+ phones = [_symbol_to_id[symbol] for symbol in cleaned_text]
14
+ tone_start = language_tone_start_map[language]
15
+ tones = [i + tone_start for i in tones]
16
+ lang_id = language_id_map[language]
17
+ lang_ids = [lang_id for i in phones]
18
+ return phones, tones, lang_ids
19
+
20
+ def get_bert(norm_text, word2ph, language):
21
+ from .chinese_bert import get_bert_feature as zh_bert
22
+ from .english_bert_mock import get_bert_feature as en_bert
23
+ lang_bert_func_map = {
24
+ 'ZH': zh_bert,
25
+ 'EN': en_bert
26
+ }
27
+ bert = lang_bert_func_map[language](norm_text, word2ph)
28
+ return bert
text/chinese.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+
4
+ import cn2an
5
+ from pypinyin import lazy_pinyin, Style
6
+
7
+ from text import symbols
8
+ from text.symbols import punctuation
9
+ from text.tone_sandhi import ToneSandhi
10
+
11
+ current_file_path = os.path.dirname(__file__)
12
+ pinyin_to_symbol_map = {line.split("\t")[0]: line.strip().split("\t")[1] for line in
13
+ open(os.path.join(current_file_path, 'opencpop-strict.txt')).readlines()}
14
+
15
+ import jieba.posseg as psg
16
+
17
+
18
+ rep_map = {
19
+ ':': ',',
20
+ ';': ',',
21
+ ',': ',',
22
+ '。': '.',
23
+ '!': '!',
24
+ '?': '?',
25
+ '\n': '.',
26
+ "·": ",",
27
+ '、': ",",
28
+ '...': '…',
29
+ '$': '.',
30
+ '“': "'",
31
+ '”': "'",
32
+ '‘': "'",
33
+ '’': "'",
34
+ '(': "'",
35
+ ')': "'",
36
+ '(': "'",
37
+ ')': "'",
38
+ '《': "'",
39
+ '》': "'",
40
+ '【': "'",
41
+ '】': "'",
42
+ '[': "'",
43
+ ']': "'",
44
+ '—': "-",
45
+ '~': "-",
46
+ '~': "-",
47
+ '「': "'",
48
+ '」': "'",
49
+
50
+ }
51
+
52
+ tone_modifier = ToneSandhi()
53
+
54
+ def replace_punctuation(text):
55
+ text = text.replace("嗯", "恩").replace("呣","母")
56
+ pattern = re.compile('|'.join(re.escape(p) for p in rep_map.keys()))
57
+
58
+ replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
59
+
60
+ replaced_text = re.sub(r'[^\u4e00-\u9fa5'+"".join(punctuation)+r']+', '', replaced_text)
61
+
62
+ return replaced_text
63
+
64
+ def g2p(text):
65
+ pattern = r'(?<=[{0}])\s*'.format(''.join(punctuation))
66
+ sentences = [i for i in re.split(pattern, text) if i.strip()!='']
67
+ phones, tones, word2ph = _g2p(sentences)
68
+ assert sum(word2ph) == len(phones)
69
+ assert len(word2ph) == len(text) #Sometimes it will crash,you can add a try-catch.
70
+ phones = ['_'] + phones + ["_"]
71
+ tones = [0] + tones + [0]
72
+ word2ph = [1] + word2ph + [1]
73
+ return phones, tones, word2ph
74
+
75
+
76
+ def _get_initials_finals(word):
77
+ initials = []
78
+ finals = []
79
+ orig_initials = lazy_pinyin(
80
+ word, neutral_tone_with_five=True, style=Style.INITIALS)
81
+ orig_finals = lazy_pinyin(
82
+ word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
83
+ for c, v in zip(orig_initials, orig_finals):
84
+ initials.append(c)
85
+ finals.append(v)
86
+ return initials, finals
87
+
88
+
89
+ def _g2p(segments):
90
+ phones_list = []
91
+ tones_list = []
92
+ word2ph = []
93
+ for seg in segments:
94
+ pinyins = []
95
+ # Replace all English words in the sentence
96
+ seg = re.sub('[a-zA-Z]+', '', seg)
97
+ seg_cut = psg.lcut(seg)
98
+ initials = []
99
+ finals = []
100
+ seg_cut = tone_modifier.pre_merge_for_modify(seg_cut)
101
+ for word, pos in seg_cut:
102
+ if pos == 'eng':
103
+ continue
104
+ sub_initials, sub_finals = _get_initials_finals(word)
105
+ sub_finals = tone_modifier.modified_tone(word, pos,
106
+ sub_finals)
107
+ initials.append(sub_initials)
108
+ finals.append(sub_finals)
109
+
110
+ # assert len(sub_initials) == len(sub_finals) == len(word)
111
+ initials = sum(initials, [])
112
+ finals = sum(finals, [])
113
+ #
114
+ for c, v in zip(initials, finals):
115
+ raw_pinyin = c+v
116
+ # NOTE: post process for pypinyin outputs
117
+ # we discriminate i, ii and iii
118
+ if c == v:
119
+ assert c in punctuation
120
+ phone = [c]
121
+ tone = '0'
122
+ word2ph.append(1)
123
+ else:
124
+ v_without_tone = v[:-1]
125
+ tone = v[-1]
126
+
127
+ pinyin = c+v_without_tone
128
+ assert tone in '12345'
129
+
130
+ if c:
131
+ # 多音节
132
+ v_rep_map = {
133
+ "uei": 'ui',
134
+ 'iou': 'iu',
135
+ 'uen': 'un',
136
+ }
137
+ if v_without_tone in v_rep_map.keys():
138
+ pinyin = c+v_rep_map[v_without_tone]
139
+ else:
140
+ # 单音节
141
+ pinyin_rep_map = {
142
+ 'ing': 'ying',
143
+ 'i': 'yi',
144
+ 'in': 'yin',
145
+ 'u': 'wu',
146
+ }
147
+ if pinyin in pinyin_rep_map.keys():
148
+ pinyin = pinyin_rep_map[pinyin]
149
+ else:
150
+ single_rep_map = {
151
+ 'v': 'yu',
152
+ 'e': 'e',
153
+ 'i': 'y',
154
+ 'u': 'w',
155
+ }
156
+ if pinyin[0] in single_rep_map.keys():
157
+ pinyin = single_rep_map[pinyin[0]]+pinyin[1:]
158
+
159
+ assert pinyin in pinyin_to_symbol_map.keys(), (pinyin, seg, raw_pinyin)
160
+ phone = pinyin_to_symbol_map[pinyin].split(' ')
161
+ word2ph.append(len(phone))
162
+
163
+ phones_list += phone
164
+ tones_list += [int(tone)] * len(phone)
165
+ return phones_list, tones_list, word2ph
166
+
167
+
168
+
169
+ def text_normalize(text):
170
+ numbers = re.findall(r'\d+(?:\.?\d+)?', text)
171
+ for number in numbers:
172
+ text = text.replace(number, cn2an.an2cn(number), 1)
173
+ text = replace_punctuation(text)
174
+ return text
175
+
176
+ def get_bert_feature(text, word2ph):
177
+ from text import chinese_bert
178
+ return chinese_bert.get_bert_feature(text, word2ph)
179
+
180
+ if __name__ == '__main__':
181
+ from text.chinese_bert import get_bert_feature
182
+ text = "啊!但是《原神》是由,米哈\游自主, [研发]的一款全.新开放世界.冒险游戏"
183
+ text = text_normalize(text)
184
+ print(text)
185
+ phones, tones, word2ph = g2p(text)
186
+ bert = get_bert_feature(text, word2ph)
187
+
188
+ print(phones, tones, word2ph, bert.shape)
189
+
190
+
191
+ # # 示例用法
192
+ # text = "这是一个示例文本:,你好!这是一个测试...."
