webui / langchain /retrievers /contextual_compression.py
zhangyi617's picture
Upload folder using huggingface_hub
129cd69
from typing import Any, List
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
from langchain.callbacks.manager import (
AsyncCallbackManagerForRetrieverRun,
CallbackManagerForRetrieverRun,
)
from langchain.retrievers.document_compressors.base import (
BaseDocumentCompressor,
)
class ContextualCompressionRetriever(BaseRetriever):
"""Retriever that wraps a base retriever and compresses the results."""
base_compressor: BaseDocumentCompressor
"""Compressor for compressing retrieved documents."""
base_retriever: BaseRetriever
"""Base Retriever to use for getting relevant documents."""
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def _get_relevant_documents(
self,
query: str,
*,
run_manager: CallbackManagerForRetrieverRun,
**kwargs: Any,
) -> List[Document]:
"""Get documents relevant for a query.
Args:
query: string to find relevant documents for
Returns:
Sequence of relevant documents
"""
docs = self.base_retriever.get_relevant_documents(
query, callbacks=run_manager.get_child(), **kwargs
)
if docs:
compressed_docs = self.base_compressor.compress_documents(
docs, query, callbacks=run_manager.get_child()
)
return list(compressed_docs)
else:
return []
async def _aget_relevant_documents(
self,
query: str,
*,
run_manager: AsyncCallbackManagerForRetrieverRun,
**kwargs: Any,
) -> List[Document]:
"""Get documents relevant for a query.
Args:
query: string to find relevant documents for
Returns:
List of relevant documents
"""
docs = await self.base_retriever.aget_relevant_documents(
query, callbacks=run_manager.get_child(), **kwargs
)
if docs:
compressed_docs = await self.base_compressor.acompress_documents(
docs, query, callbacks=run_manager.get_child()
)
return list(compressed_docs)
else:
return []