Spaces:
Runtime error
Runtime error
"""Chain that interprets a prompt and executes python code to do math.""" | |
from __future__ import annotations | |
import math | |
import re | |
import warnings | |
from typing import Any, Dict, List, Optional | |
from langchain_core.language_models import BaseLanguageModel | |
from langchain_core.prompts import BasePromptTemplate | |
from langchain_core.pydantic_v1 import Extra, root_validator | |
from langchain.callbacks.manager import ( | |
AsyncCallbackManagerForChainRun, | |
CallbackManagerForChainRun, | |
) | |
from langchain.chains.base import Chain | |
from langchain.chains.llm import LLMChain | |
from langchain.chains.llm_math.prompt import PROMPT | |
class LLMMathChain(Chain): | |
"""Chain that interprets a prompt and executes python code to do math. | |
Example: | |
.. code-block:: python | |
from langchain.chains import LLMMathChain | |
from langchain.llms import OpenAI | |
llm_math = LLMMathChain.from_llm(OpenAI()) | |
""" | |
llm_chain: LLMChain | |
llm: Optional[BaseLanguageModel] = None | |
"""[Deprecated] LLM wrapper to use.""" | |
prompt: BasePromptTemplate = PROMPT | |
"""[Deprecated] Prompt to use to translate to python if necessary.""" | |
input_key: str = "question" #: :meta private: | |
output_key: str = "answer" #: :meta private: | |
class Config: | |
"""Configuration for this pydantic object.""" | |
extra = Extra.forbid | |
arbitrary_types_allowed = True | |
def raise_deprecation(cls, values: Dict) -> Dict: | |
try: | |
import numexpr # noqa: F401 | |
except ImportError: | |
raise ImportError( | |
"LLMMathChain requires the numexpr package. " | |
"Please install it with `pip install numexpr`." | |
) | |
if "llm" in values: | |
warnings.warn( | |
"Directly instantiating an LLMMathChain with an llm is deprecated. " | |
"Please instantiate with llm_chain argument or using the from_llm " | |
"class method." | |
) | |
if "llm_chain" not in values and values["llm"] is not None: | |
prompt = values.get("prompt", PROMPT) | |
values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt) | |
return values | |
def input_keys(self) -> List[str]: | |
"""Expect input key. | |
:meta private: | |
""" | |
return [self.input_key] | |
def output_keys(self) -> List[str]: | |
"""Expect output key. | |
:meta private: | |
""" | |
return [self.output_key] | |
def _evaluate_expression(self, expression: str) -> str: | |
import numexpr # noqa: F401 | |
try: | |
local_dict = {"pi": math.pi, "e": math.e} | |
output = str( | |
numexpr.evaluate( | |
expression.strip(), | |
global_dict={}, # restrict access to globals | |
local_dict=local_dict, # add common mathematical functions | |
) | |
) | |
except Exception as e: | |
raise ValueError( | |
f'LLMMathChain._evaluate("{expression}") raised error: {e}.' | |
" Please try again with a valid numerical expression" | |
) | |
# Remove any leading and trailing brackets from the output | |
return re.sub(r"^\[|\]$", "", output) | |
def _process_llm_result( | |
self, llm_output: str, run_manager: CallbackManagerForChainRun | |
) -> Dict[str, str]: | |
run_manager.on_text(llm_output, color="green", verbose=self.verbose) | |
llm_output = llm_output.strip() | |
text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL) | |
if text_match: | |
expression = text_match.group(1) | |
output = self._evaluate_expression(expression) | |
run_manager.on_text("\nAnswer: ", verbose=self.verbose) | |
run_manager.on_text(output, color="yellow", verbose=self.verbose) | |
answer = "Answer: " + output | |
elif llm_output.startswith("Answer:"): | |
answer = llm_output | |
elif "Answer:" in llm_output: | |
answer = "Answer: " + llm_output.split("Answer:")[-1] | |
else: | |
raise ValueError(f"unknown format from LLM: {llm_output}") | |
return {self.output_key: answer} | |
async def _aprocess_llm_result( | |
self, | |
llm_output: str, | |
run_manager: AsyncCallbackManagerForChainRun, | |
) -> Dict[str, str]: | |
await run_manager.on_text(llm_output, color="green", verbose=self.verbose) | |
llm_output = llm_output.strip() | |
text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL) | |
if text_match: | |
expression = text_match.group(1) | |
output = self._evaluate_expression(expression) | |
await run_manager.on_text("\nAnswer: ", verbose=self.verbose) | |
await run_manager.on_text(output, color="yellow", verbose=self.verbose) | |
answer = "Answer: " + output | |
elif llm_output.startswith("Answer:"): | |
answer = llm_output | |
elif "Answer:" in llm_output: | |
answer = "Answer: " + llm_output.split("Answer:")[-1] | |
else: | |
raise ValueError(f"unknown format from LLM: {llm_output}") | |
return {self.output_key: answer} | |
def _call( | |
self, | |
inputs: Dict[str, str], | |
run_manager: Optional[CallbackManagerForChainRun] = None, | |
) -> Dict[str, str]: | |
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() | |
_run_manager.on_text(inputs[self.input_key]) | |
llm_output = self.llm_chain.predict( | |
question=inputs[self.input_key], | |
stop=["```output"], | |
callbacks=_run_manager.get_child(), | |
) | |
return self._process_llm_result(llm_output, _run_manager) | |
async def _acall( | |
self, | |
inputs: Dict[str, str], | |
run_manager: Optional[AsyncCallbackManagerForChainRun] = None, | |
) -> Dict[str, str]: | |
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() | |
await _run_manager.on_text(inputs[self.input_key]) | |
llm_output = await self.llm_chain.apredict( | |
question=inputs[self.input_key], | |
stop=["```output"], | |
callbacks=_run_manager.get_child(), | |
) | |
return await self._aprocess_llm_result(llm_output, _run_manager) | |
def _chain_type(self) -> str: | |
return "llm_math_chain" | |
def from_llm( | |
cls, | |
llm: BaseLanguageModel, | |
prompt: BasePromptTemplate = PROMPT, | |
**kwargs: Any, | |
) -> LLMMathChain: | |
llm_chain = LLMChain(llm=llm, prompt=prompt) | |
return cls(llm_chain=llm_chain, **kwargs) | |