193
+ # print(g2p_paddle(text)) # 输出: 这是一个示例文本你好这是一个测试
text/chinese_bert.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import sys
3
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
4
+
5
+ device = torch.device(
6
+ "cuda"
7
+ if torch.cuda.is_available()
8
+ else (
9
+ "mps"
10
+ if sys.platform == "darwin" and torch.backends.mps.is_available()
11
+ else "cpu"
12
+ )
13
+ )
14
+
15
+ tokenizer = AutoTokenizer.from_pretrained("./bert/chinese-roberta-wwm-ext-large")
16
+ model = AutoModelForMaskedLM.from_pretrained("./bert/chinese-roberta-wwm-ext-large").to(device)
17
+
18
+ def get_bert_feature(text, word2ph):
19
+ with torch.no_grad():
20
+ inputs = tokenizer(text, return_tensors='pt')
21
+ for i in inputs:
22
+ inputs[i] = inputs[i].to(device)
23
+ res = model(**inputs, output_hidden_states=True)
24
+ res = torch.cat(res['hidden_states'][-3:-2], -1)[0].cpu()
25
+
26
+ assert len(word2ph) == len(text)+2
27
+ word2phone = word2ph
28
+ phone_level_feature = []
29
+ for i in range(len(word2phone)):
30
+ repeat_feature = res[i].repeat(word2phone[i], 1)
31
+ phone_level_feature.append(repeat_feature)
32
+
33
+ phone_level_feature = torch.cat(phone_level_feature, dim=0)
34
+
35
+
36
+ return phone_level_feature.T
37
+
38
+ if __name__ == '__main__':
39
+ # feature = get_bert_feature('你好,我是说的道理。')
40
+ import torch
41
+
42
+ word_level_feature = torch.rand(38, 1024) # 12个词,每个词1024维特征
43
+ word2phone = [1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1]
44
+
45
+ # 计算总帧数
46
+ total_frames = sum(word2phone)
47
+ print(word_level_feature.shape)
48
+ print(word2phone)
49
+ phone_level_feature = []
50
+ for i in range(len(word2phone)):
51
+ print(word_level_feature[i].shape)
52
+
53
+ # 对每个词重复word2phone[i]次
54
+ repeat_feature = word_level_feature[i].repeat(word2phone[i], 1)
55
+ phone_level_feature.append(repeat_feature)
56
+
57
+ phone_level_feature = torch.cat(phone_level_feature, dim=0)
58
+ print(phone_level_feature.shape) # torch.Size([36, 1024])
59
+
text/cleaner.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from text import chinese, cleaned_text_to_sequence
2
+
3
+
4
+ language_module_map = {
5
+ 'ZH': chinese
6
+ }
7
+
8
+
9
+ def clean_text(text, language):
10
+ language_module = language_module_map[language]
11
+ norm_text = language_module.text_normalize(text)
12
+ phones, tones, word2ph = language_module.g2p(norm_text)
13
+ return norm_text, phones, tones, word2ph
14
+
15
+ def clean_text_bert(text, language):
16
+ language_module = language_module_map[language]
17
+ norm_text = language_module.text_normalize(text)
18
+ phones, tones, word2ph = language_module.g2p(norm_text)
19
+ bert = language_module.get_bert_feature(norm_text, word2ph)
20
+ return phones, tones, bert
21
+
22
+ def text_to_sequence(text, language):
23
+ norm_text, phones, tones, word2ph = clean_text(text, language)
24
+ return cleaned_text_to_sequence(phones, tones, language)
25
+
26
+ if __name__ == '__main__':
27
+ pass
text/cmudict.rep ADDED
The diff for this file is too large to render. See raw diff
 
text/cmudict_cache.pickle ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9b21b20325471934ba92f2e4a5976989e7d920caa32e7a286eacb027d197949
3
+ size 6212655
text/english.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import os
3
+ import re
4
+ from g2p_en import G2p
5
+ from string import punctuation
6
+
7
+ from text import symbols
8
+
9
+ current_file_path = os.path.dirname(__file__)
10
+ CMU_DICT_PATH = os.path.join(current_file_path, 'cmudict.rep')
11
+ CACHE_PATH = os.path.join(current_file_path, 'cmudict_cache.pickle')
12
+ _g2p = G2p()
13
+
14
+ arpa = {'AH0', 'S', 'AH1', 'EY2', 'AE2', 'EH0', 'OW2', 'UH0', 'NG', 'B', 'G', 'AY0', 'M', 'AA0', 'F', 'AO0', 'ER2', 'UH1', 'IY1', 'AH2', 'DH', 'IY0', 'EY1', 'IH0', 'K', 'N', 'W', 'IY2', 'T', 'AA1', 'ER1', 'EH2', 'OY0', 'UH2', 'UW1', 'Z', 'AW2', 'AW1', 'V', 'UW2', 'AA2', 'ER', 'AW0', 'UW0', 'R', 'OW1', 'EH1', 'ZH', 'AE0', 'IH2', 'IH', 'Y', 'JH', 'P', 'AY1', 'EY0', 'OY2', 'TH', 'HH', 'D', 'ER0', 'CH', 'AO1', 'AE1', 'AO2', 'OY1', 'AY2', 'IH1', 'OW0', 'L', 'SH'}
15
+
16
+
17
+ def post_replace_ph(ph):
18
+ rep_map = {
19
+ ':': ',',
20
+ ';': ',',
21
+ ',': ',',
22
+ '。': '.',
23
+ '!': '!',
24
+ '?': '?',
25
+ '\n': '.',
26
+ "·": ",",
27
+ '、': ",",
28
+ '...': '…',
29
+ 'v': "V"
30
+ }
31
+ if ph in rep_map.keys():
32
+ ph = rep_map[ph]
33
+ if ph in symbols:
34
+ return ph
35
+ if ph not in symbols:
36
+ ph = 'UNK'
37
+ return ph
38
+
39
+ def read_dict():
40
+ g2p_dict = {}
41
+ start_line = 49
42
+ with open(CMU_DICT_PATH) as f:
43
+ line = f.readline()
44
+ line_index = 1
45
+ while line:
46
+ if line_index >= start_line:
47
+ line = line.strip()
48
+ word_split = line.split(' ')
49
+ word = word_split[0]
50
+
51
+ syllable_split = word_split[1].split(' - ')
52
+ g2p_dict[word] = []
53
+ for syllable in syllable_split:
54
+ phone_split = syllable.split(' ')
55
+ g2p_dict[word].append(phone_split)
56
+
57
+ line_index = line_index + 1
58
+ line = f.readline()
59
+
60
+ return g2p_dict
61
+
62
+
63
+ def cache_dict(g2p_dict, file_path):
64
+ with open(file_path, 'wb') as pickle_file:
65
+ pickle.dump(g2p_dict, pickle_file)
66
+
67
+
68
+ def get_dict():
69
+ if os.path.exists(CACHE_PATH):
70
+ with open(CACHE_PATH, 'rb') as pickle_file:
71
+ g2p_dict = pickle.load(pickle_file)
72
+ else:
73
+ g2p_dict = read_dict()
74
+ cache_dict(g2p_dict, CACHE_PATH)
75
+
76
+ return g2p_dict
77
+
78
+ eng_dict = get_dict()
79
+
80
+ def refine_ph(phn):
81
+ tone = 0
82
+ if re.search(r'\d$', phn):
83
+ tone = int(phn[-1]) + 1
84
+ phn = phn[:-1]
85
+ return phn.lower(), tone
86
+
87
+ def refine_syllables(syllables):
88
+ tones = []
89
+ phonemes = []
90
+ for phn_list in syllables:
91
+ for i in range(len(phn_list)):
92
+ phn = phn_list[i]
93
+ phn, tone = refine_ph(phn)
94
+ phonemes.append(phn)
95
+ tones.append(tone)
96
+ return phonemes, tones
97
+
98
+
99
+ def text_normalize(text):
100
+ # todo: eng text normalize
101
+ return text
102
+
103
+ def g2p(text):
104
+
105
+ phones = []
106
+ tones = []
107
+ words = re.split(r"([,;.\-\?\!\s+])", text)
108
+ for w in words:
109
+ if w.upper() in eng_dict:
110
+ phns, tns = refine_syllables(eng_dict[w.upper()])
111
+ phones += phns
112
+ tones += tns
113
+ else:
114
+ phone_list = list(filter(lambda p: p != " ", _g2p(w)))
115
+ for ph in phone_list:
116
+ if ph in arpa:
117
+ ph, tn = refine_ph(ph)
118
+ phones.append(ph)
119
+ tones.append(tn)
120
+ else:
121
+ phones.append(ph)
122
+ tones.append(0)
123
+ # todo: implement word2ph
124
+ word2ph = [1 for i in phones]
125
+
126
+ phones = [post_replace_ph(i) for i in phones]
127
+ return phones, tones, word2ph
128
+
129
+ if __name__ == "__main__":
130
+ # print(get_dict())
131
+ # print(eng_word_to_phoneme("hello"))
132
+ print(g2p("In this paper, we propose 1 DSPGAN, a GAN-based universal vocoder."))
133
+ # all_phones = set()
134
+ # for k, syllables in eng_dict.items():
135
+ # for group in syllables:
136
+ # for ph in group:
137
+ # all_phones.add(ph)
138
+ # print(all_phones)
text/english_bert_mock.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ def get_bert_feature(norm_text, word2ph):
5
+ return torch.zeros(1024, sum(word2ph))
text/japanese.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/CjangCjengh/vits/blob/main/text/japanese.py
