Spaces:
Runtime error
Runtime error
"""An agent designed to hold a conversation in addition to using tools.""" | |
from __future__ import annotations | |
from typing import Any, List, Optional, Sequence, Tuple | |
from langchain_core.agents import AgentAction | |
from langchain_core.language_models import BaseLanguageModel | |
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage | |
from langchain_core.output_parsers import BaseOutputParser | |
from langchain_core.prompts import BasePromptTemplate | |
from langchain_core.prompts.chat import ( | |
ChatPromptTemplate, | |
HumanMessagePromptTemplate, | |
MessagesPlaceholder, | |
SystemMessagePromptTemplate, | |
) | |
from langchain_core.pydantic_v1 import Field | |
from langchain.agents.agent import Agent, AgentOutputParser | |
from langchain.agents.conversational_chat.output_parser import ConvoOutputParser | |
from langchain.agents.conversational_chat.prompt import ( | |
PREFIX, | |
SUFFIX, | |
TEMPLATE_TOOL_RESPONSE, | |
) | |
from langchain.agents.utils import validate_tools_single_input | |
from langchain.callbacks.base import BaseCallbackManager | |
from langchain.chains import LLMChain | |
from langchain.tools.base import BaseTool | |
class ConversationalChatAgent(Agent): | |
"""An agent designed to hold a conversation in addition to using tools.""" | |
output_parser: AgentOutputParser = Field(default_factory=ConvoOutputParser) | |
template_tool_response: str = TEMPLATE_TOOL_RESPONSE | |
def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: | |
return ConvoOutputParser() | |
def _agent_type(self) -> str: | |
raise NotImplementedError | |
def observation_prefix(self) -> str: | |
"""Prefix to append the observation with.""" | |
return "Observation: " | |
def llm_prefix(self) -> str: | |
"""Prefix to append the llm call with.""" | |
return "Thought:" | |
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: | |
super()._validate_tools(tools) | |
validate_tools_single_input(cls.__name__, tools) | |
def create_prompt( | |
cls, | |
tools: Sequence[BaseTool], | |
system_message: str = PREFIX, | |
human_message: str = SUFFIX, | |
input_variables: Optional[List[str]] = None, | |
output_parser: Optional[BaseOutputParser] = None, | |
) -> BasePromptTemplate: | |
tool_strings = "\n".join( | |
[f"> {tool.name}: {tool.description}" for tool in tools] | |
) | |
tool_names = ", ".join([tool.name for tool in tools]) | |
_output_parser = output_parser or cls._get_default_output_parser() | |
format_instructions = human_message.format( | |
format_instructions=_output_parser.get_format_instructions() | |
) | |
final_prompt = format_instructions.format( | |
tool_names=tool_names, tools=tool_strings | |
) | |
if input_variables is None: | |
input_variables = ["input", "chat_history", "agent_scratchpad"] | |
messages = [ | |
SystemMessagePromptTemplate.from_template(system_message), | |
MessagesPlaceholder(variable_name="chat_history"), | |
HumanMessagePromptTemplate.from_template(final_prompt), | |
MessagesPlaceholder(variable_name="agent_scratchpad"), | |
] | |
return ChatPromptTemplate(input_variables=input_variables, messages=messages) | |
def _construct_scratchpad( | |
self, intermediate_steps: List[Tuple[AgentAction, str]] | |
) -> List[BaseMessage]: | |
"""Construct the scratchpad that lets the agent continue its thought process.""" | |
thoughts: List[BaseMessage] = [] | |
for action, observation in intermediate_steps: | |
thoughts.append(AIMessage(content=action.log)) | |
human_message = HumanMessage( | |
content=self.template_tool_response.format(observation=observation) | |
) | |
thoughts.append(human_message) | |
return thoughts | |
def from_llm_and_tools( | |
cls, | |
llm: BaseLanguageModel, | |
tools: Sequence[BaseTool], | |
callback_manager: Optional[BaseCallbackManager] = None, | |
output_parser: Optional[AgentOutputParser] = None, | |
system_message: str = PREFIX, | |
human_message: str = SUFFIX, | |
input_variables: Optional[List[str]] = None, | |
**kwargs: Any, | |
) -> Agent: | |
"""Construct an agent from an LLM and tools.""" | |
cls._validate_tools(tools) | |
_output_parser = output_parser or cls._get_default_output_parser() | |
prompt = cls.create_prompt( | |
tools, | |
system_message=system_message, | |
human_message=human_message, | |
input_variables=input_variables, | |
output_parser=_output_parser, | |
) | |
llm_chain = LLMChain( | |
llm=llm, | |
prompt=prompt, | |
callback_manager=callback_manager, | |
) | |
tool_names = [tool.name for tool in tools] | |
return cls( | |
llm_chain=llm_chain, | |
allowed_tools=tool_names, | |
output_parser=_output_parser, | |
**kwargs, | |
) | |