Spaces:
Runtime error
Runtime error
"""An agent designed to hold a conversation in addition to using tools.""" | |
from __future__ import annotations | |
from typing import Any, List, Optional, Sequence | |
from langchain_core.language_models import BaseLanguageModel | |
from langchain_core.prompts import PromptTemplate | |
from langchain_core.pydantic_v1 import Field | |
from langchain.agents.agent import Agent, AgentOutputParser | |
from langchain.agents.agent_types import AgentType | |
from langchain.agents.conversational.output_parser import ConvoOutputParser | |
from langchain.agents.conversational.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX | |
from langchain.agents.utils import validate_tools_single_input | |
from langchain.callbacks.base import BaseCallbackManager | |
from langchain.chains import LLMChain | |
from langchain.tools.base import BaseTool | |
class ConversationalAgent(Agent): | |
"""An agent that holds a conversation in addition to using tools.""" | |
ai_prefix: str = "AI" | |
"""Prefix to use before AI output.""" | |
output_parser: AgentOutputParser = Field(default_factory=ConvoOutputParser) | |
"""Output parser for the agent.""" | |
def _get_default_output_parser( | |
cls, ai_prefix: str = "AI", **kwargs: Any | |
) -> AgentOutputParser: | |
return ConvoOutputParser(ai_prefix=ai_prefix) | |
def _agent_type(self) -> str: | |
"""Return Identifier of agent type.""" | |
return AgentType.CONVERSATIONAL_REACT_DESCRIPTION | |
def observation_prefix(self) -> str: | |
"""Prefix to append the observation with.""" | |
return "Observation: " | |
def llm_prefix(self) -> str: | |
"""Prefix to append the llm call with.""" | |
return "Thought:" | |
def create_prompt( | |
cls, | |
tools: Sequence[BaseTool], | |
prefix: str = PREFIX, | |
suffix: str = SUFFIX, | |
format_instructions: str = FORMAT_INSTRUCTIONS, | |
ai_prefix: str = "AI", | |
human_prefix: str = "Human", | |
input_variables: Optional[List[str]] = None, | |
) -> PromptTemplate: | |
"""Create prompt in the style of the zero-shot agent. | |
Args: | |
tools: List of tools the agent will have access to, used to format the | |
prompt. | |
prefix: String to put before the list of tools. | |
suffix: String to put after the list of tools. | |
ai_prefix: String to use before AI output. | |
human_prefix: String to use before human output. | |
input_variables: List of input variables the final prompt will expect. | |
Returns: | |
A PromptTemplate with the template assembled from the pieces here. | |
""" | |
tool_strings = "\n".join( | |
[f"> {tool.name}: {tool.description}" for tool in tools] | |
) | |
tool_names = ", ".join([tool.name for tool in tools]) | |
format_instructions = format_instructions.format( | |
tool_names=tool_names, ai_prefix=ai_prefix, human_prefix=human_prefix | |
) | |
template = "\n\n".join([prefix, tool_strings, format_instructions, suffix]) | |
if input_variables is None: | |
input_variables = ["input", "chat_history", "agent_scratchpad"] | |
return PromptTemplate(template=template, input_variables=input_variables) | |
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: | |
super()._validate_tools(tools) | |
validate_tools_single_input(cls.__name__, tools) | |
def from_llm_and_tools( | |
cls, | |
llm: BaseLanguageModel, | |
tools: Sequence[BaseTool], | |
callback_manager: Optional[BaseCallbackManager] = None, | |
output_parser: Optional[AgentOutputParser] = None, | |
prefix: str = PREFIX, | |
suffix: str = SUFFIX, | |
format_instructions: str = FORMAT_INSTRUCTIONS, | |
ai_prefix: str = "AI", | |
human_prefix: str = "Human", | |
input_variables: Optional[List[str]] = None, | |
**kwargs: Any, | |
) -> Agent: | |
"""Construct an agent from an LLM and tools.""" | |
cls._validate_tools(tools) | |
prompt = cls.create_prompt( | |
tools, | |
ai_prefix=ai_prefix, | |
human_prefix=human_prefix, | |
prefix=prefix, | |
suffix=suffix, | |
format_instructions=format_instructions, | |
input_variables=input_variables, | |
) | |
llm_chain = LLMChain( | |
llm=llm, | |
prompt=prompt, | |
callback_manager=callback_manager, | |
) | |
tool_names = [tool.name for tool in tools] | |
_output_parser = output_parser or cls._get_default_output_parser( | |
ai_prefix=ai_prefix | |
) | |
return cls( | |
llm_chain=llm_chain, | |
allowed_tools=tool_names, | |
ai_prefix=ai_prefix, | |
output_parser=_output_parser, | |
**kwargs, | |
) | |