2
+ import re
3
+ import sys
4
+
5
+ import pyopenjtalk
6
+
7
+ from text import symbols
8
+
9
+ # Regular expression matching Japanese without punctuation marks:
10
+ _japanese_characters = re.compile(
11
+ r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
12
+
13
+ # Regular expression matching non-Japanese characters or punctuation marks:
14
+ _japanese_marks = re.compile(
15
+ r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
16
+
17
+ # List of (symbol, Japanese) pairs for marks:
18
+ _symbols_to_japanese = [(re.compile('%s' % x[0]), x[1]) for x in [
19
+ ('%', 'パーセント')
20
+ ]]
21
+
22
+
23
+ # List of (consonant, sokuon) pairs:
24
+ _real_sokuon = [(re.compile('%s' % x[0]), x[1]) for x in [
25
+ (r'Q([↑↓]*[kg])', r'k#\1'),
26
+ (r'Q([↑↓]*[tdjʧ])', r't#\1'),
27
+ (r'Q([↑↓]*[sʃ])', r's\1'),
28
+ (r'Q([↑↓]*[pb])', r'p#\1')
29
+ ]]
30
+
31
+ # List of (consonant, hatsuon) pairs:
32
+ _real_hatsuon = [(re.compile('%s' % x[0]), x[1]) for x in [
33
+ (r'N([↑↓]*[pbm])', r'm\1'),
34
+ (r'N([↑↓]*[ʧʥj])', r'n^\1'),
35
+ (r'N([↑↓]*[tdn])', r'n\1'),
36
+ (r'N([↑↓]*[kg])', r'ŋ\1')
37
+ ]]
38
+
39
+
40
+
41
+ def post_replace_ph(ph):
42
+ rep_map = {
43
+ ':': ',',
44
+ ';': ',',
45
+ ',': ',',
46
+ '。': '.',
47
+ '!': '!',
48
+ '?': '?',
49
+ '\n': '.',
50
+ "·": ",",
51
+ '、': ",",
52
+ '...': '…',
53
+ 'v': "V"
54
+ }
55
+ if ph in rep_map.keys():
56
+ ph = rep_map[ph]
57
+ if ph in symbols:
58
+ return ph
59
+ if ph not in symbols:
60
+ ph = 'UNK'
61
+ return ph
62
+
63
+ def symbols_to_japanese(text):
64
+ for regex, replacement in _symbols_to_japanese:
65
+ text = re.sub(regex, replacement, text)
66
+ return text
67
+
68
+
69
+ def preprocess_jap(text):
70
+ '''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html'''
71
+ text = symbols_to_japanese(text)
72
+ sentences = re.split(_japanese_marks, text)
73
+ marks = re.findall(_japanese_marks, text)
74
+ text = []
75
+ for i, sentence in enumerate(sentences):
76
+ if re.match(_japanese_characters, sentence):
77
+ p = pyopenjtalk.g2p(sentence)
78
+ text += p.split(" ")
79
+
80
+ if i < len(marks):
81
+ text += [marks[i].replace(' ', '')]
82
+ return text
83
+
84
+ def text_normalize(text):
85
+ # todo: jap text normalize
86
+ return text
87
+
88
+ def g2p(norm_text):
89
+ phones = preprocess_jap(norm_text)
90
+ phones = [post_replace_ph(i) for i in phones]
91
+ # todo: implement tones and word2ph
92
+ tones = [0 for i in phones]
93
+ word2ph = [1 for i in phones]
94
+ return phones, tones, word2ph
95
+
96
+
97
+ if __name__ == '__main__':
98
+ for line in open("../../../Downloads/transcript_utf8.txt").readlines():
99
+ text = line.split(":")[1]
100
+ phones, tones, word2ph = g2p(text)
101
+ for p in phones:
102
+ if p == "z":
103
+ print(text, phones)
104
+ sys.exit(0)
text/opencpop-strict.txt ADDED
@@ -0,0 +1,429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ a AA a
2
+ ai AA ai
3
+ an AA an
4
+ ang AA ang
5
+ ao AA ao
6
+ ba b a
7
+ bai b ai
8
+ ban b an
9
+ bang b ang
10
+ bao b ao
11
+ bei b ei
12
+ ben b en
13
+ beng b eng
14
+ bi b i
15
+ bian b ian
16
+ biao b iao
17
+ bie b ie
18
+ bin b in
19
+ bing b ing
20
+ bo b o
21
+ bu b u
22
+ ca c a
23
+ cai c ai
24
+ can c an
25
+ cang c ang
26
+ cao c ao
27
+ ce c e
28
+ cei c ei
29
+ cen c en
30
+ ceng c eng
31
+ cha ch a
32
+ chai ch ai
33
+ chan ch an
34
+ chang ch ang
35
+ chao ch ao
36
+ che ch e
37
+ chen ch en
38
+ cheng ch eng
39
+ chi ch ir
40
+ chong ch ong
41
+ chou ch ou
42
+ chu ch u
43
+ chua ch ua
44
+ chuai ch uai
45
+ chuan ch uan
46
+ chuang ch uang
47
+ chui ch ui
48
+ chun ch un
49
+ chuo ch uo
50
+ ci c i0
51
+ cong c ong
52
+ cou c ou
53
+ cu c u
54
+ cuan c uan
55
+ cui c ui
56
+ cun c un
57
+ cuo c uo
58
+ da d a
59
+ dai d ai
60
+ dan d an
61
+ dang d ang
62
+ dao d ao
63
+ de d e
64
+ dei d ei
65
+ den d en
66
+ deng d eng
67
+ di d i
68
+ dia d ia
69
+ dian d ian
70
+ diao d iao
71
+ die d ie
72
+ ding d ing
73
+ diu d iu
74
+ dong d ong
75
+ dou d ou
76
+ du d u
77
+ duan d uan
78
+ dui d ui
79
+ dun d un
80
+ duo d uo
81
+ e EE e
82
+ ei EE ei
83
+ en EE en
84
+ eng EE eng
85
+ er EE er
86
+ fa f a
87
+ fan f an
88
+ fang f ang
89
+ fei f ei
90
+ fen f en
91
+ feng f eng
92
+ fo f o
93
+ fou f ou
94
+ fu f u
95
+ ga g a
96
+ gai g ai
97
+ gan g an
98
+ gang g ang
99
+ gao g ao
100
+ ge g e
101
+ gei g ei
102
+ gen g en
103
+ geng g eng
104
+ gong g ong
105
+ gou g ou
106
+ gu g u
107
+ gua g ua
108
+ guai g uai
109
+ guan g uan
110
+ guang g uang
111
+ gui g ui
112
+ gun g un
113
+ guo g uo
114
+ ha h a
115
+ hai h ai
116
+ han h an
117
+ hang h ang
118
+ hao h ao
119
+ he h e
120
+ hei h ei
121
+ hen h en
122
+ heng h eng
123
+ hong h ong
124
+ hou h ou
125
+ hu h u
126
+ hua h ua
127
+ huai h uai
128
+ huan h uan
129
+ huang h uang
130
+ hui h ui
131
+ hun h un
132
+ huo h uo
133
+ ji j i
134
+ jia j ia
135
+ jian j ian
136
+ jiang j iang
137
+ jiao j iao
138
+ jie j ie
139
+ jin j in
140
+ jing j ing
141
+ jiong j iong
142
+ jiu j iu
143
+ ju j v
144
+ jv j v
145
+ juan j van
146
+ jvan j van
147
+ jue j ve
148
+ jve j ve
149
+ jun j vn
150
+ jvn j vn
151
+ ka k a
152
+ kai k ai
153
+ kan k an
154
+ kang k ang
155
+ kao k ao
156
+ ke k e
157
+ kei k ei
158
+ ken k en
159
+ keng k eng
160
+ kong k ong
161
+ kou k ou
162
+ ku k u
163
+ kua k ua
164
+ kuai k uai
165
+ kuan k uan
166
+ kuang k uang
167
+ kui k ui
168
+ kun k un
169
+ kuo k uo
170
+ la l a
171
+ lai l ai
172
+ lan l an
173
+ lang l ang
174
+ lao l ao
175
+ le l e
176
+ lei l ei
177
+ leng l eng
178
+ li l i
179
+ lia l ia
180
+ lian l ian
181
+ liang l iang
182
+ liao l iao
183
+ lie l ie
184
+ lin l in
185
+ ling l ing
186
+ liu l iu
187
+ lo l o
188
+ long l ong
189
+ lou l ou
190
+ lu l u
191
+ luan l uan
192
+ lun l un
193
+ luo l uo
194
+ lv l v
195
+ lve l ve
196
+ ma m a
197
+ mai m ai
198
+ man m an
199
+ mang m ang
200
+ mao m ao
201
+ me m e
202
+ mei m ei
203
+ men m en
204
+ meng m eng
205
+ mi m i
206
+ mian m ian
207
+ miao m iao
208
+ mie m ie
209
+ min m in
210
+ ming m ing
211
+ miu m iu
212
+ mo m o
213
+ mou m ou
214
+ mu m u
215
+ na n a
216
+ nai n ai
217
+ nan n an
218
+ nang n ang
219
+ nao n ao
220
+ ne n e
221
+ nei n ei
222
+ nen n en
223
+ neng n eng
224
+ ni n i
225
+ nian n ian
226
+ niang n iang
227
+ niao n iao
228
+ nie n ie
229
+ nin n in
230
+ ning n ing
231
+ niu n iu
232
+ nong n ong
233
+ nou n ou
234
+ nu n u
235
+ nuan n uan
236
+ nun n un
237
+ nuo n uo
238
+ nv n v
239
+ nve n ve
240
+ o OO o
241
+ ou OO ou
242
+ pa p a
243
+ pai p ai
244
+ pan p an
245
+ pang p ang
246
+ pao p ao
247
+ pei p ei
248
+ pen p en
249
+ peng p eng
250
+ pi p i
251
+ pian p ian
252
+ piao p iao
253
+ pie p ie
254
+ pin p in
255
+ ping p ing
256
+ po p o
257
+ pou p ou
258
+ pu p u
259
+ qi q i
260
+ qia q ia
261
+ qian q ian
262
+ qiang q iang
263
+ qiao q iao
264
+ qie q ie
265
+ qin q in
266
+ qing q ing
267
+ qiong q iong
268
+ qiu q iu
269
+ qu q v
270
+ qv q v
271
+ quan q van
272
+ qvan q van
273
+ que q ve
274
+ qve q ve
275
+ qun q vn
276
+ qvn q vn
277
+ ran r an
278
+ rang r ang
279
+ rao r ao
280
+ re r e
281
+ ren r en
282
+ reng r eng
283
+ ri r ir
284
+ rong r ong
285
+ rou r ou
286
+ ru r u
287
+ rua r ua
288
+ ruan r uan
289
+ rui r ui
290
+ run r un
291
+ ruo r uo
292
+ sa s a
293
+ sai s ai
294
+ san s an
295
+ sang s ang
296
