Spaces:
Runtime error
Runtime error
from abc import ABC | |
from typing import Any, Dict, Optional, Tuple | |
from langchain_core.chat_history import BaseChatMessageHistory | |
from langchain_core.memory import BaseMemory | |
from langchain_core.pydantic_v1 import Field | |
from langchain.memory.chat_message_histories.in_memory import ChatMessageHistory | |
from langchain.memory.utils import get_prompt_input_key | |
class BaseChatMemory(BaseMemory, ABC): | |
"""Abstract base class for chat memory.""" | |
chat_memory: BaseChatMessageHistory = Field(default_factory=ChatMessageHistory) | |
output_key: Optional[str] = None | |
input_key: Optional[str] = None | |
return_messages: bool = False | |
def _get_input_output( | |
self, inputs: Dict[str, Any], outputs: Dict[str, str] | |
) -> Tuple[str, str]: | |
if self.input_key is None: | |
prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) | |
else: | |
prompt_input_key = self.input_key | |
if self.output_key is None: | |
if len(outputs) != 1: | |
raise ValueError(f"One output key expected, got {outputs.keys()}") | |
output_key = list(outputs.keys())[0] | |
else: | |
output_key = self.output_key | |
return inputs[prompt_input_key], outputs[output_key] | |
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: | |
"""Save context from this conversation to buffer.""" | |
input_str, output_str = self._get_input_output(inputs, outputs) | |
self.chat_memory.add_user_message(input_str) | |
self.chat_memory.add_ai_message(output_str) | |
def clear(self) -> None: | |
"""Clear memory contents.""" | |
self.chat_memory.clear() | |