Spaces:
Runtime error
Runtime error
from typing import Any, List, Optional, Sequence, Tuple | |
from langchain_core.agents import AgentAction | |
from langchain_core.language_models import BaseLanguageModel | |
from langchain_core.prompts import BasePromptTemplate | |
from langchain_core.prompts.chat import ( | |
ChatPromptTemplate, | |
HumanMessagePromptTemplate, | |
SystemMessagePromptTemplate, | |
) | |
from langchain_core.pydantic_v1 import Field | |
from langchain.agents.agent import Agent, AgentOutputParser | |
from langchain.agents.chat.output_parser import ChatOutputParser | |
from langchain.agents.chat.prompt import ( | |
FORMAT_INSTRUCTIONS, | |
HUMAN_MESSAGE, | |
SYSTEM_MESSAGE_PREFIX, | |
SYSTEM_MESSAGE_SUFFIX, | |
) | |
from langchain.agents.utils import validate_tools_single_input | |
from langchain.callbacks.base import BaseCallbackManager | |
from langchain.chains.llm import LLMChain | |
from langchain.tools.base import BaseTool | |
class ChatAgent(Agent): | |
"""Chat Agent.""" | |
output_parser: AgentOutputParser = Field(default_factory=ChatOutputParser) | |
"""Output parser for the agent.""" | |
def observation_prefix(self) -> str: | |
"""Prefix to append the observation with.""" | |
return "Observation: " | |
def llm_prefix(self) -> str: | |
"""Prefix to append the llm call with.""" | |
return "Thought:" | |
def _construct_scratchpad( | |
self, intermediate_steps: List[Tuple[AgentAction, str]] | |
) -> str: | |
agent_scratchpad = super()._construct_scratchpad(intermediate_steps) | |
if not isinstance(agent_scratchpad, str): | |
raise ValueError("agent_scratchpad should be of type string.") | |
if agent_scratchpad: | |
return ( | |
f"This was your previous work " | |
f"(but I haven't seen any of it! I only see what " | |
f"you return as final answer):\n{agent_scratchpad}" | |
) | |
else: | |
return agent_scratchpad | |
def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: | |
return ChatOutputParser() | |
def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: | |
super()._validate_tools(tools) | |
validate_tools_single_input(class_name=cls.__name__, tools=tools) | |
def _stop(self) -> List[str]: | |
return ["Observation:"] | |
def create_prompt( | |
cls, | |
tools: Sequence[BaseTool], | |
system_message_prefix: str = SYSTEM_MESSAGE_PREFIX, | |
system_message_suffix: str = SYSTEM_MESSAGE_SUFFIX, | |
human_message: str = HUMAN_MESSAGE, | |
format_instructions: str = FORMAT_INSTRUCTIONS, | |
input_variables: Optional[List[str]] = None, | |
) -> BasePromptTemplate: | |
tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools]) | |
tool_names = ", ".join([tool.name for tool in tools]) | |
format_instructions = format_instructions.format(tool_names=tool_names) | |
template = "\n\n".join( | |
[ | |
system_message_prefix, | |
tool_strings, | |
format_instructions, | |
system_message_suffix, | |
] | |
) | |
messages = [ | |
SystemMessagePromptTemplate.from_template(template), | |
HumanMessagePromptTemplate.from_template(human_message), | |
] | |
if input_variables is None: | |
input_variables = ["input", "agent_scratchpad"] | |
return ChatPromptTemplate(input_variables=input_variables, messages=messages) | |
def from_llm_and_tools( | |
cls, | |
llm: BaseLanguageModel, | |
tools: Sequence[BaseTool], | |
callback_manager: Optional[BaseCallbackManager] = None, | |
output_parser: Optional[AgentOutputParser] = None, | |
system_message_prefix: str = SYSTEM_MESSAGE_PREFIX, | |
system_message_suffix: str = SYSTEM_MESSAGE_SUFFIX, | |
human_message: str = HUMAN_MESSAGE, | |
format_instructions: str = FORMAT_INSTRUCTIONS, | |
input_variables: Optional[List[str]] = None, | |
**kwargs: Any, | |
) -> Agent: | |
"""Construct an agent from an LLM and tools.""" | |
cls._validate_tools(tools) | |
prompt = cls.create_prompt( | |
tools, | |
system_message_prefix=system_message_prefix, | |
system_message_suffix=system_message_suffix, | |
human_message=human_message, | |
format_instructions=format_instructions, | |
input_variables=input_variables, | |
) | |
llm_chain = LLMChain( | |
llm=llm, | |
prompt=prompt, | |
callback_manager=callback_manager, | |
) | |
tool_names = [tool.name for tool in tools] | |
_output_parser = output_parser or cls._get_default_output_parser() | |
return cls( | |
llm_chain=llm_chain, | |
allowed_tools=tool_names, | |
output_parser=_output_parser, | |
**kwargs, | |
) | |
def _agent_type(self) -> str: | |
raise ValueError | |