+ sao s ao
297
+ se s e
298
+ sen s en
299
+ seng s eng
300
+ sha sh a
301
+ shai sh ai
302
+ shan sh an
303
+ shang sh ang
304
+ shao sh ao
305
+ she sh e
306
+ shei sh ei
307
+ shen sh en
308
+ sheng sh eng
309
+ shi sh ir
310
+ shou sh ou
311
+ shu sh u
312
+ shua sh ua
313
+ shuai sh uai
314
+ shuan sh uan
315
+ shuang sh uang
316
+ shui sh ui
317
+ shun sh un
318
+ shuo sh uo
319
+ si s i0
320
+ song s ong
321
+ sou s ou
322
+ su s u
323
+ suan s uan
324
+ sui s ui
325
+ sun s un
326
+ suo s uo
327
+ ta t a
328
+ tai t ai
329
+ tan t an
330
+ tang t ang
331
+ tao t ao
332
+ te t e
333
+ tei t ei
334
+ teng t eng
335
+ ti t i
336
+ tian t ian
337
+ tiao t iao
338
+ tie t ie
339
+ ting t ing
340
+ tong t ong
341
+ tou t ou
342
+ tu t u
343
+ tuan t uan
344
+ tui t ui
345
+ tun t un
346
+ tuo t uo
347
+ wa w a
348
+ wai w ai
349
+ wan w an
350
+ wang w ang
351
+ wei w ei
352
+ wen w en
353
+ weng w eng
354
+ wo w o
355
+ wu w u
356
+ xi x i
357
+ xia x ia
358
+ xian x ian
359
+ xiang x iang
360
+ xiao x iao
361
+ xie x ie
362
+ xin x in
363
+ xing x ing
364
+ xiong x iong
365
+ xiu x iu
366
+ xu x v
367
+ xv x v
368
+ xuan x van
369
+ xvan x van
370
+ xue x ve
371
+ xve x ve
372
+ xun x vn
373
+ xvn x vn
374
+ ya y a
375
+ yan y En
376
+ yang y ang
377
+ yao y ao
378
+ ye y E
379
+ yi y i
380
+ yin y in
381
+ ying y ing
382
+ yo y o
383
+ yong y ong
384
+ you y ou
385
+ yu y v
386
+ yv y v
387
+ yuan y van
388
+ yvan y van
389
+ yue y ve
390
+ yve y ve
391
+ yun y vn
392
+ yvn y vn
393
+ za z a
394
+ zai z ai
395
+ zan z an
396
+ zang z ang
397
+ zao z ao
398
+ ze z e
399
+ zei z ei
400
+ zen z en
401
+ zeng z eng
402
+ zha zh a
403
+ zhai zh ai
404
+ zhan zh an
405
+ zhang zh ang
406
+ zhao zh ao
407
+ zhe zh e
408
+ zhei zh ei
409
+ zhen zh en
410
+ zheng zh eng
411
+ zhi zh ir
412
+ zhong zh ong
413
+ zhou zh ou
414
+ zhu zh u
415
+ zhua zh ua
416
+ zhuai zh uai
417
+ zhuan zh uan
418
+ zhuang zh uang
419
+ zhui zh ui
420
+ zhun zh un
421
+ zhuo zh uo
422
+ zi z i0
423
+ zong z ong
424
+ zou z ou
425
+ zu z u
426
+ zuan z uan
427
+ zui z ui
428
+ zun z un
429
+ zuo z uo
text/symbols.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ punctuation = ['!', '?', '…', ",", ".", "'", '-']
2
+ pu_symbols = punctuation + ["SP", "UNK"]
3
+ pad = '_'
4
+
5
+ # chinese
6
+ zh_symbols = ['E', 'En', 'a', 'ai', 'an', 'ang', 'ao', 'b', 'c', 'ch', 'd', 'e', 'ei', 'en', 'eng', 'er', 'f', 'g', 'h',
7
+ 'i', 'i0', 'ia', 'ian', 'iang', 'iao', 'ie', 'in', 'ing', 'iong', 'ir', 'iu', 'j', 'k', 'l', 'm', 'n', 'o',
8
+ 'ong',
9
+ 'ou', 'p', 'q', 'r', 's', 'sh', 't', 'u', 'ua', 'uai', 'uan', 'uang', 'ui', 'un', 'uo', 'v', 'van', 've', 'vn',
10
+ 'w', 'x', 'y', 'z', 'zh',
11
+ "AA", "EE", "OO"]
12
+ num_zh_tones = 6
13
+
14
+ # japanese
15
+ ja_symbols = ['I', 'N', 'U', 'a', 'b', 'by', 'ch', 'cl', 'd', 'dy', 'e', 'f', 'g', 'gy', 'h', 'hy', 'i', 'j', 'k', 'ky',
16
+ 'm', 'my', 'n', 'ny', 'o', 'p', 'py', 'r', 'ry', 's', 'sh', 't', 'ts', 'u', 'V', 'w', 'y', 'z']
17
+ num_ja_tones = 1
18
+
19
+ # English
20
+ en_symbols = ['aa', 'ae', 'ah', 'ao', 'aw', 'ay', 'b', 'ch', 'd', 'dh', 'eh', 'er', 'ey', 'f', 'g', 'hh', 'ih', 'iy',
21
+ 'jh', 'k', 'l', 'm', 'n', 'ng', 'ow', 'oy', 'p', 'r', 's',
22
+ 'sh', 't', 'th', 'uh', 'uw', 'V', 'w', 'y', 'z', 'zh']
23
+ num_en_tones = 4
24
+
25
+ # combine all symbols
26
+ normal_symbols = sorted(set(zh_symbols + ja_symbols + en_symbols))
27
+ symbols = [pad] + normal_symbols + pu_symbols
28
+ sil_phonemes_ids = [symbols.index(i) for i in pu_symbols]
29
+
30
+ # combine all tones
31
+ num_tones = num_zh_tones + num_ja_tones + num_en_tones
32
+
33
+ # language maps
34
+ language_id_map = {
35
+ 'ZH': 0,
36
+ "JA": 1,
37
+ "EN": 2
38
+ }
39
+ num_languages = len(language_id_map.keys())
40
+
41
+ language_tone_start_map = {
42
+ 'ZH': 0,
43
+ "JA": num_zh_tones,
44
+ "EN": num_zh_tones + num_ja_tones
45
+ }
46
+
47
+ if __name__ == '__main__':
48
+ a = set(zh_symbols)
49
+ b = set(en_symbols)
50
+ print(sorted(a&b))
51
+
text/tone_sandhi.py ADDED
@@ -0,0 +1,351 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import List
15
+ from typing import Tuple
16
+
17
+ import jieba
18
+ from pypinyin import lazy_pinyin
19
+ from pypinyin import Style
20
+
21
+
22
+ class ToneSandhi():
23
+ def __init__(self):
24
+ self.must_neural_tone_words = {
25
+ '麻烦', '麻利', '鸳鸯', '高粱', '骨头', '骆驼', '马虎', '首饰', '馒头', '馄饨', '风筝',
26
+ '难为', '队伍', '阔气', '闺女', '门道', '锄头', '铺盖', '铃铛', '铁匠', '钥匙', '里脊',
27
+ '里头', '部分', '那么', '道士', '造化', '迷糊', '连累', '这么', '这个', '运气', '过去',
28
+ '软和', '转悠', '踏实', '跳蚤', '跟头', '趔趄', '财主', '豆腐', '讲究', '记性', '记号',
29
+ '认识', '规矩', '见识', '裁缝', '补丁', '衣裳', '衣服', '衙门', '街坊', '行李', '行当',
30
+ '蛤蟆', '蘑菇', '薄荷', '葫芦', '葡萄', '萝卜', '荸荠', '苗条', '苗头', '苍蝇', '芝麻',
31
+ '舒服', '舒坦', '舌头', '自在', '膏药', '脾气', '脑袋', '脊梁', '能耐', '胳膊', '胭脂',
32
+ '胡萝', '胡琴', '胡同', '聪明', '耽误', '耽搁', '耷拉', '耳朵', '老爷', '老实', '老婆',
33
+ '老头', '老太', '翻腾', '罗嗦', '罐头', '编辑', '结实', '红火', '累赘', '糨糊', '糊涂',
34
+ '精神', '粮食', '簸箕', '篱笆', '算计', '算盘', '答应', '笤帚', '笑语', '笑话', '窟窿',
35
+ '窝囊', '窗户', '稳当', '稀罕', '称呼', '秧歌', '秀气', '秀才', '福气', '祖宗', '砚台',
36
+ '码头', '石榴', '石头', '石匠', '知识', '眼睛', '眯缝', '眨巴', '眉毛', '相声', '盘算',
37
+ '白净', '痢疾', '痛快', '疟疾', '疙瘩', '疏忽', '畜生', '生意', '甘蔗', '琵琶', '琢磨',
38
+ '琉璃', '玻璃', '玫瑰', '玄乎', '狐狸', '状元', '特务', '牲口', '牙碜', '牌楼', '爽快',
39
+ '爱人', '热闹', '烧饼', '烟筒', '烂糊', '点心', '炊帚', '灯笼', '火候', '漂亮', '滑溜',
40
+ '溜达', '温和', '清楚', '消息', '浪头', '活泼', '比方', '正经', '欺负', '模糊', '槟榔',
41
+ '棺材', '棒槌', '棉花', '核桃', '栅栏', '柴火', '架势', '枕头', '枇杷', '机灵', '本事',
42
+ '木头', '木匠', '朋友', '月饼', '月亮', '暖和', '明白', '时候', '新鲜', '故事', '收拾',
43
+ '收成', '提防', '挖苦', '挑剔', '指甲', '指头', '拾掇', '拳头', '拨弄', '招牌', '招呼',
44
+ '抬举', '护士', '折腾', '扫帚', '打量', '打算', '打点', '打扮', '打听', '打发', '扎实',
45
+ '扁担', '戒指', '懒得', '意识', '意思', '情形', '悟性', '怪物', '思量', '怎么', '念头',
46
+ '念叨', '快活', '忙活', '志气', '心思', '得罪', '张罗', '弟兄', '开通', '应酬', '庄稼',
47
+ '干事', '帮手', '帐篷', '希罕', '师父', '师傅', '巴结', '巴掌', '差事', '工夫', '岁数',
48
+ '屁股', '尾巴', '少爷', '小气', '小伙', '将就', '对头', '对付', '寡妇', '家伙', '客气',
49
+ '实在', '官司', '学问', '学生', '字号', '嫁妆', '媳妇', '媒人', '婆家', '娘家', '委屈',
50
+ '姑娘', '姐夫', '妯娌', '妥当', '妖精', '奴才', '女婿', '头发', '太阳', '大爷', '大方',
51
+ '大意', '大夫', '多少', '多么', '外甥', '壮实', '地道', '地方', '在乎', '困难', '嘴巴',
52
+ '嘱咐', '嘟囔', '嘀咕', '喜欢', '喇嘛', '喇叭', '商量', '唾沫', '哑巴', '哈欠', '哆嗦',
53
+ '咳嗽', '和尚', '告诉', '告示', '含糊', '吓唬', '后头', '名字', '名堂', '合同', '吆喝',
54
+ '叫唤', '口袋', '厚道', '厉害', '千斤', '包袱', '包涵', '匀称', '勤快', '动静', '动弹',
55
+ '功夫', '力气', '前头', '刺猬', '刺激', '别扭', '利落', '利索', '利害', '分析', '出息',
56
+ '凑合', '凉快', '冷战', '冤枉', '冒失', '养活', '关系', '先生', '兄弟', '便宜', '使唤',
57
+ '佩服', '作坊', '体面', '位置', '似的', '伙计', '休息', '什么', '人家', '亲戚', '亲家',
58
+ '交情', '云彩', '事情', '买卖', '主意', '丫头', '丧气', '两口', '东西', '东家', '世故',
59
+ '不由', '不在', '下水', '下巴', '上头', '上司', '丈夫', '丈人', '一辈', '那个', '菩萨',
60
+ '父亲', '母亲', '咕噜', '邋遢', '费用', '冤家', '甜头', '介绍', '荒唐', '大人', '泥鳅',
61
+ '幸福', '熟悉', '计划', '扑腾', '蜡烛', '姥爷', '照顾', '喉咙', '吉他', '弄堂', '蚂蚱',
62
+ '凤凰', '拖沓', '寒碜', '糟蹋', '倒腾', '报复', '逻辑', '盘缠', '喽啰', '牢骚', '咖喱',
63
+ '扫把', '惦记'
64
+ }
65
+ self.must_not_neural_tone_words = {
66
+ "男子", "女子", "分子", "原子", "量子", "莲子", "石子", "瓜子", "电子", "人人", "虎虎"
67
+ }
68
+ self.punc = ":,;。?!“”‘’':,;.?!"
69
+
70
+ # the meaning of jieba pos tag: https://blog.csdn.net/weixin_44174352/article/details/113731041
71
+ # e.g.
