Spaces:
Runtime error
Runtime error
| """Question-answering with sources over a vector database.""" | |
| import warnings | |
| from typing import Any, Dict, List | |
| from langchain_core.pydantic_v1 import Field, root_validator | |
| from langchain_core.vectorstores import VectorStore | |
| from langchain.callbacks.manager import ( | |
| AsyncCallbackManagerForChainRun, | |
| CallbackManagerForChainRun, | |
| ) | |
| from langchain.chains.combine_documents.stuff import StuffDocumentsChain | |
| from langchain.chains.qa_with_sources.base import BaseQAWithSourcesChain | |
| from langchain.docstore.document import Document | |
| class VectorDBQAWithSourcesChain(BaseQAWithSourcesChain): | |
| """Question-answering with sources over a vector database.""" | |
| vectorstore: VectorStore = Field(exclude=True) | |
| """Vector Database to connect to.""" | |
| k: int = 4 | |
| """Number of results to return from store""" | |
| reduce_k_below_max_tokens: bool = False | |
| """Reduce the number of results to return from store based on tokens limit""" | |
| max_tokens_limit: int = 3375 | |
| """Restrict the docs to return from store based on tokens, | |
| enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true""" | |
| search_kwargs: Dict[str, Any] = Field(default_factory=dict) | |
| """Extra search args.""" | |
| def _reduce_tokens_below_limit(self, docs: List[Document]) -> List[Document]: | |
| num_docs = len(docs) | |
| if self.reduce_k_below_max_tokens and isinstance( | |
| self.combine_documents_chain, StuffDocumentsChain | |
| ): | |
| tokens = [ | |
| self.combine_documents_chain.llm_chain._get_num_tokens(doc.page_content) | |
| for doc in docs | |
| ] | |
| token_count = sum(tokens[:num_docs]) | |
| while token_count > self.max_tokens_limit: | |
| num_docs -= 1 | |
| token_count -= tokens[num_docs] | |
| return docs[:num_docs] | |
| def _get_docs( | |
| self, inputs: Dict[str, Any], *, run_manager: CallbackManagerForChainRun | |
| ) -> List[Document]: | |
| question = inputs[self.question_key] | |
| docs = self.vectorstore.similarity_search( | |
| question, k=self.k, **self.search_kwargs | |
| ) | |
| return self._reduce_tokens_below_limit(docs) | |
| async def _aget_docs( | |
| self, inputs: Dict[str, Any], *, run_manager: AsyncCallbackManagerForChainRun | |
| ) -> List[Document]: | |
| raise NotImplementedError("VectorDBQAWithSourcesChain does not support async") | |
| def raise_deprecation(cls, values: Dict) -> Dict: | |
| warnings.warn( | |
| "`VectorDBQAWithSourcesChain` is deprecated - " | |
| "please use `from langchain.chains import RetrievalQAWithSourcesChain`" | |
| ) | |
| return values | |
| def _chain_type(self) -> str: | |
| return "vector_db_qa_with_sources_chain" | |