Spaces:
Runtime error
Runtime error
from typing import Any, Dict, List, Mapping, Optional | |
import requests | |
from langchain_core.pydantic_v1 import Extra, root_validator | |
from langchain.callbacks.manager import CallbackManagerForLLMRun | |
from langchain.llms.base import LLM | |
from langchain.llms.utils import enforce_stop_tokens | |
from langchain.utils import get_from_dict_or_env | |
INSTRUCTION_KEY = "### Instruction:" | |
RESPONSE_KEY = "### Response:" | |
INTRO_BLURB = ( | |
"Below is an instruction that describes a task. " | |
"Write a response that appropriately completes the request." | |
) | |
PROMPT_FOR_GENERATION_FORMAT = """{intro} | |
{instruction_key} | |
{instruction} | |
{response_key} | |
""".format( | |
intro=INTRO_BLURB, | |
instruction_key=INSTRUCTION_KEY, | |
instruction="{instruction}", | |
response_key=RESPONSE_KEY, | |
) | |
class MosaicML(LLM): | |
"""MosaicML LLM service. | |
To use, you should have the | |
environment variable ``MOSAICML_API_TOKEN`` set with your API token, or pass | |
it as a named parameter to the constructor. | |
Example: | |
.. code-block:: python | |
from langchain.llms import MosaicML | |
endpoint_url = ( | |
"https://models.hosted-on.mosaicml.hosting/mpt-7b-instruct/v1/predict" | |
) | |
mosaic_llm = MosaicML( | |
endpoint_url=endpoint_url, | |
mosaicml_api_token="my-api-key" | |
) | |
""" | |
endpoint_url: str = ( | |
"https://models.hosted-on.mosaicml.hosting/mpt-7b-instruct/v1/predict" | |
) | |
"""Endpoint URL to use.""" | |
inject_instruction_format: bool = False | |
"""Whether to inject the instruction format into the prompt.""" | |
model_kwargs: Optional[dict] = None | |
"""Keyword arguments to pass to the model.""" | |
retry_sleep: float = 1.0 | |
"""How long to try sleeping for if a rate limit is encountered""" | |
mosaicml_api_token: Optional[str] = None | |
class Config: | |
"""Configuration for this pydantic object.""" | |
extra = Extra.forbid | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key and python package exists in environment.""" | |
mosaicml_api_token = get_from_dict_or_env( | |
values, "mosaicml_api_token", "MOSAICML_API_TOKEN" | |
) | |
values["mosaicml_api_token"] = mosaicml_api_token | |
return values | |
def _identifying_params(self) -> Mapping[str, Any]: | |
"""Get the identifying parameters.""" | |
_model_kwargs = self.model_kwargs or {} | |
return { | |
**{"endpoint_url": self.endpoint_url}, | |
**{"model_kwargs": _model_kwargs}, | |
} | |
def _llm_type(self) -> str: | |
"""Return type of llm.""" | |
return "mosaic" | |
def _transform_prompt(self, prompt: str) -> str: | |
"""Transform prompt.""" | |
if self.inject_instruction_format: | |
prompt = PROMPT_FOR_GENERATION_FORMAT.format( | |
instruction=prompt, | |
) | |
return prompt | |
def _call( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
is_retry: bool = False, | |
**kwargs: Any, | |
) -> str: | |
"""Call out to a MosaicML LLM inference endpoint. | |
Args: | |
prompt: The prompt to pass into the model. | |
stop: Optional list of stop words to use when generating. | |
Returns: | |
The string generated by the model. | |
Example: | |
.. code-block:: python | |
response = mosaic_llm("Tell me a joke.") | |
""" | |
_model_kwargs = self.model_kwargs or {} | |
prompt = self._transform_prompt(prompt) | |
payload = {"inputs": [prompt]} | |
payload.update(_model_kwargs) | |
payload.update(kwargs) | |
# HTTP headers for authorization | |
headers = { | |
"Authorization": f"{self.mosaicml_api_token}", | |
"Content-Type": "application/json", | |
} | |
# send request | |
try: | |
response = requests.post(self.endpoint_url, headers=headers, json=payload) | |
except requests.exceptions.RequestException as e: | |
raise ValueError(f"Error raised by inference endpoint: {e}") | |
try: | |
if response.status_code == 429: | |
if not is_retry: | |
import time | |
time.sleep(self.retry_sleep) | |
return self._call(prompt, stop, run_manager, is_retry=True) | |
raise ValueError( | |
f"Error raised by inference API: rate limit exceeded.\nResponse: " | |
f"{response.text}" | |
) | |
parsed_response = response.json() | |
# The inference API has changed a couple of times, so we add some handling | |
# to be robust to multiple response formats. | |
if isinstance(parsed_response, dict): | |
output_keys = ["data", "output", "outputs"] | |
for key in output_keys: | |
if key in parsed_response: | |
output_item = parsed_response[key] | |
break | |
else: | |
raise ValueError( | |
f"No valid key ({', '.join(output_keys)}) in response:" | |
f" {parsed_response}" | |
) | |
if isinstance(output_item, list): | |
text = output_item[0] | |
else: | |
text = output_item | |
else: | |
raise ValueError(f"Unexpected response type: {parsed_response}") | |
# Older versions of the API include the input in the output response | |
if text.startswith(prompt): | |
text = text[len(prompt) :] | |
except requests.exceptions.JSONDecodeError as e: | |
raise ValueError( | |
f"Error raised by inference API: {e}.\nResponse: {response.text}" | |
) | |
# TODO: replace when MosaicML supports custom stop tokens natively | |
if stop is not None: | |
text = enforce_stop_tokens(text, stop) | |
return text | |