72
+ # word: "家里"
73
+ # pos: "s"
74
+ # finals: ['ia1', 'i3']
75
+ def _neural_sandhi(self, word: str, pos: str,
76
+ finals: List[str]) -> List[str]:
77
+
78
+ # reduplication words for n. and v. e.g. 奶奶, 试试, 旺旺
79
+ for j, item in enumerate(word):
80
+ if j - 1 >= 0 and item == word[j - 1] and pos[0] in {
81
+ "n", "v", "a"
82
+ } and word not in self.must_not_neural_tone_words:
83
+ finals[j] = finals[j][:-1] + "5"
84
+ ge_idx = word.find("个")
85
+ if len(word) >= 1 and word[-1] in "吧呢啊呐噻嘛吖嗨呐哦哒额滴哩哟喽啰耶喔诶":
86
+ finals[-1] = finals[-1][:-1] + "5"
87
+ elif len(word) >= 1 and word[-1] in "的地得":
88
+ finals[-1] = finals[-1][:-1] + "5"
89
+ # e.g. 走了, 看着, 去过
90
+ # elif len(word) == 1 and word in "了着过" and pos in {"ul", "uz", "ug"}:
91
+ # finals[-1] = finals[-1][:-1] + "5"
92
+ elif len(word) > 1 and word[-1] in "们子" and pos in {
93
+ "r", "n"
94
+ } and word not in self.must_not_neural_tone_words:
95
+ finals[-1] = finals[-1][:-1] + "5"
96
+ # e.g. 桌上, 地下, 家里
97
+ elif len(word) > 1 and word[-1] in "上下里" and pos in {"s", "l", "f"}:
98
+ finals[-1] = finals[-1][:-1] + "5"
99
+ # e.g. 上来, 下去
100
+ elif len(word) > 1 and word[-1] in "来去" and word[-2] in "上下进出回过起开":
101
+ finals[-1] = finals[-1][:-1] + "5"
102
+ # 个做量词
103
+ elif (ge_idx >= 1 and
104
+ (word[ge_idx - 1].isnumeric() or
105
+ word[ge_idx - 1] in "几有两半多各整每做是")) or word == '个':
106
+ finals[ge_idx] = finals[ge_idx][:-1] + "5"
107
+ else:
108
+ if word in self.must_neural_tone_words or word[
109
+ -2:] in self.must_neural_tone_words:
110
+ finals[-1] = finals[-1][:-1] + "5"
111
+
112
+ word_list = self._split_word(word)
113
+ finals_list = [finals[:len(word_list[0])], finals[len(word_list[0]):]]
114
+ for i, word in enumerate(word_list):
115
+ # conventional neural in Chinese
116
+ if word in self.must_neural_tone_words or word[
117
+ -2:] in self.must_neural_tone_words:
118
+ finals_list[i][-1] = finals_list[i][-1][:-1] + "5"
119
+ finals = sum(finals_list, [])
120
+ return finals
121
+
122
+ def _bu_sandhi(self, word: str, finals: List[str]) -> List[str]:
123
+ # e.g. 看不懂
124
+ if len(word) == 3 and word[1] == "不":
125
+ finals[1] = finals[1][:-1] + "5"
126
+ else:
127
+ for i, char in enumerate(word):
128
+ # "不" before tone4 should be bu2, e.g. 不怕
129
+ if char == "不" and i + 1 < len(word) and finals[i +
130
+ 1][-1] == "4":
131
+ finals[i] = finals[i][:-1] + "2"
132
+ return finals
133
+
134
+ def _yi_sandhi(self, word: str, finals: List[str]) -> List[str]:
135
+ # "一" in number sequences, e.g. 一零零, 二一零
136
+ if word.find("一") != -1 and all(
137
+ [item.isnumeric() for item in word if item != "一"]):
138
+ return finals
139
+ # "一" between reduplication words shold be yi5, e.g. 看一看
140
+ elif len(word) == 3 and word[1] == "一" and word[0] == word[-1]:
141
+ finals[1] = finals[1][:-1] + "5"
142
+ # when "一" is ordinal word, it should be yi1
143
+ elif word.startswith("第一"):
144
+ finals[1] = finals[1][:-1] + "1"
145
+ else:
146
+ for i, char in enumerate(word):
147
+ if char == "一" and i + 1 < len(word):
148
+ # "一" before tone4 should be yi2, e.g. 一段
149
+ if finals[i + 1][-1] == "4":
150
+ finals[i] = finals[i][:-1] + "2"
151
+ # "一" before non-tone4 should be yi4, e.g. 一天
152
+ else:
153
+ # "一" 后面如果是标点,还读一声
154
+ if word[i + 1] not in self.punc:
155
+ finals[i] = finals[i][:-1] + "4"
156
+ return finals
157
+
158
+ def _split_word(self, word: str) -> List[str]:
159
+ word_list = jieba.cut_for_search(word)
160
+ word_list = sorted(word_list, key=lambda i: len(i), reverse=False)
161
+ first_subword = word_list[0]
162
+ first_begin_idx = word.find(first_subword)
163
+ if first_begin_idx == 0:
164
+ second_subword = word[len(first_subword):]
165
+ new_word_list = [first_subword, second_subword]
166
+ else:
167
+ second_subword = word[:-len(first_subword)]
168
+ new_word_list = [second_subword, first_subword]
169
+ return new_word_list
170
+
171
+ def _three_sandhi(self, word: str, finals: List[str]) -> List[str]:
172
+ if len(word) == 2 and self._all_tone_three(finals):
173
+ finals[0] = finals[0][:-1] + "2"
174
+ elif len(word) == 3:
175
+ word_list = self._split_word(word)
176
+ if self._all_tone_three(finals):
177
+ # disyllabic + monosyllabic, e.g. 蒙古/包
178
+ if len(word_list[0]) == 2:
179
+ finals[0] = finals[0][:-1] + "2"
180
+ finals[1] = finals[1][:-1] + "2"
181
+ # monosyllabic + disyllabic, e.g. 纸/老虎
182
+ elif len(word_list[0]) == 1:
183
+ finals[1] = finals[1][:-1] + "2"
184
+ else:
185
+ finals_list = [
186
+ finals[:len(word_list[0])], finals[len(word_list[0]):]
187
+ ]
188
+ if len(finals_list) == 2:
189
+ for i, sub in enumerate(finals_list):
190
+ # e.g. 所有/人
191
+ if self._all_tone_three(sub) and len(sub) == 2:
192
+ finals_list[i][0] = finals_list[i][0][:-1] + "2"
193
+ # e.g. 好/喜欢
194
+ elif i == 1 and not self._all_tone_three(sub) and finals_list[i][0][-1] == "3" and \
195
+ finals_list[0][-1][-1] == "3":
196
+
197
+ finals_list[0][-1] = finals_list[0][-1][:-1] + "2"
198
+ finals = sum(finals_list, [])
199
+ # split idiom into two words who's length is 2
200
+ elif len(word) == 4:
201
+ finals_list = [finals[:2], finals[2:]]
202
+ finals = []
203
+ for sub in finals_list:
204
+ if self._all_tone_three(sub):
205
+ sub[0] = sub[0][:-1] + "2"
206
+ finals += sub
207
+
208
+ return finals
209
+
210
+ def _all_tone_three(self, finals: List[str]) -> bool:
211
+ return all(x[-1] == "3" for x in finals)
212
+
213
+ # merge "不" and the word behind it
214
+ # if don't merge, "不" sometimes appears alone according to jieba, which may occur sandhi error
215
+ def _merge_bu(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
216
+ new_seg = []
217
+ last_word = ""
218
+ for word, pos in seg:
219
+ if last_word == "不":
220
+ word = last_word + word
221
+ if word != "不":
222
+ new_seg.append((word, pos))
223
+ last_word = word[:]
224
+ if last_word == "不":
225
+ new_seg.append((last_word, 'd'))
226
+ last_word = ""
227
+ return new_seg
228
+
229
+ # function 1: merge "一" and reduplication words in it's left and right, e.g. "听","一","听" ->"听一听"
230
+ # function 2: merge single "一" and the word behind it
231
+ # if don't merge, "一" sometimes appears alone according to jieba, which may occur sandhi error
232
+ # e.g.
233
+ # input seg: [('听', 'v'), ('一', 'm'), ('听', 'v')]
234
+ # output seg: [['听一听', 'v']]
235
+ def _merge_yi(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
236
+ new_seg = []
237
+ # function 1
238
+ for i, (word, pos) in enumerate(seg):
239
+ if i - 1 >= 0 and word == "一" and i + 1 < len(seg) and seg[i - 1][
240
+ 0] == seg[i + 1][0] and seg[i - 1][1] == "v":
241
+ new_seg[i - 1][0] = new_seg[i - 1][0] + "一" + new_seg[i - 1][0]
242
+ else:
243
+ if i - 2 >= 0 and seg[i - 1][0] == "一" and seg[i - 2][
244
+ 0] == word and pos == "v":
245
+ continue
246
+ else:
247
+ new_seg.append([word, pos])
248
+ seg = new_seg
249
+ new_seg = []
250
+ # function 2
251
+ for i, (word, pos) in enumerate(seg):
252
+ if new_seg and new_seg[-1][0] == "一":
253
+ new_seg[-1][0] = new_seg[-1][0] + word
254
+ else:
255
+ new_seg.append([word, pos])
256
+ return new_seg
257
+
258
+ # the first and the second words are all_tone_three
259
+ def _merge_continuous_three_tones(
260
+ self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
261
+ new_seg = []
262
+ sub_finals_list = [
263
+ lazy_pinyin(
264
+ word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
265
+ for (word, pos) in seg
266
+ ]
267
+ assert len(sub_finals_list) == len(seg)
268
+ merge_last = [False] * len(seg)
269
+ for i, (word, pos) in enumerate(seg):
270
+ if i - 1 >= 0 and self._all_tone_three(
271
+ sub_finals_list[i - 1]) and self._all_tone_three(
272
+ sub_finals_list[i]) and not merge_last[i - 1]:
273
+ # if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
274
+ if not self._is_reduplication(seg[i - 1][0]) and len(
275
+ seg[i - 1][0]) + len(seg[i][0]) <= 3:
276
+ new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
277
+ merge_last[i] = True
278
+ else:
279
+ new_seg.append([word, pos])
280
+ else:
281
+ new_seg.append([word, pos])
282
+
283
+ return new_seg
284
+
285
+ def _is_reduplication(self, word: str) -> bool:
286
+ return len(word) == 2 and word[0] == word[1]
287
+
288
+ # the last char of first word and the first char of second word is tone_three
289
+ def _merge_continuous_three_tones_2(
290
+ self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
291
+ new_seg = []
292
+ sub_finals_list = [
293
+ lazy_pinyin(
294
+ word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
295
+ for (word, pos) in seg
296
+ ]
297
+ assert len(sub_finals_list) == len(seg)
298
+ merge_last = [False] * len(seg)
299
+ for i, (word, pos) in enumerate(seg):
300
+ if i - 1 >= 0 and sub_finals_list[i - 1][-1][-1] == "3" and sub_finals_list[i][0][-1] == "3" and not \
301
+ merge_last[i - 1]:
302
+ # if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
303
+ if not self._is_reduplication(seg[i - 1][0]) and len(
304
+ seg[i - 1][0]) + len(seg[i][0]) <= 3:
305
+ new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
306
+ merge_last[i] = True
307
+ else:
308
+ new_seg.append([word, pos])
309
+ else:
310
+ new_seg.append([word, pos])
311
+ return new_seg
312
+
313
+ def _merge_er(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
314
+ new_seg = []
315
+ for i, (word, pos) in enumerate(seg):
316
+ if i - 1 >= 0 and word == "儿" and seg[i-1][0] != "#":
317
+ new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
318
+ else:
319
+ new_seg.append([word, pos])
320
+ return new_seg
321
+
322
+ def _merge_reduplication(
323
+ self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
324
+ new_seg = []
325
+ for i, (word, pos) in enumerate(seg):
326
+ if new_seg and word == new_seg[-1][0]:
327
+ new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
328
+ else:
329
+ new_seg.append([word, pos])
330
+ return new_seg
331
+
332
+ def pre_merge_for_modify(
333
+ self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
334
+ seg = self._merge_bu(seg)
335
+ try:
336
+ seg = self._merge_yi(seg)
337
+ except:
338
+ print("_merge_yi failed")
339
+ seg = self._merge_reduplication(seg)
340
+ seg = self._merge_continuous_three_tones(seg)
341
+ seg = self._merge_continuous_three_tones_2(seg)
342
+ seg = self._merge_er(seg)
343
+ return seg
344
+
345
+ def modified_tone(self, word: str, pos: str,
346
+ finals: List[str]) -> List[str]:
347
+ finals = self._bu_sandhi(word, finals)
348
+ finals = self._yi_sandhi(word, finals)
349
+ finals = self._neural_sandhi(word, pos, finals)
350
+ finals = self._three_sandhi(word, finals)
351
+ return finals
train_ms.py ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import argparse
4
+ import itertools
5
+ import math
6
+ import torch
7
+ from torch import nn, optim
8
+ from torch.nn import functional as F
9
+ from torch.utils.data import DataLoader
10
+ from torch.utils.tensorboard import SummaryWriter
11
+ import torch.multiprocessing as mp
12
+ import torch.distributed as dist
13
+ from torch.nn.parallel import DistributedDataParallel as DDP
14
+ from torch.cuda.amp import autocast, GradScaler
15
+ from tqdm import tqdm
16
+ import logging
17
+ logging.getLogger('numba').setLevel(logging.WARNING)
18
+ import commons
19
+ import utils
20
+ from data_utils import (
21
+ TextAudioSpeakerLoader,
22
+ TextAudioSpeakerCollate,
23
+ DistributedBucketSampler
24
+ )
25
+ from models import (
26
+ SynthesizerTrn,
27
+ MultiPeriodDiscriminator,
28
+ DurationDiscriminator,
29
+ )
30
+ from losses import (
31
+ generator_loss,
32
+ discriminator_loss,
33
+ feature_loss,
34
+ kl_loss
35
+ )
36
+ from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
37
+ from text.symbols import symbols
38
+
39
+ torch.backends.cudnn.benchmark = True
40
+ torch.backends.cuda.matmul.allow_tf32 = True
41
+ torch.backends.cudnn.allow_tf32 = True # If encontered training problem,please try to disable TF32.
