Spaces:
Runtime error
Runtime error
"""Wrapper around Anyscale Endpoint""" | |
from typing import ( | |
Any, | |
AsyncIterator, | |
Dict, | |
Iterator, | |
List, | |
Mapping, | |
Optional, | |
Set, | |
Tuple, | |
cast, | |
) | |
from langchain_core.outputs import Generation, GenerationChunk, LLMResult | |
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator | |
from langchain_core.utils import convert_to_secret_str | |
from langchain.callbacks.manager import ( | |
AsyncCallbackManagerForLLMRun, | |
CallbackManagerForLLMRun, | |
) | |
from langchain.llms.openai import ( | |
BaseOpenAI, | |
acompletion_with_retry, | |
completion_with_retry, | |
) | |
from langchain.utils import get_from_dict_or_env | |
def update_token_usage( | |
keys: Set[str], response: Dict[str, Any], token_usage: Dict[str, Any] | |
) -> None: | |
"""Update token usage.""" | |
_keys_to_use = keys.intersection(response["usage"]) | |
for _key in _keys_to_use: | |
if _key not in token_usage: | |
token_usage[_key] = response["usage"][_key] | |
else: | |
token_usage[_key] += response["usage"][_key] | |
def create_llm_result( | |
choices: Any, prompts: List[str], token_usage: Dict[str, int], model_name: str | |
) -> LLMResult: | |
"""Create the LLMResult from the choices and prompts.""" | |
generations = [] | |
for i, _ in enumerate(prompts): | |
choice = choices[i] | |
generations.append( | |
[ | |
Generation( | |
text=choice["message"]["content"], | |
generation_info=dict( | |
finish_reason=choice.get("finish_reason"), | |
logprobs=choice.get("logprobs"), | |
), | |
) | |
] | |
) | |
llm_output = {"token_usage": token_usage, "model_name": model_name} | |
return LLMResult(generations=generations, llm_output=llm_output) | |
class Anyscale(BaseOpenAI): | |
"""Anyscale large language models. | |
To use, you should have the environment variable ``ANYSCALE_API_BASE`` and | |
``ANYSCALE_API_KEY``set with your Anyscale Endpoint, or pass it as a named | |
parameter to the constructor. | |
Example: | |
.. code-block:: python | |
from langchain.llms import Anyscale | |
anyscalellm = Anyscale(anyscale_api_base="ANYSCALE_API_BASE", | |
anyscale_api_key="ANYSCALE_API_KEY", | |
model_name="meta-llama/Llama-2-7b-chat-hf") | |
# To leverage Ray for parallel processing | |
@ray.remote(num_cpus=1) | |
def send_query(llm, text): | |
resp = llm(text) | |
return resp | |
futures = [send_query.remote(anyscalellm, text) for text in texts] | |
results = ray.get(futures) | |
""" | |
"""Key word arguments to pass to the model.""" | |
anyscale_api_base: Optional[str] = None | |
anyscale_api_key: Optional[SecretStr] = None | |
prefix_messages: List = Field(default_factory=list) | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key and python package exists in environment.""" | |
values["anyscale_api_base"] = get_from_dict_or_env( | |
values, "anyscale_api_base", "ANYSCALE_API_BASE" | |
) | |
values["anyscale_api_key"] = convert_to_secret_str( | |
get_from_dict_or_env(values, "anyscale_api_key", "ANYSCALE_API_KEY") | |
) | |
try: | |
import openai | |
## Always create ChatComplete client, replacing the legacy Complete client | |
values["client"] = openai.ChatCompletion | |
except ImportError: | |
raise ImportError( | |
"Could not import openai python package. " | |
"Please install it with `pip install openai`." | |
) | |
if values["streaming"] and values["n"] > 1: | |
raise ValueError("Cannot stream results when n > 1.") | |
if values["streaming"] and values["best_of"] > 1: | |
raise ValueError("Cannot stream results when best_of > 1.") | |
return values | |
def _identifying_params(self) -> Mapping[str, Any]: | |
"""Get the identifying parameters.""" | |
return { | |
**{"model_name": self.model_name}, | |
**super()._identifying_params, | |
} | |
def _invocation_params(self) -> Dict[str, Any]: | |
"""Get the parameters used to invoke the model.""" | |
openai_creds: Dict[str, Any] = { | |
"api_key": cast(SecretStr, self.anyscale_api_key).get_secret_value(), | |
"api_base": self.anyscale_api_base, | |
} | |
return {**openai_creds, **{"model": self.model_name}, **super()._default_params} | |
def _llm_type(self) -> str: | |
"""Return type of llm.""" | |
return "Anyscale LLM" | |
def _get_chat_messages( | |
