zhangyi617's picture
Upload folder using huggingface_hub
129cd69
"""Graph Index Creator."""
from typing import Optional, Type
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import BasePromptTemplate
from langchain_core.pydantic_v1 import BaseModel
from langchain.chains.llm import LLMChain
from langchain.graphs.networkx_graph import NetworkxEntityGraph, parse_triples
from langchain.indexes.prompts.knowledge_triplet_extraction import (
KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT,
)
class GraphIndexCreator(BaseModel):
"""Functionality to create graph index."""
llm: Optional[BaseLanguageModel] = None
graph_type: Type[NetworkxEntityGraph] = NetworkxEntityGraph
def from_text(
self, text: str, prompt: BasePromptTemplate = KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT
) -> NetworkxEntityGraph:
"""Create graph index from text."""
if self.llm is None:
raise ValueError("llm should not be None")
graph = self.graph_type()
chain = LLMChain(llm=self.llm, prompt=prompt)
output = chain.predict(text=text)
knowledge = parse_triples(output)
for triple in knowledge:
graph.add_triple(triple)
return graph
async def afrom_text(
self, text: str, prompt: BasePromptTemplate = KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT
) -> NetworkxEntityGraph:
"""Create graph index from text asynchronously."""
if self.llm is None:
raise ValueError("llm should not be None")
graph = self.graph_type()
chain = LLMChain(llm=self.llm, prompt=prompt)
output = await chain.apredict(text=text)
knowledge = parse_triples(output)
for triple in knowledge:
graph.add_triple(triple)
return graph