42
+ torch.set_float32_matmul_precision('medium')
43
+ torch.backends.cuda.sdp_kernel("flash")
44
+ torch.backends.cuda.enable_flash_sdp(True)
45
+ torch.backends.cuda.enable_mem_efficient_sdp(True) # Not avaliable if torch version is lower than 2.0
46
+ torch.backends.cuda.enable_math_sdp(True)
47
+ global_step = 0
48
+
49
+
50
+ def main():
51
+ """Assume Single Node Multi GPUs Training Only"""
52
+ assert torch.cuda.is_available(), "CPU training is not allowed."
53
+
54
+ n_gpus = torch.cuda.device_count()
55
+ os.environ['MASTER_ADDR'] = 'localhost'
56
+ os.environ['MASTER_PORT'] = '65280'
57
+
58
+ hps = utils.get_hparams()
59
+ mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
60
+
61
+
62
+ def run(rank, n_gpus, hps):
63
+ global global_step
64
+ if rank == 0:
65
+ logger = utils.get_logger(hps.model_dir)
66
+ logger.info(hps)
67
+ utils.check_git_hash(hps.model_dir)
68
+ writer = SummaryWriter(log_dir=hps.model_dir)
69
+ writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
70
+
71
+ dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
72
+ torch.manual_seed(hps.train.seed)
73
+ torch.cuda.set_device(rank)
74
+
75
+ train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
76
+ train_sampler = DistributedBucketSampler(
77
+ train_dataset,
78
+ hps.train.batch_size,
79
+ [32, 300, 400, 500, 600, 700, 800, 900, 1000],
80
+ num_replicas=n_gpus,
81
+ rank=rank,
82
+ shuffle=True)
83
+ collate_fn = TextAudioSpeakerCollate()
84
+ train_loader = DataLoader(train_dataset, num_workers=24, shuffle=False, pin_memory=True,
85
+ collate_fn=collate_fn, batch_sampler=train_sampler,
86
+ persistent_workers=True,prefetch_factor=4) #256G Memory suitable loader.
87
+ if rank == 0:
88
+ eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
89
+ eval_loader = DataLoader(eval_dataset, num_workers=0, shuffle=False,
90
+ batch_size=1, pin_memory=True,
91
+ drop_last=False, collate_fn=collate_fn)
92
+ if "use_noise_scaled_mas" in hps.model.keys() and hps.model.use_noise_scaled_mas == True:
93
+ print("Using noise scaled MAS for VITS2")
94
+ use_noise_scaled_mas = True
95
+ mas_noise_scale_initial = 0.01
96
+ noise_scale_delta = 2e-6
97
+ else:
98
+ print("Using normal MAS for VITS1")
99
+ use_noise_scaled_mas = False
100
+ mas_noise_scale_initial = 0.0
101
+ noise_scale_delta = 0.0
102
+ if "use_duration_discriminator" in hps.model.keys() and hps.model.use_duration_discriminator == True:
103
+ print("Using duration discriminator for VITS2")
104
+ use_duration_discriminator = True
105
+ net_dur_disc = DurationDiscriminator(
106
+ hps.model.hidden_channels,
107
+ hps.model.hidden_channels,
108
+ 3,
109
+ 0.1,
110
+ gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
111
+ ).cuda(rank)
112
+ if "use_spk_conditioned_encoder" in hps.model.keys() and hps.model.use_spk_conditioned_encoder == True:
113
+ if hps.data.n_speakers == 0:
114
+ raise ValueError("n_speakers must be > 0 when using spk conditioned encoder to train multi-speaker model")
115
+ use_spk_conditioned_encoder = True
116
+ else:
117
+ print("Using normal encoder for VITS1")
118
+ use_spk_conditioned_encoder = False
119
+
120
+ net_g = SynthesizerTrn(
121
+ len(symbols),
122
+ hps.data.filter_length // 2 + 1,
123
+ hps.train.segment_size // hps.data.hop_length,
124
+ n_speakers=hps.data.n_speakers,
125
+ mas_noise_scale_initial = mas_noise_scale_initial,
126
+ noise_scale_delta = noise_scale_delta,
127
+ **hps.model).cuda(rank)
128
+
129
+ freeze_enc = getattr(hps.model, "freeze_enc", False)
130
+ if freeze_enc:
131
+ print("freeze encoder !!!")
132
+ for param in net_g.enc_p.parameters():
133
+ param.requires_grad = False
134
+
135
+ net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
136
+ optim_g = torch.optim.AdamW(
137
+ filter(lambda p: p.requires_grad, net_g.parameters()),
138
+ hps.train.learning_rate,
139
+ betas=hps.train.betas,
140
+ eps=hps.train.eps)
141
+ optim_d = torch.optim.AdamW(
142
+ net_d.parameters(),
143
+ hps.train.learning_rate,
144
+ betas=hps.train.betas,
145
+ eps=hps.train.eps)
146
+ if net_dur_disc is not None:
147
+ optim_dur_disc = torch.optim.AdamW(
148
+ net_dur_disc.parameters(),
149
+ hps.train.learning_rate,
150
+ betas=hps.train.betas,
151
+ eps=hps.train.eps)
152
+ else:
153
+ optim_dur_disc = None
154
+ net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
155
+ net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
156
+ if net_dur_disc is not None:
157
+ net_dur_disc = DDP(net_dur_disc, device_ids=[rank], find_unused_parameters=True)
158
+ try:
159
+ if net_dur_disc is not None:
160
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "DUR_*.pth"), net_dur_disc, optim_dur_disc, skip_optimizer=True)
161
+ _, optim_g, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g,
162
+ optim_g, skip_optimizer=True)
163
+ _, optim_d, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d,
164
+ optim_d, skip_optimizer=True)
165
+
166
+ epoch_str = max(epoch_str, 1)
167
+ global_step = (epoch_str - 1) * len(train_loader)
168
+ except Exception as e:
169
+ print(e)
170
+ epoch_str = 1
171
+ global_step = 0
172
+
173
+
174
+ scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
175
+ scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
176
+ if net_dur_disc is not None:
177
+ scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR(optim_dur_disc, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
178
+ else:
179
+ scheduler_dur_disc = None
180
+ scaler = GradScaler(enabled=hps.train.fp16_run)
181
+
182
+ for epoch in range(epoch_str, hps.train.epochs + 1):
183
+ if rank == 0:
184
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d, net_dur_disc], [optim_g, optim_d, optim_dur_disc], [scheduler_g, scheduler_d, scheduler_dur_disc], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
185
+ else:
186
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d, net_dur_disc], [optim_g, optim_d, optim_dur_disc], [scheduler_g, scheduler_d, scheduler_dur_disc], scaler, [train_loader, None], None, None)
187
+ scheduler_g.step()
188
+ scheduler_d.step()
189
+ if net_dur_disc is not None:
190
+ scheduler_dur_disc.step()
191
+
192
+
193
+ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
194
+ net_g, net_d, net_dur_disc = nets
195
+ optim_g, optim_d, optim_dur_disc = optims
196
+ scheduler_g, scheduler_d, scheduler_dur_disc = schedulers
197
+ train_loader, eval_loader = loaders
198
+ if writers is not None:
199
+ writer, writer_eval = writers
200
+
201
+ train_loader.batch_sampler.set_epoch(epoch)
202
+ global global_step
203
+
204
+ net_g.train()
205
+ net_d.train()
206
+ if net_dur_disc is not None:
207
+ net_dur_disc.train()
208
+ for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers, tone, language, bert) in tqdm(enumerate(train_loader)):
209
+ if net_g.module.use_noise_scaled_mas:
210
+ current_mas_noise_scale = net_g.module.mas_noise_scale_initial - net_g.module.noise_scale_delta * global_step
211
+ net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0)
212
+ x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
213
+ spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
214
+ y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
215
+ speakers = speakers.cuda(rank, non_blocking=True)
216
+ tone = tone.cuda(rank, non_blocking=True)
217
+ language = language.cuda(rank, non_blocking=True)
218
+ bert = bert.cuda(rank, non_blocking=True)
219
+
220
+ with autocast(enabled=hps.train.fp16_run):
221
+ y_hat, l_length, attn, ids_slice, x_mask, z_mask, \
222
+ (z, z_p, m_p, logs_p, m_q, logs_q), (hidden_x, logw, logw_) = net_g(x, x_lengths, spec, spec_lengths, speakers, tone, language, bert)
223
+ mel = spec_to_mel_torch(
224
+ spec,
225
+ hps.data.filter_length,
226
+ hps.data.n_mel_channels,
227
+ hps.data.sampling_rate,
228
+ hps.data.mel_fmin,
229
+ hps.data.mel_fmax)
230
+ y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
231
+ y_hat_mel = mel_spectrogram_torch(
232
+ y_hat.squeeze(1),
233
+ hps.data.filter_length,
234
+ hps.data.n_mel_channels,
235
+ hps.data.sampling_rate,
236
+ hps.data.hop_length,
237
+ hps.data.win_length,
238
+ hps.data.mel_fmin,
239
+ hps.data.mel_fmax
240
+ )
241
+
242
+ y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
243
+
244
+ # Discriminator
245
+ y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
246
+ with autocast(enabled=False):
247
+ loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
248
+ loss_disc_all = loss_disc
249
+ if net_dur_disc is not None:
250
+ y_dur_hat_r, y_dur_hat_g = net_dur_disc(hidden_x.detach(), x_mask.detach(), logw.detach(), logw_.detach())
251
+ with autocast(enabled=False):
252
+ # TODO: I think need to mean using the mask, but for now, just mean all
253
+ loss_dur_disc, losses_dur_disc_r, losses_dur_disc_g = discriminator_loss(y_dur_hat_r, y_dur_hat_g)
254
+ loss_dur_disc_all = loss_dur_disc
255
+ optim_dur_disc.zero_grad()
256
+ scaler.scale(loss_dur_disc_all).backward()
257
+ scaler.unscale_(optim_dur_disc)
258
+ grad_norm_dur_disc = commons.clip_grad_value_(net_dur_disc.parameters(), None)
259
+ scaler.step(optim_dur_disc)
260
+
261
+ optim_d.zero_grad()
262
+ scaler.scale(loss_disc_all).backward()
263
+ scaler.unscale_(optim_d)
264
+ grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
265
+ scaler.step(optim_d)
266
+
267
+ with autocast(enabled=hps.train.fp16_run):
268
+ # Generator
269
+ y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
270
+ if net_dur_disc is not None:
271
+ y_dur_hat_r, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw, logw_)
272
+ with autocast(enabled=False):
273
+ loss_dur = torch.sum(l_length.float())
274
+ loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
275
+ loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
276
+
277
+ loss_fm = feature_loss(fmap_r, fmap_g)
278
+ loss_gen, losses_gen = generator_loss(y_d_hat_g)
279
+ loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
280
+ if net_dur_disc is not None:
281
+ loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g)
282
+ loss_gen_all += loss_dur_gen
283
+ optim_g.zero_grad()
284
+ scaler.scale(loss_gen_all).backward()
285
+ scaler.unscale_(optim_g)
286
+ grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
287
+ scaler.step(optim_g)
288
+ scaler.update()
289
+
290
+ if rank == 0:
291
+ if global_step % hps.train.log_interval == 0:
292
+ lr = optim_g.param_groups[0]['lr']
293
+ losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
294
+ logger.info('Train Epoch: {} [{:.0f}%]'.format(
295
+ epoch,
296
+ 100. * batch_idx / len(train_loader)))
297
+ logger.info([x.item() for x in losses] + [global_step, lr])
298
+
299
+ scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr,
300
+ "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
301
+ scalar_dict.update(
302
+ {"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl})
303
+ scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
304
+ scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
305
+ scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
306
+
307
+ image_dict = {
308
+ "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
309
+ "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
310
+ "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
311
+ "all/attn": utils.plot_alignment_to_numpy(attn[0, 0].data.cpu().numpy())
312
+ }
313
+ utils.summarize(
314
+ writer=writer,
315
+ global_step=global_step,
316
+ images=image_dict,
317
+ scalars=scalar_dict)
318
+
319
+ if global_step % hps.train.eval_interval == 0:
320
+ evaluate(hps, net_g, eval_loader, writer_eval)
321
+ utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch,
322
+ os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
323
+ utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch,
324
+ os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
325
+ if net_dur_disc is not None:
326
+ utils.save_checkpoint(net_dur_disc, optim_dur_disc, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step)))
327
+ keep_ckpts = getattr(hps.train, 'keep_ckpts', 15)
328
+ if keep_ckpts > 0:
329
+ utils.clean_checkpoints(path_to_models=hps.model_dir, n_ckpts_to_keep=keep_ckpts, sort_by_time=True)
330
+
331
+
332
+ global_step += 1
333
+
334
+ if rank == 0:
335
+ logger.info('====> Epoch: {}'.format(epoch))
336
+
337
+
338
+
339
+ def evaluate(hps, generator, eval_loader, writer_eval):
340
+ generator.eval()
341
+ image_dict = {}
342
+ audio_dict = {}
343
+ print("Evaluating ...")
