Spaces:
Runtime error
Runtime error
"""Question-answering with sources over a vector database.""" | |
import warnings | |
from typing import Any, Dict, List | |
from langchain_core.pydantic_v1 import Field, root_validator | |
from langchain_core.vectorstores import VectorStore | |
from langchain.callbacks.manager import ( | |
AsyncCallbackManagerForChainRun, | |
CallbackManagerForChainRun, | |
) | |
from langchain.chains.combine_documents.stuff import StuffDocumentsChain | |
from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain | |
from langchain.docstore.document import Document | |
class VectorDBQAWithSourcesChain(BaseQAWithSourcesChain): | |
"""Question-answering with sources over a vector database.""" | |
vectorstore: VectorStore = Field(exclude=True) | |
"""Vector Database to connect to.""" | |
k: int = 4 | |
"""Number of results to return from store""" | |
reduce_k_below_max_tokens: bool = False | |
"""Reduce the number of results to return from store based on tokens limit""" | |
max_tokens_limit: int = 3375 | |
"""Restrict the docs to return from store based on tokens, | |
enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true""" | |
search_kwargs: Dict[str, Any] = Field(default_factory=dict) | |
"""Extra search args.""" | |
def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]: | |
num_docs = len(docs) | |
if self.reduce_k_below_max_tokens and isinstance( | |
self.combine_documents_chain, StuffDocumentsChain | |
): | |
tokens = [ | |
self.combine_documents_chain.llm_chain._get_num_tokens(doc.page_content) | |
for doc in docs | |
] | |
token_count = sum(tokens[:num_docs]) | |
while token_count > self.max_tokens_limit: | |
num_docs -= 1 | |
token_count -= tokens[num_docs] | |
return docs[:num_docs] | |
def _get_docs( | |
self, inputs: Dict[str, Any], *, run_manager: CallbackManagerForChainRun | |
) -> List[Document]: | |
question = inputs[self.question_key] | |
docs = self.vectorstore.similarity_search( | |
question, k=self.k, **self.search_kwargs | |
) | |
return self._reduce_tokens_below_limit(docs) | |
async def _aget_docs( | |
self, inputs: Dict[str, Any], *, run_manager: AsyncCallbackManagerForChainRun | |
) -> List[Document]: | |
raise NotImplementedError("VectorDBQAWithSourcesChain does not support async") | |
def raise_deprecation(cls, values: Dict) -> Dict: | |
warnings.warn( | |
"`VectorDBQAWithSourcesChain` is deprecated - " | |
"please use `from langchain.chains import RetrievalQAWithSourcesChain`" | |
) | |
return values | |
def _chain_type(self) -> str: | |
return "vector_db_qa_with_sources_chain" | |