Spaces:
Runtime error
Runtime error
import re | |
from typing import Union | |
from langchain_core.agents import AgentAction, AgentFinish | |
from langchain_core.exceptions import OutputParserException | |
from langchain.agents.agent import AgentOutputParser | |
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS | |
FINAL_ANSWER_ACTION = "Final Answer:" | |
MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE = ( | |
"Invalid Format: Missing 'Action:' after 'Thought:" | |
) | |
MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE = ( | |
"Invalid Format: Missing 'Action Input:' after 'Action:'" | |
) | |
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE = ( | |
"Parsing LLM output produced both a final answer and a parse-able action:" | |
) | |
class MRKLOutputParser(AgentOutputParser): | |
"""MRKL Output parser for the chat agent.""" | |
def get_format_instructions(self) -> str: | |
return FORMAT_INSTRUCTIONS | |
def parse(self, text: str) -> Union[AgentAction, AgentFinish]: | |
includes_answer = FINAL_ANSWER_ACTION in text | |
regex = ( | |
r"Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)" | |
) | |
action_match = re.search(regex, text, re.DOTALL) | |
if action_match and includes_answer: | |
if text.find(FINAL_ANSWER_ACTION) < text.find(action_match.group(0)): | |
# if final answer is before the hallucination, return final answer | |
start_index = text.find(FINAL_ANSWER_ACTION) + len(FINAL_ANSWER_ACTION) | |
end_index = text.find("\n\n", start_index) | |
return AgentFinish( | |
{"output": text[start_index:end_index].strip()}, text[:end_index] | |
) | |
else: | |
raise OutputParserException( | |
f"{FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE}: {text}" | |
) | |
if action_match: | |
action = action_match.group(1).strip() | |
action_input = action_match.group(2) | |
tool_input = action_input.strip(" ") | |
# ensure if its a well formed SQL query we don't remove any trailing " chars | |
if tool_input.startswith("SELECT ") is False: | |
tool_input = tool_input.strip('"') | |
return AgentAction(action, tool_input, text) | |
elif includes_answer: | |
return AgentFinish( | |
{"output": text.split(FINAL_ANSWER_ACTION)[-1].strip()}, text | |
) | |
if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL): | |
raise OutputParserException( | |
f"Could not parse LLM output: `{text}`", | |
observation=MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE, | |
llm_output=text, | |
send_to_llm=True, | |
) | |
elif not re.search( | |
r"[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)", text, re.DOTALL | |
): | |
raise OutputParserException( | |
f"Could not parse LLM output: `{text}`", | |
observation=MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE, | |
llm_output=text, | |
send_to_llm=True, | |
) | |
else: | |
raise OutputParserException(f"Could not parse LLM output: `{text}`") | |
def _type(self) -> str: | |
return "mrkl" | |