344
+ with torch.no_grad():
345
+ for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers, tone, language, bert) in enumerate(eval_loader):
346
+ x, x_lengths = x.cuda(), x_lengths.cuda()
347
+ spec, spec_lengths = spec.cuda(), spec_lengths.cuda()
348
+ y, y_lengths = y.cuda(), y_lengths.cuda()
349
+ speakers = speakers.cuda()
350
+ bert = bert.cuda()
351
+ tone = tone.cuda()
352
+ language = language.cuda()
353
+ for use_sdp in [True, False]:
354
+ y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, speakers, tone, language, bert, y=spec, max_len=1000, sdp_ratio=0.0 if not use_sdp else 1.0)
355
+ y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
356
+
357
+ mel = spec_to_mel_torch(
358
+ spec,
359
+ hps.data.filter_length,
360
+ hps.data.n_mel_channels,
361
+ hps.data.sampling_rate,
362
+ hps.data.mel_fmin,
363
+ hps.data.mel_fmax)
364
+ y_hat_mel = mel_spectrogram_torch(
365
+ y_hat.squeeze(1).float(),
366
+ hps.data.filter_length,
367
+ hps.data.n_mel_channels,
368
+ hps.data.sampling_rate,
369
+ hps.data.hop_length,
370
+ hps.data.win_length,
371
+ hps.data.mel_fmin,
372
+ hps.data.mel_fmax
373
+ )
374
+ image_dict.update({
375
+ f"gen/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
376
+ })
377
+ audio_dict.update({
378
+ f"gen/audio_{batch_idx}_{use_sdp}": y_hat[0, :, :y_hat_lengths[0]]
379
+ })
380
+ image_dict.update({f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
381
+ audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, :y_lengths[0]]})
382
+
383
+ utils.summarize(
384
+ writer=writer_eval,
385
+ global_step=global_step,
386
+ images=image_dict,
387
+ audios=audio_dict,
388
+ audio_sampling_rate=hps.data.sampling_rate
389
+ )
390
+ generator.train()
391
+
392
+ if __name__ == "__main__":
393
+ main()
transforms.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import numpy as np
5
+
6
+
7
+ DEFAULT_MIN_BIN_WIDTH = 1e-3
8
+ DEFAULT_MIN_BIN_HEIGHT = 1e-3
9
+ DEFAULT_MIN_DERIVATIVE = 1e-3
10
+
11
+
12
+ def piecewise_rational_quadratic_transform(inputs,
13
+ unnormalized_widths,
14
+ unnormalized_heights,
15
+ unnormalized_derivatives,
16
+ inverse=False,
17
+ tails=None,
18
+ tail_bound=1.,
19
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
20
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
21
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
22
+
23
+ if tails is None:
24
+ spline_fn = rational_quadratic_spline
25
+ spline_kwargs = {}
26
+ else:
27
+ spline_fn = unconstrained_rational_quadratic_spline
28
+ spline_kwargs = {
29
+ 'tails': tails,
30
+ 'tail_bound': tail_bound
31
+ }
32
+
33
+ outputs, logabsdet = spline_fn(
34
+ inputs=inputs,
35
+ unnormalized_widths=unnormalized_widths,
36
+ unnormalized_heights=unnormalized_heights,
37
+ unnormalized_derivatives=unnormalized_derivatives,
38
+ inverse=inverse,
39
+ min_bin_width=min_bin_width,
40
+ min_bin_height=min_bin_height,
41
+ min_derivative=min_derivative,
42
+ **spline_kwargs
43
+ )
44
+ return outputs, logabsdet
45
+
46
+
47
+ def searchsorted(bin_locations, inputs, eps=1e-6):
48
+ bin_locations[..., -1] += eps
49
+ return torch.sum(
50
+ inputs[..., None] >= bin_locations,
51
+ dim=-1
52
+ ) - 1
53
+
54
+
55
+ def unconstrained_rational_quadratic_spline(inputs,
56
+ unnormalized_widths,
57
+ unnormalized_heights,
58
+ unnormalized_derivatives,
59
+ inverse=False,
60
+ tails='linear',
61
+ tail_bound=1.,
62
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
63
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
64
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
65
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
66
+ outside_interval_mask = ~inside_interval_mask
67
+
68
+ outputs = torch.zeros_like(inputs)
69
+ logabsdet = torch.zeros_like(inputs)
70
+
71
+ if tails == 'linear':
72
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
73
+ constant = np.log(np.exp(1 - min_derivative) - 1)
74
+ unnormalized_derivatives[..., 0] = constant
75
+ unnormalized_derivatives[..., -1] = constant
76
+
77
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
78
+ logabsdet[outside_interval_mask] = 0
79
+ else:
80
+ raise RuntimeError('{} tails are not implemented.'.format(tails))
81
+
82
+ outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
83
+ inputs=inputs[inside_interval_mask],
84
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
85
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
86
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
87
+ inverse=inverse,
88
+ left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
89
+ min_bin_width=min_bin_width,
90
+ min_bin_height=min_bin_height,
91
+ min_derivative=min_derivative
92
+ )
93
+
94
+ return outputs, logabsdet
95
+
96
+ def rational_quadratic_spline(inputs,
97
+ unnormalized_widths,
98
+ unnormalized_heights,
99
+ unnormalized_derivatives,
100
+ inverse=False,
101
+ left=0., right=1., bottom=0., top=1.,
102
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
103
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
104
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
105
+ if torch.min(inputs) < left or torch.max(inputs) > right:
106
+ raise ValueError('Input to a transform is not within its domain')
107
+
108
+ num_bins = unnormalized_widths.shape[-1]
109
+
110
+ if min_bin_width * num_bins > 1.0:
111
+ raise ValueError('Minimal bin width too large for the number of bins')
112
+ if min_bin_height * num_bins > 1.0:
113
+ raise ValueError('Minimal bin height too large for the number of bins')
114
+
115
+ widths = F.softmax(unnormalized_widths, dim=-1)
116
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
117
+ cumwidths = torch.cumsum(widths, dim=-1)
118
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
119
+ cumwidths = (right - left) * cumwidths + left
120
+ cumwidths[..., 0] = left
121
+ cumwidths[..., -1] = right
122
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
123
+
124
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
125
+
126
+ heights = F.softmax(unnormalized_heights, dim=-1)
127
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
128
+ cumheights = torch.cumsum(heights, dim=-1)
129
+ cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
130
+ cumheights = (top - bottom) * cumheights + bottom
131
+ cumheights[..., 0] = bottom
132
+ cumheights[..., -1] = top
133
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
134
+
135
+ if inverse:
136
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
137
+ else:
138
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
139
+
140
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
141
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
142
+
143
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
144
+ delta = heights / widths
145
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
146
+
147
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
148
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
149
+
150
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
151
+
152
+ if inverse:
153
+ a = (((inputs - input_cumheights) * (input_derivatives
154
+ + input_derivatives_plus_one
155
+ - 2 * input_delta)
156
+ + input_heights * (input_delta - input_derivatives)))
157
+ b = (input_heights * input_derivatives
158
+ - (inputs - input_cumheights) * (input_derivatives
159
+ + input_derivatives_plus_one
160
+ - 2 * input_delta))
161
+ c = - input_delta * (inputs - input_cumheights)
162
+
163
+ discriminant = b.pow(2) - 4 * a * c
164
+ assert (discriminant >= 0).all()
165
+
166
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
167
+ outputs = root * input_bin_widths + input_cumwidths
168
+
169
+ theta_one_minus_theta = root * (1 - root)
170
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
171
+ * theta_one_minus_theta)
172
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
173
+ + 2 * input_delta * theta_one_minus_theta
174
+ + input_derivatives * (1 - root).pow(2))
175
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
176
+
177
+ return outputs, -logabsdet
178
+ else:
179
+ theta = (inputs - input_cumwidths) / input_bin_widths
180
+ theta_one_minus_theta = theta * (1 - theta)
181
+
182
+ numerator = input_heights * (input_delta * theta.pow(2)
183
+ + input_derivatives * theta_one_minus_theta)
184
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
185
+ * theta_one_minus_theta)
186
+ outputs = input_cumheights + numerator / denominator
187
+
188
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
189
+ + 2 * input_delta * theta_one_minus_theta
190
+ + input_derivatives * (1 - theta).pow(2))
191
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
192
+
193
+ return outputs, logabsdet
utils.py ADDED
@@ -0,0 +1,289 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import sys
4
+ import argparse
5
+ import logging
6
+ import json
7
+ import subprocess
8
+ import numpy as np
9
+ from scipy.io.wavfile import read
10
+ import torch
11
+
12
+ MATPLOTLIB_FLAG = False
13
+
14
+ logger = logging.getLogger(__name__)
15
+
16
+
17
+ def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
18
+ assert os.path.isfile(checkpoint_path)
19
+ checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
20
+ iteration = checkpoint_dict['iteration']
21
+ learning_rate = checkpoint_dict['learning_rate']
22
+ if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None:
23
+ optimizer.load_state_dict(checkpoint_dict['optimizer'])
24
+ elif optimizer is None and not skip_optimizer:
25
+ #else: #Disable this line if Infer and resume checkpoint,then enable the line upper
26
+ new_opt_dict = optimizer.state_dict()
27
+ new_opt_dict_params = new_opt_dict['param_groups'][0]['params']
28
+ new_opt_dict['param_groups'] = checkpoint_dict['optimizer']['param_groups']
29
+ new_opt_dict['param_groups'][0]['params'] = new_opt_dict_params
30
+ optimizer.load_state_dict(new_opt_dict)
31
+ saved_state_dict = checkpoint_dict['model']
32
+ if hasattr(model, 'module'):
33
+ state_dict = model.module.state_dict()
34
+ else:
35
+ state_dict = model.state_dict()
36
+ new_state_dict = {}
37
+ for k, v in state_dict.items():
38
+ try:
39
+ #assert "emb_g" not in k
40
+ # print("load", k)
41
+ new_state_dict[k] = saved_state_dict[k]
42
+ assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape)
43
+ except:
44
+ logger.error("%s is not in the checkpoint" % k)
45
+ new_state_dict[k] = v
46
+ if hasattr(model, 'module'):
47
+ model.module.load_state_dict(new_state_dict, strict=False)
48
+ else:
49
+ model.load_state_dict(new_state_dict, strict=False)
50
+ logger.info("Loaded checkpoint '{}' (iteration {})".format(
51
+ checkpoint_path, iteration))
52
+ return model, optimizer, learning_rate, iteration
53
+
54
+
55
+ def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
56
+ logger.info("Saving model and optimizer state at iteration {} to {}".format(
57
+ iteration, checkpoint_path))
58
+ if hasattr(model, 'module'):
59
+ state_dict = model.module.state_dict()
60
+ else:
61
+ state_dict = model.state_dict()
62
+ torch.save({'model': state_dict,
63
+ 'iteration': iteration,
64
+ 'optimizer': optimizer.state_dict(),
65
+ 'learning_rate': learning_rate}, checkpoint_path)
66
+
67
+
68
+ def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
69
+ for k, v in scalars.items():
70
+ writer.add_scalar(k, v, global_step)
71
+ for k, v in histograms.items():
72
+ writer.add_histogram(k, v, global_step)
73
+ for k, v in images.items():
74
+ writer.add_image(k, v, global_step, dataformats='HWC')
75
+ for k, v in audios.items():
76
+ writer.add_audio(k, v, global_step, audio_sampling_rate)
77
+
78
+
79
+ def latest_checkpoint_path(dir_path, regex="G_*.pth"):
80
+ f_list = glob.glob(os.path.join(dir_path, regex))
81
+ f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
82
+ x = f_list[-1]
83
+ print(x)
84
+ return x
85
+
86
+
87
+ def plot_spectrogram_to_numpy(spectrogram):
88
+ global MATPLOTLIB_FLAG
89
+ if not MATPLOTLIB_FLAG:
90
+ import matplotlib
91
+ matplotlib.use("Agg")
92
+ MATPLOTLIB_FLAG = True
93
+ mpl_logger = logging.getLogger('matplotlib')
94
+ mpl_logger.setLevel(logging.WARNING)
95
+ import matplotlib.pylab as plt
96
+ import numpy as np
97
+
98
+ fig, ax = plt.subplots(figsize=(10, 2))
99
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower",
100
+ interpolation='none')
101
+ plt.colorbar(im, ax=ax)
102
+ plt.xlabel("Frames")
103
+ plt.ylabel("Channels")
104
+ plt.tight_layout()
105
+
106
+ fig.canvas.draw()
107
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
108
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
109
+ plt.close()
110
+ return data
111
+
112
+
113
+ def plot_alignment_to_numpy(alignment, info=None):
114
+ global MATPLOTLIB_FLAG
115
+ if not MATPLOTLIB_FLAG:
116
+ import matplotlib
117
+ matplotlib.use("Agg")
118
+ MATPLOTLIB_FLAG = True
119
+ mpl_logger = logging.getLogger('matplotlib')
120
+ mpl_logger.setLevel(logging.WARNING)
121
+ import matplotlib.pylab as plt
122
+ import numpy as np
123
+
124
+ fig, ax = plt.subplots(figsize=(6, 4))
125
+ im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
126
+ interpolation='none')
127
+ fig.colorbar(im, ax=ax)
128
+ xlabel = 'Decoder timestep'
129
+ if info is not None:
130
+ xlabel += '\n\n' + info
131
+ plt.xlabel(xlabel)
132
+ plt.ylabel('Encoder timestep')
133
+ plt.tight_layout()
134
+
135
+ fig.canvas.draw()
136
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
137
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
138
+ plt.close()
139
+ return data
140
+
141
+
142
+ def load_wav_to_torch(full_path):
143
+ sampling_rate, data = read(full_path)
144
+ return torch.FloatTensor(data.astype(np.float32)), sampling_rate
145
+
146
+
147
+ def load_filepaths_and_text(filename, split="|"):
148
+ with open(filename, encoding='utf-8') as f:
149
+ filepaths_and_text = [line.strip().split(split) for line in f]
150
+ return filepaths_and_text
151
+
152
+
153
+ def get_hparams(init=True):
154
+ parser = argparse.ArgumentParser()
155
+ parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
156
+ help='JSON file for configuration')
157
+ parser.add_argument('-m', '--model', type=str, required=True,
158
+ help='Model name')
159
+
160
+ args = parser.parse_args()
161
+ model_dir = os.path.join("./logs", args.model)
162
+
163
+ if not os.path.exists(model_dir):
164
+ os.makedirs(model_dir)
165
+
166
+ config_path = args.config
167
+ config_save_path = os.path.join(model_dir, "config.json")
168
+ if init:
169
+ with open(config_path, "r") as f:
170
+ data = f.read()
171
+ with open(config_save_path, "w") as f:
172
+ f.write(data)
173
+ else:
174
+ with open(config_save_path, "r") as f:
175
+ data = f.read()
176
+ config = json.loads(data)
177
+
178
+ hparams = HParams(**config)
179
+ hparams.model_dir = model_dir
180
+ return hparams
181
+
182
+
183
+ def clean_checkpoints(path_to_models='logs/44k/', n_ckpts_to_keep=2, sort_by_time=True):
184
+ """Freeing up space by deleting saved ckpts
185
+
186
+ Arguments:
187
+ path_to_models -- Path to the model directory
188
+ n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
189
+ sort_by_time -- True -> chronologically delete ckpts
190
+ False -> lexicographically delete ckpts
191
+ """
192
+ import re
193
+ ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
194
+ name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1)))
195
+ time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
196
+ sort_key = time_key if sort_by_time else name_key
197
+ x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')],
198
+ key=sort_key)
199
+ to_del = [os.path.join(path_to_models, fn) for fn in
200
+ (x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
201
+ del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
202
+ del_routine = lambda x: [os.remove(x), del_info(x)]
203
+ rs = [del_routine(fn) for fn in to_del]
204
+
205
+ def get_hparams_from_dir(model_dir):
206
+ config_save_path = os.path.join(model_dir, "config.json")
207
+ with open(config_save_path, "r", encoding='utf-8') as f:
208
+ data = f.read()
209
+ config = json.loads(data)
210
+
211
+ hparams = HParams(**config)
212
+ hparams.model_dir = model_dir
213
+ return hparams
214
+
215
+
216
+ def get_hparams_from_file(config_path):
217
+ with open(config_path, "r", encoding='utf-8') as f:
218
+ data = f.read()
219
+ config = json.loads(data)
220
+
221
+ hparams = HParams(**config)
222
+ return hparams
223
+
224
+
225
+ def check_git_hash(model_dir):
226
+ source_dir = os.path.dirname(os.path.realpath(__file__))
227
+ if not os.path.exists(os.path.join(source_dir, ".git")):
228
+ logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
229
+ source_dir
230
+ ))
231
+ return
232
+
233
+ cur_hash = subprocess.getoutput("git rev-parse HEAD")
234
+
235
+ path = os.path.join(model_dir, "githash")
236
+ if os.path.exists(path):
237
+ saved_hash = open(path).read()
238
+ if saved_hash != cur_hash:
239
+ logger.warn("git hash values are different. {}(saved) != {}(current)".format(
240
+ saved_hash[:8], cur_hash[:8]))
241
+ else:
242
+ open(path, "w").write(cur_hash)
243
+
244
+
245
+ def get_logger(model_dir, filename="train.log"):
246
+ global logger
247
+ logger = logging.getLogger(os.path.basename(model_dir))
248
+ logger.setLevel(logging.DEBUG)
249
+
250
+ formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
251
+ if not os.path.exists(model_dir):
252
+ os.makedirs(model_dir)
253
+ h = logging.FileHandler(os.path.join(model_dir, filename))
254
+ h.setLevel(logging.DEBUG)
255
+ h.setFormatter(formatter)
256
+ logger.addHandler(h)
257
+ return logger
258
+
259
+
260
+ class HParams():
261
+ def __init__(self, **kwargs):
262
+ for k, v in kwargs.items():
263
+ if type(v) == dict:
264
+ v = HParams(**v)
265
+ self[k] = v
266
+
267
+ def keys(self):
268
+ return self.__dict__.keys()
269
+
270
+ def items(self):
271
+ return self.__dict__.items()
272
+
273
+ def values(self):
274
+ return self.__dict__.values()
275
+
276
+ def __len__(self):
277
+ return len(self.__dict__)
278
+
279
+ def __getitem__(self, key):
280
+ return getattr(self, key)
281
+
282
+ def __setitem__(self, key, value):
283
+ return setattr(self, key, value)
284
+
285
+ def __contains__(self, key):
286
+ return key in self.__dict__
287
+
288
+ def __repr__(self):
289
+ return self.__dict__.__repr__()