self, prompts: List[str], stop: Optional[List[str]] = None | |
) -> Tuple: | |
if len(prompts) > 1: | |
raise ValueError( | |
f"Anyscale currently only supports single prompt, got {prompts}" | |
) | |
messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}] | |
params: Dict[str, Any] = self._invocation_params | |
if stop is not None: | |
if "stop" in params: | |
raise ValueError("`stop` found in both the input and default params.") | |
params["stop"] = stop | |
if params.get("max_tokens") == -1: | |
# for Chat api, omitting max_tokens is equivalent to having no limit | |
del params["max_tokens"] | |
return messages, params | |
def _stream( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> Iterator[GenerationChunk]: | |
messages, params = self._get_chat_messages([prompt], stop) | |
params = {**params, **kwargs, "stream": True} | |
for stream_resp in completion_with_retry( | |
self, messages=messages, run_manager=run_manager, **params | |
): | |
token = stream_resp["choices"][0]["delta"].get("content", "") | |
chunk = GenerationChunk(text=token) | |
yield chunk | |
if run_manager: | |
run_manager.on_llm_new_token(token, chunk=chunk) | |
async def _astream( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> AsyncIterator[GenerationChunk]: | |
messages, params = self._get_chat_messages([prompt], stop) | |
params = {**params, **kwargs, "stream": True} | |
async for stream_resp in await acompletion_with_retry( | |
self, messages=messages, run_manager=run_manager, **params | |
): | |
token = stream_resp["choices"][0]["delta"].get("content", "") | |
chunk = GenerationChunk(text=token) | |
yield chunk | |
if run_manager: | |
await run_manager.on_llm_new_token(token, chunk=chunk) | |
def _generate( | |
self, | |
prompts: List[str], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> LLMResult: | |
choices = [] | |
token_usage: Dict[str, int] = {} | |
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"} | |
for prompt in prompts: | |
if self.streaming: | |
generation: Optional[GenerationChunk] = None | |
for chunk in self._stream(prompt, stop, run_manager, **kwargs): | |
if generation is None: | |
generation = chunk | |
else: | |
generation += chunk | |
assert generation is not None | |
choices.append( | |
{ | |
"message": {"content": generation.text}, | |
"finish_reason": generation.generation_info.get("finish_reason") | |
if generation.generation_info | |
else None, | |
"logprobs": generation.generation_info.get("logprobs") | |
if generation.generation_info | |
else None, | |
} | |
) | |
else: | |
messages, params = self._get_chat_messages([prompt], stop) | |
params = {**params, **kwargs} | |
response = completion_with_retry( | |
self, messages=messages, run_manager=run_manager, **params | |
) | |
choices.extend(response["choices"]) | |
update_token_usage(_keys, response, token_usage) | |
return create_llm_result(choices, prompts, token_usage, self.model_name) | |
async def _agenerate( | |
self, | |
prompts: List[str], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> LLMResult: | |
choices = [] | |
token_usage: Dict[str, int] = {} | |
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"} | |
for prompt in prompts: | |
messages = self.prefix_messages + [{"role": "user", "content": prompt}] | |
if self.streaming: | |
generation: Optional[GenerationChunk] = None | |
async for chunk in self._astream(prompt, stop, run_manager, **kwargs): | |
if generation is None: | |
generation = chunk | |
else: | |
generation += chunk | |
assert generation is not None | |
choices.append( | |
{ | |
"message": {"content": generation.text}, | |
"finish_reason": generation.generation_info.get("finish_reason") | |
if generation.generation_info | |
else None, | |
"logprobs": generation.generation_info.get("logprobs") | |
if generation.generation_info | |
else None, | |
} | |
) | |
else: | |
messages, params = self._get_chat_messages([prompt], stop) | |
params = {**params, **kwargs} | |
response = await acompletion_with_retry( | |
self, messages=messages, run_manager=run_manager, **params | |
) | |
choices.extend(response["choices"]) | |
update_token_usage(_keys, response, token_usage) | |
return create_llm_result(choices, prompts, token_usage, self.model_name) | |