Spaces:
Runtime error
Runtime error
from typing import Dict, Union | |
def sanitize( | |
input: Union[str, Dict[str, str]] | |
) -> Dict[str, Union[str, Dict[str, str]]]: | |
""" | |
Sanitize input string or dict of strings by replacing sensitive data with | |
placeholders. | |
It returns the sanitized input string or dict of strings and the secure | |
context as a dict following the format: | |
{ | |
"sanitized_input": <sanitized input string or dict of strings>, | |
"secure_context": <secure context> | |
} | |
The secure context is a bytes object that is needed to de-sanitize the response | |
from the LLM. | |
Args: | |
input: Input string or dict of strings. | |
Returns: | |
Sanitized input string or dict of strings and the secure context | |
as a dict following the format: | |
{ | |
"sanitized_input": <sanitized input string or dict of strings>, | |
"secure_context": <secure context> | |
} | |
The `secure_context` needs to be passed to the `desanitize` function. | |
Raises: | |
ValueError: If the input is not a string or dict of strings. | |
ImportError: If the `opaqueprompts` Python package is not installed. | |
""" | |
try: | |
import opaqueprompts as op | |
except ImportError: | |
raise ImportError( | |
"Could not import the `opaqueprompts` Python package, " | |
"please install it with `pip install opaqueprompts`." | |
) | |
if isinstance(input, str): | |
# the input could be a string, so we sanitize the string | |
sanitize_response: op.SanitizeResponse = op.sanitize([input]) | |
return { | |
"sanitized_input": sanitize_response.sanitized_texts[0], | |
"secure_context": sanitize_response.secure_context, | |
} | |
if isinstance(input, dict): | |
# the input could be a dict[string, string], so we sanitize the values | |
values = list() | |
# get the values from the dict | |
for key in input: | |
values.append(input[key]) | |
# sanitize the values | |
sanitize_values_response: op.SanitizeResponse = op.sanitize(values) | |
# reconstruct the dict with the sanitized values | |
sanitized_input_values = sanitize_values_response.sanitized_texts | |
idx = 0 | |
sanitized_input = dict() | |
for key in input: | |
sanitized_input[key] = sanitized_input_values[idx] | |
idx += 1 | |
return { | |
"sanitized_input": sanitized_input, | |
"secure_context": sanitize_values_response.secure_context, | |
} | |
raise ValueError(f"Unexpected input type {type(input)}") | |
def desanitize(sanitized_text: str, secure_context: bytes) -> str: | |
""" | |
Restore the original sensitive data from the sanitized text. | |
Args: | |
sanitized_text: Sanitized text. | |
secure_context: Secure context returned by the `sanitize` function. | |
Returns: | |
De-sanitized text. | |
""" | |
try: | |
import opaqueprompts as op | |
except ImportError: | |
raise ImportError( | |
"Could not import the `opaqueprompts` Python package, " | |
"please install it with `pip install opaqueprompts`." | |
) | |
desanitize_response: op.DesanitizeResponse = op.desanitize( | |
sanitized_text, secure_context | |
) | |
return desanitize_response.desanitized_text | |